Parallelizing Molecular Dynamics
using Spatial Decomposition

Terry W. Clark
Rewnhard v. Hanxleden
J. Andrew McCammon

L. Ridgway Scott

CRPC-TR93356-S
November, 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Revised March, 1994.

From the Proceedings of the Scalable High Performance
Computing Conference, Knoxville, TN, May 1994. Avail-
able via anonymous ftp from softlib.rice.edu as
pub/CRPC-TRs/reports/CRPC-TR93356-S.

Parallelizing Molecular Dynamics using Spatial Decomposition

Terry W. Clark
clark@kacha.chem.uh.edu
Dept. of Computer Science

reinhard@rice.edu
Dept. of Computer Science
Rice University
Houston, TX 77251

University of Houston
Houston, TX 77204

Abstract

Several algorithms have been wused for parallel
molecular dynamaics, including the replicated algorithm
and those based on spatial decompositions. The repli-
cated algorithm stores the entire system’s coordinates
and forces at each processor, and therefore has a low
overhead in maintaining the data distribution. Spa-
tial decompositions distribute the data, providing bet-
ter locality and scalability with respect to memory and
computation.

We present EULERGROMOS, a parallelization of the
GRrROMOS molecular dynamics program which is based
on a spatial decomposition. EULERGROMOS paral-
lelizes all molecular dynamics phases, with most data
structures using O(N/P) memory. This paper fo-
cuses on the structure of EULERGROMOS and anal-
yses its performance using molecular systems of cur-
rent interest in the molecular dynamics community.
EULERGROMOS achieves performance increases with
as few as twenty atoms per processor. We also com-
pare EULERGROMOS with an earlier parallelization of
GroMos, UHGRoOMOS, which uses the replicated al-
gorithm.

1 Introduction

Molecular dynamics (MD) simulations are useful
computational approaches for studying various ki-
netic, thermodynamic, mechanistic, and structural
properties [15]. Molecular dynamics programs tend to
be complex, taking many years to write, with frequent
modification. There exist several MD programs, like
GroMos [9] or CHARMM [1], that are well established
and are routinely used to solve a broad range of differ-
ent simulation problems. However, despite the matu-

*From the Proceedings of the Scalable High Perfor-
mance Computing Conference, Knoxville, TN, May 1994.
Available via anonymous ftp from softlib.rice.edu as
pub/CRPC-TRs/reports/CRPC-TR93356-S.

Reinhard v. Hanxleden J. Andrew McCammon

*

L. Ridgway Scott
scott@uh.edu
Dept. of Mathematics
University of Houston
Houston, TX 77204

mccammon@uh . edu
Dept. of Chemistry
University of Houston
Houston, TX 77204

rity of these programs and the significant hardware im-
provements made since their introduction, there is an
interest in simulating larger systems, over longer pe-
riods of time, than is currently feasible. A number of
researchers have already shown that MD is amenable
for parallelization [2, 3, 8, 12, 13, 20]. However, certain
difficulties arise when trying to achieve high efficien-
cies with large numbers of processors, largely due to
the computationally irregular nature of MD codes in
general. This paper presents EULERGROMOS, a paral-
lelization of GROMOS that focuses on overcoming these
scalability problems.

An MD simulation applies Newton’s equations of
motion to a molecular system to determine a new set of
positions and velocities for the atoms at each timestep.
The calculation of a single timestep involves an iter-
ation over several major phases in the MD program.
FEuLERGROMOS parallelized all of those major phases,
including numerical integration with constraints (or
SHAKE [5]), pairlist construction, and the computa-
tion of non-bonded forces (NBF). Since most MD runs
perform the bulk of the work (around 90%) in the NBF
routine, this phase is of particular interest. A com-
mon technique to accelerate the NBF calculation is to
ignore all NBF interactions beyond a certain cutoff ra-
dius, Reyt [19]. This in turn provides an access locality
that makes Eulerian, application space oriented data
distributions desirable. An Fulerian, or geometric, de-
composition assigns application space to processors, as
compared to Lagrangian mappings where particles are
assigned to processors.

