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Abstract

The Rice Fortran 77D compiler uses data decomposition specifications to automatically translate For-
tran 77 programs for execution on MIMD distributed-memory machines. The current compiler prototype
performs communication and parallelism optimizations in the presence of single-dimensional block distri-
butions with constant values specified for array dimensions, loop bounds and the number of processors.
The prototype also contains partial support for cyclic distributions under the same restrictions. This
paper describes techniques that will enable the Fortran 77D compiler to generate efficient code for more
complex programs that may contain symbolic loop bounds and array sizes, loops with non-unit strides
and multidimensional block, cyclic and block-cyclic distributions. The generated code will allow the
number of processors executing a Fortran 77D program to be a run-time parameter. Finally, we present
empirical results for a hand-compiled test case show that block_cyclic data distributions can be effective
for load balancing.

1 Introduction

The goal of the Fortran D language is to provide a simple yet efficient machine-independent parallel
programming model. To enable programmers to write data-parallel programs that can be compiled and
executed with good performance on a range of architectures, Fortran D shifts much of the burden of
machine-dependent optimization to the compiler. To evaluate the Fortran D programming model, we
implemented a prototype compiler based on the software infrastructure developed for the ParaScope
programming environment [3]. While the current compiler prototype has enabled validation of the
importance of communication and parallelism optimizations, it has many limitations that prevent it
from successfully compiling many data-parallel programs. The restrictions in the current prototype are
as follows. First, loop index variables must have bounds that are compile time constants and stride of
either one or minus one. Second, arrays may be distributed in only one dimension and the distribution
type must be block. Third, the number of processors executing a Fortran 77D program must be a
compile-time constant. In this paper we describe algorithms, data structure enhancements, and a run-
time library that will significantly improve and extend the analysis of the compiler and successfully relax
the restrictions on its input programs.

Previous work has described algorithms for partitioning data and computation in the Rice Fortran 77D
compiler, as well as its optimization and validation strategy [9]. Internal representations, program
analysis, message vectorization, pipelining, and code generation algorithms for block distributions were
presented elsewhere [8]. The principal contribution of this paper is to provide algorithms and techniques
to compile complex Fortran D programs that may contain variable number of processors, symbolic loop
bounds and array sizes, loops with non unit strides and multidimensional block, cyclic and block_cyclic
distributions. Section 2 briefly reviews the organization of the prototype Rice Fortran 77D compiler.
Section 3 reviews some terminology and notation used throughout the rest of the paper. Sections 4-8
present algorithms and analyses necessary to compile complex Fortran D programs. Section 9 presents



some experimental results that assess the effectiveness of using a block-cyclic data distribution for load
balancing in Gaussian elimination. The paper concludes with a short summary.

2 Fortran D Compiler

There are two major steps in compiling Fortran D for MIMD distributed-memory machines. The first
step is partitioning the data and computation among the available set of processors. The second is
introducing communication operations to transfer values as necessary. A simple compilation technique
known as run-time resolution yields code that explicitly calculates the ownership and communication
for each reference at run time [1, 14, 18], but resulting programs are likely to execute significantly
slower than the original sequential code. By using aggressive compile-time analysis and optimization,
the Fortran 77D compiler can generate much more efficient programs. Below, we briefly review the
sequence of steps performed by the Rice Fortran 77D compiler; details of the compilation process are

described elsewhere [8, 9]:

1) Analyze program The compiler performs scalar data-flow analysis, symbolic analysis, and depen-
dence testing to determine the type and level of all data dependences [11].

2) Partition data The compiler analyzes Fortran D data decomposition specifications to determine
the decomposition of each array in a program. Alignment and distribution statements are used to
calculate the array section owned by each processor.

3) Partition computation The compiler partitions computation among the processors using the
“owner computes” rule—each processor only computes values of data it owns [1, 14, 18]. The left-hand
side (lhs) of each assignment statement in a loop nest is used to calculate the set of loop iterations that
cause a processor to assign to local data. This iteration set represents the work that must be performed
by the processor.

4) Analyze communication The work partition computed above is used to calculate the non-local
data accessed by each processor for each right-hand side (rhs) reference to a distributed array. References
that result in non-local accesses are marked since they require communication to be inserted.

5) Optimize communication The compiler examines each marked non-local reference, using results
of data decomposition, symbolic and dependence analysis to determine the legality of optimizations to
reduce communication costs. Regular section descriptors (RSDs) are built for the sections of data to
be communicated. RSDs compactly represent rectangular array sections and their higher dimension
analogs [7]

6) Manage storage The compiler identifies the extent and type of non-local data accesses represented
by RSDs to calculate the storage required for non-local data. For RSDs representing array elements
contiguous to the local array section, the compiler reserves storage using overlaps created by extending
the local array bounds [6]. Otherwise, temporary buffers or hash tables are used for storing instances of
non-local data.

7) Generate code Finally, the Fortran D compiler uses the results of previous analysis and op-
timization to generate a single-program, multiple-data (SPMD) program that uses message passing to
communicate values as necessary. This program can execute directly on the nodes of a MIMD distributed-
memory machine. To generate the SPMD program, the compiler reduces array and loop bounds, intro-
duces guards to instantiate the data and computation partitions, uses RSDs representing non-local data
accesses to generate calls to data-buffering routines and to insert calls send and recv or collective com-
munication routines as appropriate. The compiler inserts code to use run-time resolution to determine
work and communication partitions when complex subscript expressions defy compile-time analysis.

3 Terminology

Here, we briefly review some terminology and notation that is used throughout the remainder of the
paper. For the following canonical loop nest,



do k=1 to m by §
A(g(R)) = B(h(k)) (equation 1)
enddo

we define the sets (formal definitions of these sets are presented elsewhere [9]):

e image_setp(t,) is the set of indices of array B that cause a reference to a data element owned by
processor tp.

o iter_sets(t,) is the set of loop iterations that cause reference A to access data owned by processor
ty.

e index_setg(t,) is the set of indices of array B referenced by processor ¢, on loop iterations contained
in dter_seta(tp).

o in_index_setp(t,) is the set of non local indices of array B referenced by processor t, on loop
iterations contained in dter_seta(t,).

o out_index_setp(t,) is the set of indices of array B contained in imagep(t,) and referenced by other
processors.

o send_p_setg(t,) is the set of processors to whom ¢, must send local elements of array B.

o receive_p_setp(t,) is the set of processors from whom ¢, must receive values of non-local elements
of array B.

e rsd_setp is the set of indices of array B that are referenced in the loop nest.

o out_set4(t,) is the set of indices of array A that cause local elements of array B on processor ¢, to
be referenced by other processors.

e P is the number of processors, numbered 0 ...P-1.

4 Program Analysis
4.1 Partitioning Analysis

To perform partitioning analysis, the current Fortran 77D compiler prototype requires constant loop
bounds, array dimensions, and number of processors. Here, we describe the analysis required to compute
iteration sets in the presence of symbolic loop bounds, array dimensions, and number of processors. These
iteration sets are used in two ways by the code generation phase: first, to reduce loop bounds so that each
processor iterates only over the portion of the iteration space that causes it to reference data elements
that it owns, and second to introduce guards to handle cases in which iteration sets are not identical for
all processors.

4.1.1 Symbolic Iteration Sets

For each assignment statement in a loop nest, the compiler must compute an iteration set, parameterized
by processor number, that represents the set of loop iterations that cause the processor to access the
data it owns. Our discussion of iteration set construction will be based on the canonical loop nest shown
below.