A typical limitation of spatial-decomposition par-
allelizations of codes based on a cutoff-radius approx-
imation is to restrict communication to nearest neigh-
bors. Consequently, each processor subdomain has to
be greater than or equal to the cutoff radius size (see
Section 4). For a fixed problem size, this restriction
imposes an upper bound on the number of processors
that can be used. However, as shown in Figure 1,
FEULERGROMOS can make effective use of more pro-
cessors than would be allowed under this restriction.

EulerGROMOS & Myoglobin; Shift Communication; Blockwise decomposition; 50Steps
T

14
12 *—— Accessible for T
Subdomain >= Reut
Rcut=15A X
AN & — -0 Inaccessible for
10 N Subdomain >= Recut T
g B
£ \
\
£ g .]
£ o
° N
£ S
Z 6r N b
= ©
° T
= ~e
ar Reut=10A \ 1
2 T - 4
0 .
10' 10° 10°

Number of processors

Figure 1: Processor accessibility limitation for the
standard parallel link-cell method due to subdomain

size demonstrated for myoglobin in a 50A° box.

EuLErRGROMOS, with the GROMOS molecular dynam-
ics program for its MD kernel, uses a spatial decom-
position, but does not limit communication to nearest
neighbors. Each processor’s overlap region (of thick-
ness Ry) is allowed to penetrate several processor
subdomain layers. Figure 1 shows that substantial
performance gains would not be available otherwise.

FEULERGROMOS provides a choice between two dif-
ferent communication algorithms, one of which (based
on shifts) becomes faster as the number of proces-
sors increases. Efficient communication, together with
low parallelization and distribution overheads, allowed
speedup gains with as few as approximately 20 atoms
to a processor, including all phases of the molecular
dynamics with constraints and I/O. For comparison,

typical values for the density p of 0.1 atoms/;&3 and
Ryt of 15A would result in a minimum of about 300
atoms per processor subdomain if only nearest neigh-
bor communication were allowed. Another character-
istic of EULERGROMOS is the use of dynamic load bal-
ancing, which adjusts individual subdomain sizes to
accommodate inhomogeneous atom densities.

The implementation of EULERGROMOS is described
in more detail in Section 2. Section 3 evaluates
the characteristics of the resulting program, present-
ing performance results for three biomolecular sys-
tems. One of these systems, the solvated acetyl-
cholinesterase dimer (AChE) shown in Figure 2, con-
tains over 100,000 atoms, about an order of magnitude
more than typically simulated. Section 4 discusses re-
lated work, Section 5 concludes with a summary.

2 EULERGROMOS

2.1 Imposing a granularity on the prob-
lem domain

Using an Eulerian decomposition for distributing
atoms and the computations associated with them im-
proves inter-processor locality, which in turn increases
scalability and reduces communication costs. How-
ever, to make good use of the intra-processor memory
hierarchy as well (i.e., to reduce cache misses), increas-
ing access locality is also desirable within a processor.
We therefore conceptually divide our overall problem
domain, which here is the physical space occupied by
the set of atoms that we want to simulate, into small
rectilinear regions of fixed size, henceforth called sub-
bozes. There are ng subboxes along dimension d, re-
sulting in a total on nji * ny * ng subboxes. Each sub-
box contains a list representation of the atoms resi-
dent within its spatial extent [6]. To amortize some of
the data access overhead, the linked lists are packed
densely and in subbox order for linear traversal and
better cache locality.

For each physical dimension d, the number of sub-
boxes, ng, and their size, boxg, depend on several
parameters including the number of processors P (=
p1p2ps), the mapping strategy, the number of atoms
N, the cutoff radius Ry, and a user supplied granu-
larity parameter. There are several tradeoffs and con-
straints to be observed. We distribute our problem do-
main across processors with subbozr granularity, i.e., a
certain subbox is treated as indivisible as far as owner-
ship goes, and we assume only one owner per subbox.
Therefore, if ng becomes smaller, load balancing may
become less accurate, since the number of different
decompositions becomes smaller. However, if ng be-
comes larger, the overhead associated with a traversal
of the subboxes to locate the atoms increases. We also
use our subbox structure to limit our search for non-
bonded interaction partners of a given atom, which
allows us to avoid the naive O(N?) pairlist generation
algorithm [4, 21]. For that purpose it is advantageous
if box4 is an integral fraction of R,y [17].