Given:
a(ly tuy, oo by tun), b(l s ug, ol uy)
decomposition d(ly i uy,..., Iy 1 uy)
align a(...,m,...), b(...,m,...) with d(...,m,...)
distribute d(di,...,d,)

Loop nest:
do il = lbl,ubl

do i, = lb,,ub,

St a(glin)..) = bl f(ir). )

enddo
enddo

To determine a processor’s iteration set for an assignment statement in a loop nest, the compiler
examines the subscripted array reference on the left-hand side of the assignment, the array’s alignment
with its associated decomposition, and the distribution specification for the decomposition that reaches
the assignment statement. Computing the iteration set involves reducing the index variable bounds
for each distributed dimension of the decomposition corresponding to the lhs term. This problem of
reducing the bounds is independent for each distributed dimension. For presentation purposes, it is
convenient to consider decompositions with only one distributed dimension d,,. For arrays with more
than one distributed dimension, the iteration set can be computed by interesecting the solutions for each
single-distributed-dimension sub-problem.

Here we show how to compute the iteration set for a decomposition d in which dimension d,, is
distributed using either a block or cyclic distribution; in section 6, we show how to compute the iteration
set if d,, is distributed using a block_cyclic distribution. We assume that the subscript function g(iz)
has been simplified. In the cases where g(é;) is a constant, an induction variable, or a linear function of
a single index variable, the iteration set can be computed at compile-time. For more complex subscript
expressions, we defer computation of the iteration set to run time.

Block Distribution
Below, we describe the iteration sets constructed for block distributions based on the subscript type.
We assume that d,, is distributed block wise and the block size bs = [(uy — l + 1)/ P]

e Constant: g(i;) = ¢y

if ([(er —1k)/bs] = tp)

iter_set(t,) = (Iby : ubq, ..., lby :uby, ... by : uby)
else

iter_set(t,) =0

e Induction Variable Only: g(iy) = i

by = max(ty * bs + Iy, lby,)
ubgpr = min((t, + 1) * bs + Iy — 1, uby)
iter_set(t,) = (Iby : ubq, ..., lbgy : ubg, ... by uby)

e Simple Linear Expression: g(ix) =i + ¢

by = max(t, * bs —c + Iy, lby)
ubgpr = min((t, + 1) % bs — ¢ + I, — 1, uby)
iter_set(t,) = (Iby :uby,... lbyy : ubgr,... by uby)

e Linear Expression: ¢(i;) = ¢y * i, + ¢g



by = max(lby,t, * bs + I, [WU
ubgr = min(ubg, (t, + 1) xbs+ I — 1, LWJ)

iter_set(t,) = (Iby :uby,... by i ubgr, ... by uby)

Cyclic Distribution
Below, we describe the iteration sets constructed for cyclic distributions based on the subscript type.
We assume that dimension d,, in the loop nest above is distributed with a cyclic distribution.

e Constant: g(i;) = ¢

if (((cx — k) mod P) =1t,)

iter_set(t,) = (Iby : ubq, ..., lby : uby, ... b, : uby)
else

iter_set(t,) = 0

e Induction Variable Only: g(i) = i

if (¢, < (lby — lx) mod P) then
by =[5 2] 5P + 14 ¢,
else
gy = [Zese |5 P 4+ 14 ¢,
endif
if (¢, < (uby — lz) mod P) then
ubpy = Lubkp— lkJ *P 4+ 14 tp
else
ubpy = [zl s P — P 4+ 1+ ¢,
endif
iter_set(t,) = (ub1 :uby, ... lby1 :ubgy : P,... by uby)

¢ Simple Linear Expression: g(ix) =i + ¢

if (¢, < (lby + ¢ — ly) mod P) then
lbgy = [Mete=te] s p 4+ 1+ ¢,
else
by = [Bete=le | x P + 14 ¢,
endif
if (¢, < (uby — ) mod P) then
ubpy = |tete=le |4 P 4+ 14 ¢,
else
ubgy = [Uete=le] s p — P 4 1+ ¢,
endif
iter_set(t,) = (ub1 :uby, ... lby1 tubgr o P,... by uby)

e Linear Expression: g(i;) = ¢1 * i, + ¢g
To compute the iteration set, we first convert the subscript with linear expression into an induction
variable only subscript by changing the loop parameters. For example, if the original upper and
lower loop bounds and the step are lbg, ubg and 1 respectively, then the transformed upper and
lower loop bounds and step are lbg x c1 + c2, ubg *x ¢ + c2 and ¢y respectively.

To compute the iteration set, we need to determine the first iteration assigned to the processor.
This is equivalent to finding the smallest non-negative integer j such that

(lby + c1*j — ly) mod P = ¢,



Given: subscript, loop and decomposition information for lhs
if
constant loop bounds, simple subscript expression and
standard distributions (block, block._cyclic, cyclic) then
classify iteration set as Iter_simple
else if
symbolic loop bounds, subscript expressions are linear
and the decomposition type is either block,
block cyclic or cyclic then classify iteration set as
Iter_symbolic.
Runtime library routines will be used to generate bounds
else
classify iteration set as Iter_complex. The loop bounds will
not be reduced. Instead, run time guards will be generated

to conform to the owner computes rule

Figure 1: Classification of Iteration Sets

The above equation reduces to
by + c1xj —lp —nxP =1t
with an additional non-negative unknown n. This is equivalent to
crkj —n*xP =1t, — (lby — It)

We can use extended Euclid algorithm to find the general solution of this linear Diophantine equa-
tion. (Details of this solution can be found in the literature [12, 13].)

During the iteration set construction phase, we also classify each iteration set as one of the following:
Iter_simple, Iter_symbolic or Iter_complex. The compiler uses the iteration type information to optimize
the code generated. We describe the classification algorithm in the next section.

4.1.2 Classification of Iteration Sets

Figure 1 provides an algorithm for classifying iteration sets depending on the complexity of the loop
and subscript information. The prototype compiler further classifies Iter_simple iteration sets to reflect
on the type of boundary conditions that occur for block distributions. We will extend the boundary
classification scheme to include cyclic and block_cyclic distributions.

4.2 Communication Analysis
4.2.1 Index Sets

Index sets are built for each distributed right-hand side array reference and contain the section of data
accessed by a processor. They are used to determine the resulting communication. The current im-
plementation builds index sets for arrays that are distributed block or cyclic in a single dimension and
contain simple subscript expressions. Furthermore, the loop bounds must be compile-time constants
(triangular loops are allowed for cyclic). Below we extend the construction of index sets to include sym-
bolic bounds with unit and non-unit strides for block and cyclic distributions. Index sets for block_cyclic
distributions are computed in Section 6.

From the previous section, we observe that iter_set(t, ) is either 0, (Iby : uby,. .., lbg : uby, ..., b, : uby)
or (Iby :uby, ... by cuby : sg,..., b, : ub,). We now give the formulae to compute the index set for



each case :

Case 1 : iter_set(t,) = 0
index_set(t,) = 0

Case 2 : dter_set(t,) = (Iby : ubq,..., lbg s ubg, ... b, - uby)

In this case, the index set is computed by substituting in the value of the iter_set(¢,). Note that the
index set is independent of the distribution of the right-hand side array and that dimension ! of array b
is distributed.

e Constant: f(i;) = ¢

index_sety(tp) = (Iby :ubi,... cr, ..., lby tuby)

e Induction Variable Only: f(i;) =4

index_sety(tp) = (Iby s uby, ..., by s uby, ..., lb, : uby)
e Simple Linear Expression: f(i;) = i+ ¢

index_sety(tp) = (Iby tuby, ..., Iy +c:ubj+c,... b, :uby)
e Linear Expression: f(ij) = ¢ i1+ cg

index_set(ty) = (Iby :uby, ..., xlby+coter*ubj+coier, ..., by uby)

Case 3: iter_set(t,) = (Iby : uby,... by : uby : s,... b, : ub,) As in Case 2, the index sets are
computed by substituting in the value of iter_set(t,). The only interesting case is the Linear Expression
case : f(if) = e1 * i1 + cg. For the linear expression, we have two subcases :

I # k (WLOG, we assume [ < k)

index_set(ty) = (Iby s ubq,...,cixlbi+ecg t cikubi+co i er, ..., byt uby : sk, ..., by = uby)
=k :

index_set(tpy) = (Iby :uby,...,c1*lby+co:ecaxuby+coierisp*xer,..., by uby)

If iter_set(tp) can not be determined at compile time, the index set computation will be performed at
run time.