The hierarchical decomposition should also be able
to balance the workload for the trivial case of a system
with constant density. Therefore it must be possible
to create subdomains of equal size; for all d, ng should
be a multiple of pg.

Subdomains, each consisting of a connected set of
subboxes, are assigned to processors according to some
space-to-processor mapping strategy. FEach subdo-
main s is associated with a certain overlap area, which
is the set of subboxes that are not in s but reach into

Figure 2: The 10,406 atom acetylcholinesterase dimer
(AChE) is simulated in a 91 x 97 x 160A° box. The
121,257 solvent atoms are removed for clarity, with a
corresponding box size reduction in the picture. The

dimensions of AChE are 83A x 95A x 110A.

the cutoff radius of some subbox in s. Figure 3 shows
an example configuration of subboxes and subcubes
for P = 64 processors.

2.2 Molecular dynamics

A library of routines that perform and support the
Eulerian decomposition and load-balancing interface
with GROMOS. The modifications to GROMOS itself
were minimal, permitting reuse of at least 90% of the
approximately 11,000 lines of original code. From the
user’s perspective, the GROMOS touch and feel are re-
tained; I/O formats are close to identical.

With EULERGROMOS, a processor calculates all in-
teractions involving its local atoms. The nonbonded
interactions are determined geometrically, while the
bonded interactions are obtained from the molecular
topology. The scalability depends on the cost to deter-
mine the interactions a processor should calculate and
the calculation of those interactions. To determine the
nonbonded interactions, the subbox data structure is
traversed to create a standard GROMOS pairlist con-
taining the interactions. As a result, the pairlist rou-
tine required extensive modification and was rewrit-
ten. The nonbonded force routine, which uses the
pairlist, was slightly modified.

Based on Newton’s Third Law, GROMOS and other

Y-axis

Z-axis

X-axis

Figure 3: Subbox division of the problem domain; we
use P = pipops = 4 x4 x 4 processors and nzo; =
ninang = 16 * 16 * 8§ subboxes. Dotted lines indi-
cate subboxes, heavy lines delineate processor subdo-
mains. Hashed-lined regions show the overlap area of
the processor with logical coordinate (4,3,1), which
has a subdomain consisting of 4 * 3 * 2 subboxes lo-
cated at the center of the edge closest to the reader;
note the wrap-around of the overlap due to periodic
boundary conditions.

MD programs calculate each NBF interaction only
once per pair, instead of twice [7, 21, 11]. Our present
implementation uses Newton’s Third Law within sub-
domains, but not across subdomains. However, we are
currently implementing a version that exploits New-
ton’s Third Law across subdomains; our preliminary
analysis indicates a potential for significant savings.
Each processor extracts its local set of bonded in-
teractions by scanning the O(N) global topology infor-
mation. While this could limit scalability, such asymp-
totic limitations are outside of our practical range for
N and P (see Section 3.2). Scalability of the calcu-
lation of the potential energy (i.e., the interactions)
requires a reasonable load balancing, as provided by
our hierarchical load-balancing scheme (Section 3.3).

2.3 Load balancing

To allow for both inhomogeneous systems and sys-
tems that change shape over the course of a simula-
tion, dynamic load balancing is applied to the distri-
bution of data and computation. At the beginning of a
simulation, the problem domain is first divided into ps
slices along the z-axis, then each slice is divided along
the y-axis into p, columns, and finally each column is
divided into p; subdomains. This initial distribution
is equivalent to a blockwise decomposition into pipsps
subdomains of equal size. Every fjq; timesteps, each
processor locally computes its own workload. (The
current heuristic measures workload as the sum of

the local number of atoms and the size of the local
pairlist.) Given each processor’s workload, a global
balancing step adjusts the subdomain boundaries, as-
suming a homogeneous workload density within each
subdomain. This is done hierarchically: first, subdo-
main boundaries are shifted between slices, followed
by column shifts within slices and finally shifts within
columns. Figure 3 shows a possible hierarchical de-
composition. A smoothing factor ¢ is applied to avoid
boundary oscillations [10].

2.4 Communication

FEULERGROMOS communicates off-processor data
accesses in one of two possible ways: Point-to-Point or
Shift. In Point-to-Point communication, messages are
sent directly between processor pairs that share data;
in Shift communication, each processor communicates
exclusively with its six immediate logical neighbors,
relying on those to forward data to other processors it
has to exchange data with. This results in a coordi-
nated use of the interconnection network.

The Shift algorithm shifts data in three phases:
first along the z axis, then along the y axis, and fi-
nally along the z axis. For dimension d, phase d con-
sists of kq subphases, kq = [ReutUq/procUg]|, where
procUq and rcutUy are the subdomain extent and the
cutoff-radius, respectively, for dimension d in subbox
units. A subphase consists of an exchange with the
two neighbor processors along the axis of the current
phase. Within each phase, the first subphase will shift
all data received in all previous phases; within phase
one, this will be the set of local atoms, the base case.
For all subphases after the first subphase, a processor
will communicate to each of its two neighbors the data
that were received in the immediately preceding sub-
phase from the other neighbor. Let k1 = ks = k3 = k;
i.e., let the cutoff radius penetration be uniform along
the three Cartesian axes. Assuming that N atoms are
uniformly distributed across P processors, the amount
of data received by each processor to exchange overlap
atoms is (8k3 + 12k% + 6k)N/P. For k = 1, the pre-
ceding expression evaluates to 26N/ P, the case where
each processor subdomain is greater than or equal to
R,y Note that for fixed N and large P, k is asymp-
totically proportional to P/3, and increasing P de-
creases the amount of data exchanged.

The scalability of a communication algorithm gen-
erally depends on communication volume, bandwidth,
latency, and buffering costs. However, for the prob-
lems and processor configurations considered here, the
communication volume and the number of messages
drive the performance. Again assuming a uniform kg4

in each dimension, each processor sends 6k messages
using Shift, compared to approximately (2k+ 1) mes-
sages sent with Point-to-Point communication.

Shift communication can be expected to be most
efficient at large P, where the data volume communi-
cated per processor decreases. However, the current
implementation of the Shift communication requires
subdomains of equal size, therefore it cannot be used
in conjunction with the load balanced, hierarchical de-
composition. Point-to-Point communication can re-
duce the overall communication volume to a proces-
sor, since subbox granularity is used to buffer overlap
data.

3 Evaluation and Experiments
3.1 The applications

We base our evaluation on two molecular simu-
lations that are of current interest in the molecular
dynamics community: myoglobin with a 10A cutoff
radius in a 50 x 50 x 50;&3 box; and the 131,660
atom AChE system with a 10A cutoff radius in a
91 x 97 x 160A° box. (Myoglobin and AChE were
simulated using the lowest number of processors that
memory constraints would allow.) In addition, a toy
dipeptide system with 337 solute and solvent atoms
in a 14 x 15 x 19A° box with a cutoff radius of 7A
was used. All performance data are reported for 100
molecular dynamics timesteps unless otherwise noted.
For P < 8, we used a local iPSC/860 hypercube; runs
with P > 8 were performed on the 512-node Touch-
stone Delta mesh at Caltech. Both machines use 1860
processors configured with 16 megabytes per node, but
the amount of memory available to the application
varies: the Delta provides about 12 Megabytes per
node, the iPSC/860 provides about 15 Megabytes.

3.2 Overall performance

Figure 4 shows the raw performance of EULER-
GroMmos on myoglobin and AChE, with I/O required
for production simulations included in the total time.
(I/O includes coordinates and velocities output ev-
ery 10 steps and the output of the final configura-
tion.) Due to memory limitations, AChE required a
minimum of 128 processors, myoglobin required four.
These plots demonstrate a continuous performance
improvement up to P = 512 for both systems, the
largest machine configurations available for the exper-
iments. The curve labeled MD Phases for myoglobin

EulerGromos & Myoglobin: SHIFT; BLOCK; 100Steps
T

10 T T T
o ldeal Speedup

10°} oL |

10} 1
%]
Q
5
£
€40 \ 08
cloe o ¢ p--o - O /8~ E
o ° ©°
E R Y
[OverlapRefresh o~ °~© e \//O

10 (communication)) E

ki
/ ’ -9
_ e
10'2, Global o~ LR / 4
Energy Update __-~° o
Subdomain el
10 Redistribytion e-e-0 ‘ ‘
10" 10° 10" 10° 10° 10*
Number of processors

EulerGromos & AChE: SHIFT; BLOCK; 100Steps

10 T
z\\e\e Total Time
<o
i S g 110 |
© MD Phases
0
Q
5
£
£
c10r _o--——-=0 OverlapRefresh]
'é o (communication)
F ,© Subdomain
e Redistribution
10t]
/0
A Global
o~ -0
o4 Energy Update
2
10 !
10° 10° 10*

Number of processors

Figure 4: Performance of EULERGROMOS. Left: 10,914 atom myoglobin system. Right: solvated AChE dimer,
N = 131,663. Note the log-log scale and the processor ranges. MD phases include: integration, pairlist con-
struction, shake, bonded and nonbonded force calculations. Subdomain redistribution uses Point-to-Point com-
munication; overlap refresh uses Shift communication. A line with negative unit slope allows comparison to ideal

performance.

in Figure 4 deviates from ideal speedup due to re-
dundant interaction calculations and load imbalances
(note that those data are from a simulation without
load-balancing). However, that deviation is greater
for the myoglobin system, where the smaller subdo-
mains lead to greater load imbalances and more re-
dundant interaction calculations; the MD phases for
AChE demonstrate close to ideal speedup.

3.3 Load balancing

Subboxes are viewed as indivisible with respect to
subdomain boundaries. In other words, each subbox
is owned by just one processor, and boundaries can be
shifted only in increments of the subbox sizes. This
simplifies and accelerates the mapping between atom
coordinates and subdomains, but it also limits the ac-
curacy of our load balancing: the larger the subboxes,
the coarser the border shifts will be. To study this
effect, we simulated myoglobin (N = 10,914) on 64
processors for 100 time steps with varying ng.

The accumulated absolute border movements along
each dimension increase monotonically with ng. Bor-
ders start moving for ng > 16. As to be expected,
most activity takes place within columns, followed by
movements within slices and finally across slices. Fig-
ure 5 shows the standard deviation of the workload

Effect of subbox granularity on workload distribution

8000 —e—
K

TotU=8

7000 b

6000 TotU = 16 i

5000

TotU =32

4000

Standard deviation of work load

3000

TotU =48

2000 y
10 20 30 40 50 60 70 80 90

Time step

Figure 5: Effect of ng (= TotU) on load balanced-
ness for 64 processors. The mean of the work load is
about 5.4 * 10? nonbonded interactions computed per
processor per MD timestep.

across processors for the different ng values. It turns
out that the standard deviation decreases for higher
ng, so load balancing does achieve the desired effect.

While load balancing can be profitable for typical
biomolecular systems, such as myoglobin, the advan-
tages tend to be less pronounced there due to the
density homogeneity and characteristically long time
scales for large-scale motion. Consequently, the real
strengths of load balancing are to be expected for sys-
tems that are inhomogeneous and change their shape
within short time scales, and for varying problem do-
main sizes (for example, constant-pressure systems).

To study the effectiveness of load balancing for a
highly inhomogeneous system, we simulated Argon
with an enlarged problem domain. As shown in Fig-
ure 6, load balancing does adapt very quickly to the
inhomogeneity, and after three rebalancing steps we
have an even workload on each processor.

3.4 Efficiency

We examine the efficiency of EULERGROMOS with
the three systems described in Section 3.1. In Figure 7
we have plotted a quantity proportional to the num-
ber of atoms divided by the number of processors and
the total execution time. Intuitively this corresponds
to the number of atoms simulated per processor per
unit of time. The principal work in the uniprocessor
case is proportional to the number of atoms, N, since
the nonbonded force calculation dominates. Thus an
approximation for the efficiency of the code is

Tl ~ cN
T,P ~ T,P’

where T, is the time on P processors and ¢ is a con-
stant.

The ordinate in Figure 7 was scaled so that the
dipeptide and myoglobin curves intersect P=1 at
about 100% efficiency. (We use this strategy in lieu of
having data for the single processor case.) For myo-
globin, each doubling of the number of processors re-
sults in increasing the performance by roughly 90%,

A comparison of the myoglobin and AChE curves in
Figure 7 illustrate the scalability when varying N for a
fixed P. There the myoglobin system size is only 8.4%
that of the AChE system, resulting in an efficiency loss
of about 20% with 128 processors. A similar drop in
efficiency can be observed when comparing myoglobin
to the dipeptide. The performance drop for fixed N
can be attributed to an increase in interprocessor de-
pendencies relative to a decreasing workload. For a
fixed P, decreasing N also results in a performance

Unbalanced Argon, 8 processors, Smooth = 1.0

10 T T T T T T T
S o Total Time
h \(79:211&117,@117,@1;1%1114511141»_4;
N i Non-bonded Force
10" / Fastest (+) / Slowest (0) Processor E
!
I
!
I
/
710" /
c !
o
o !
2 /
° /
E ¥ !
F10 1 E
!
_ %
2|)
10 * * * * * % * *
Time required for Load Balancing
10'3 L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Timestep

Figure 6: Effect of load balancing for Argon in an
oversized box. The N = 10,169 Argon atoms inhabit
one 8 A® corner of a 16 A3 periodic box. Load balanc-
ing reduces the total time per 10-step interval from 92
seconds to less than 30 seconds.

loss for the same reason: the smaller system takes a
larger overhead penalty due to an increase in the com-
munication to computation ratio. Load imbalance is
another effect detracting from ideal speedup when de-
creasing the atom to processor ratio. We did not use
load balancing in these runs.

3.5 FEuLerGroMmoOs vs. UHGROMOS

We are also interested in how EULER(GROMOS per-
forms relative to its cousin, UHGromos [4]. UH-
GRoOMOS is a parallelization of GROMOS using the
replicated algorithm [4, 21]. The replicated algorithm
replicates the full force and coordinate array at each
processor. A global sum of the forces is required at ev-
ery timestep due to a lack of locality [5]. In Figure 8,
the total time for UHGROMOS simulating myoglobin
is less than the EULERGROMOS time for P < 64, but
greater than EULERGROMOS time for P > 64. Note
that one should view the total {ime data in Figure 8 as
a comparison of the two implementations, rather than
a comparison of the replicated algorithm and spatial
decomposition.

Because of the spatial decomposition, the pairlist
calculation is more efficient in EULERGROMOS for
large N. The pairlist calculation grows as %2 with
UHGRoMOS and as (¥)? with EULERGROMOS. For
the myoglobin system the pairlist calculation for both

Atoms/sec/proc. for myoglobin, acetylcholinesterase and di-peptide
100 T T T

801 B

601

o
E
2
40 1
AChE
201 q
di-peptide myoglobin
0 0 ! 1 ! 2 ' 3 4
10 10 10 10 10

Number of processors

Figure 7: Efficiency of EULERGROMOS for three sys-
tems in terms of N/T,P. The dipeptide nonbonded
force time has been scaled by (10A/7A)3, compensat-
ing for the smaller cutoff radius.

codes is about the same (on eight processors its 82
seconds for EULERGROMOS and 72 seconds for UH-
GRroMoOs). The number of processors at which Eu-
LERGROMOS becomes more efficient than UHGRO-
MoOs will decrease as N increases. Thus we expect
ACHhE to be much less efficient with UHGROMOS.

A comparison of relative scalabilities of spatial and
replicated algorithms using EULERGROMOS and UH-
GROMOS is complicated by implementation details.
However, we illustrate an EULERGROMOS locality
benefit by focusing on the nonbonded force calcula-
tion and associated overheads. EULERGROMOS re-
quires two communication phases to manage the atom
buffering and ownership required for the nonbonded
force calculation. The performance of those phases
are shown in Figure 4 as OuverlapRefresh and Subdo-
main Redistribution. For UHGROMOS, the global sum
constitutes the intrinsic overhead required for sup-
porting the nonbonded force calculation and increases
with P (Figure 8, UHGROMOS global communication).
The two EULERGROMOS communication phases re-
quire less time than the UHGRrRoMoOS global commu-
nication (Figure 8). More importantly, while we use
the point-to-point algorithm for subdomain redistribu-
tion in our prototype, the better shift algorithm could
be used there, with resulting communication costs de-
creasing further with large P.

Other factors that characterize the scalability of the
replicated and spatial approaches, for example, the
shake algorithm, are beyond the scope of our discus-
sion.

UHGROMOS and EulerGROMOS

g~ UHGROMOS total time
EulerGROMOS total time

Time (minutes)

©
T

UHGROMOS 4

M_Q/H global communication
_ EulerGROMOS
@;V@;é/é\g/g communication

~ © EulerGROMOS
best communication

[N
o

-1

10 : -

10° 10 10° 10° 10*
Number of processors

Figure 8: Performance for EULERGROMOS and UH-
GROMOS on myoglobin.

4 Related Work

A common feature of spatial-mapping approaches is
to restrict communication to nearest neighbors; con-
sequently, each processor subdomain has to be greater
than or equal to the cutoff radius size [11, 12, 17, 21],
which in turn limits scalability. Esselink, et al., report
a geometric decomposition where the subdomain size
restriction has been lifted [7]. However, they assume
a homogeneous distribution of particles with equally
sized processor subdomains. Morales and Nuevo de-
crease the processor subdomain size such that it is
less than Ry, but they continue to restrict inter-
actions to neighboring subdomains only, thereby ef-
fectively reducing R y:; they evaluate the effect on
thermodynamic properties [16]. (See [14] for a de-
tailed study on cutoff radius effects.) Plimpton also
allows for subdomains smaller than R, in an imple-
mentation reported for Lennard-Jones particles that is
similar to our blockwise decomposition with the Shift
algorithm [18].

5 Summary

This paper gave a description of EULERGROMOS, a
parallel molecular dynamics program, and evaluated
its performance characteristics. The measurements re-
ported here indicate that the main design goal, scala-
bility, has been achieved.

Scalably extending the calculation over processors
reduces the cost per timestep so that within some fixed
simulation period, phase space sampling is more ex-

tensive, and larger systems with better boundary con-
ditions can be simulated. EULERGROMOS has simu-
lated systems with over 100,000 atoms, about an order
of magnitude larger than usual biomolecule simula-
tions. We have also achieved performance increases
with as few as 20 atoms per processor, much less than
could be achieved with subdomains at least as large
as the cutoff radius.

Acknowledgements

We thank Stan Wlodek and Yuan Cai for program-
ming help.

Program development was performed on an
iPSC/860 provided by Intel and housed at the Uni-
versity of Houston’s Institute for Molecular Design.
Delta simulations were performed on the Intel Touch-
stone Delta System operated by Caltech on behalf of
the Concurrent Supercomputing Consortium with ac-
cess provided by the Center for Research on Paral-
lel Computation. This work was supported in part
by the National Science Foundation, award numbers
ASC-921734 (which includes funds from DARPA) and
MCB-9202918; Exxon; and the R.A. Welch Founda-
tion. The work of v. Hanxleden was supported by an
IBM fellowship, and by the National Aeronautics and
Space Administration/the National Science Founda-

tion under grant #ASC-9349459.

References

[1] Bernard R. Brooks, Robert E. Bruccoleri, Barry D. Olaf-
son, David J. States, S. Swaminathan, and Martin Karplus.
CHARMM: A program for macromolecular energy, mini-
mization and dynamics calculations. Journal of Computa-
tional Chemistry, 4(2):187-217, 1983.

[2] Bernard R. Brooks and Milan Hodoscek. Parallelization
of CHARMM for MIMD machines. Chemical Design Au-
tomation News, 7(12):16-22, 1992.

[3] T. W. Clark and J. A. McCammon. Parallelization of a
molecular dynamics non-bonded force algorithm for MIMD
architectures. Computers & Chemistry, 14(3):219-224,
1990.

[4] T. W. Clark, J. A. McCammon, and L. R. Scott. Paral-
lel molecular dynamics. In Proceedings of the Fifth SIAM
Conference on Parallel Processing for Scientific Comput-
ing, pages 338-344, Houston, TX, March 1992.

[5] T. W. Clark, R. v. Hanxleden, K. Kennedy, C. Koelbel,
and L. R. Scott. Evaluating parallel languages for molec-
ular dynamics computations. In Scalable High Perfor-
mance Computing Conference, Williamsburg, VA, 1992.
Available via anonymous ftp from softlib.rice.edu as
pub/CRPC-TRs/reports/CRPC-TR992202-5.

[6] J. Eastwood, R. Hockney, and D. Lawrence. PM3DP — the
three dimensional periodic particle-particle/particle-mesh
program. Computer Physics Communications, 19:215-261,
1977.

[7] K. Esselink, B. Smit, and P.A.J. Hilbers. Efficient parallel
implementation of molecular dynamics on a toroidal net-
work. Part II. Multi-particle potentials. Journal of Com-
putational Physics, 106:101-107, 1993.

[8] David Fincham. Parallel computers and molecular simula-
tion. Molecular Stmulation, 1:1-45, 1987.

[9] W. F. van Gunsteren and H. J. C. Berendsen. GRO-
MOS: GROningen MOlecular Simulation software. Tech-
nical report, Laboratory of Physical Chemistry, University
of Groningen, Nijenborgh, The Netherlands, 1988.

[10] R. v. Hanxleden and L. R. Scott. Load balancing on mes-
sage passing architectures. Journal of Parallel and Dis-
tributed Computing, 13:312-324, 1991.

[11

Fredrik Hedman and Aatto Laaksonen. Data parallel large-
scale molecular dynamics for liquids. International Journal
of Quantum Chemistry, 46:27—38, 1993.

[12] Tsutomu Hoshino and Kiyo Takenouchi. Processing of the
molecular dynamics model by the parallel computer PAX.
Computer Physics Communications, 31(4), 1984.

[13] S. L. Lin, J. Mellor-Crummey, B. M. Pettitt, and G. N.
Phillips, Jr. Molecular dynamics on a distributed-memory
multiprocessor. Journal of Computational Chemistry,
13(8):1022710357 1992.

Richard J. Loncharich and Bernard R. Brooks. The ef-
fects of truncating long-range forces on protein dynamics.
PROTEINS: Structure, Function and Genetics, 6:32-45,
1989.

[15] J. A. McCammon and Stephen C. Harvey. Dynamics of
proteins and nucleic acids. Cambridge University Press,
Cambridge, 1987.

[14

[16] Juan J. Morales and Maris J. Nuevo. A technique for im-
proving the link-cell method. Computer Physics Commu-
nications, 60:195-199, 1990.

[17] M. R. S. Pinches and D. J. Tildesley. Large scale molec-
ular dynamics on parallel computers using the link-cell al-
gorithm. Molecular Simulation, 6:51-87, 1991.

[18] Steve Plimpton. Fast parallel algorithms for short-range
molecular dynamics. Technical Report SAND91-1144,
Sandia National Laboratories, Albuquerque, New Mexico
87185, May 1993.

[19] A. Rahman. Correlations in the motion of atoms in liquid
argon. Physical Review, 136(2A):405-411, 1964.

[20] D. C. Rapaport. Multi-million particle molecular dynam-
ics, II. Design considerations for distributed processing.
Computer Physics Communications, 62:217-228,1991.

[21] W. Smith. Molecular dynamics on hypercube parallel com-
puters. Computer Physics Communications, 62:229-248,
1991.