4.2.2 Communication Classification

Communication classification is crucial to our compilation strategy since it allows us to insert calls to fast
collective communication primitives in the output program and optimize the communication at compile
time whenever possible. We have redesigned the communication classification algorithm for the Fortran
D compiler. The algorithm as implemented examines the subscript expressions of non-local references
to determine the type of communication. Since the compiler does not examine the loop bounds, it
occasionally classifies the resulting communication type incorrectly. By using the index, iteration and
rsd sets in our algorithm we are able to capture the loop and subscript information and hence correctly
classify the communication.

The classification algorithm is depicted in Figure 2. Note, at this point we assume that the iteration
and index sets have already been constructed. The algorithm works as follows: Firstly, each non-local
reference is classified as resulting in one of the following type of communication.

e Single Send Receive



Shift

e Broadcast

Gather

All-to-All

Inspector/Executor
e Run Time Resolution

The in_index_set, out_index_set, send_p_set, and receive_p_set are constructed based on the results of
the communication classification algorithm. The rsd_set, iter_set, and index_set have a type associated
for each dimension of the array they represent. If the type is constant, only a single index in that
dimension is referenced. The function shift range works as follows: iter_set4; and index_setpy is of
type range if we are able to represent the section accessed in triplet notation, (lo:up:step). If iter_set 4
and index_setpy are of type range, represented as (lo; : up; : step;) and (loy : upy, : stepy) respectively
and (upp — up;) = (lox, — log) and (stepr, = step;) then shift range returns true. all_procs examines
a dimension of the rsd_set and returns true if proc_set(rsd_set) includes all the processors. proc_set
returns the set of processors that own indices € rsd_set. one_proc examines a dimension of the rsd_set
and returns true if it consists of indices owned by a single processor.

5 Multidimensional Block & Cyclic Distributions

In previous sections we computed the index and iteration sets for block and cyclic distributions. Algo-
rithms to construct IN and OUT index sets in the general case are described in [9].

Here, we present algorithms to construct specialized in_index, out_index, receive_p and send_p sets.
These sets are constructed based on the communication type classified by the algorithm in Figure 2. By
constructing specialized sets, the compiler will be able to generate optimized communication whenever
possible and invoke fast collective communication primitives when needed. For Multidimensional dis-
tributions we need to specify the processor layout in more than one dimension. We will use the HPF
PROCESSOR directive to specify the layout.

5.1 1IN Sets

The IN index set construction for multidimensional distributions is presented in Figure 3. The algorithm
works as follows. We partition each dimension of the index_set based on the communication and distri-
bution type. In the case of shift, send receive and broadcast, we partition the index_set such that
each section belongs to a single processor. However, in the case of all-to-all or gather communication
we do not break the index_set into sections since we will use fast collective communication primitives
to handle the messages at run time whereas for shift and send receive the compiler may be able to
determine the exact communication at compile time and thus generate more efficient code. The parti-
tioned index_set is stored in in_index_set_dim. The in_index_set is the product set of in_index_set_dim and
contains all the non-local sections. The receive_p_set contains m-tuples constructed by the projection
[1: D — out_index_set;y x .... x out_index_set;n, where il, ... im are distributed dimensions of the array.
The projection function creates for each n-tuple € in_index_set_dim, an m-tuple containing the receive
processor co-ordinates.

5.2 OUT Sets

IN sets contain receive information. In order to generate deadlock free correct code, we need to construct
OUT sets that contain send information. The OUT index set construction for multidimensional distri-
butions is presented in Figure 4. image setp(t,) is the set of indices of array B that are owned by ¢, and
referenced in the loop nest. The function f maps the elements € image setg(¢,) to the indices of the left
hand side array A which cause the section of B to be referenced. These indices are stored in out_set. The
out_set is partitioned based on the communication and distribution type. The elements are then mapped
to the image_set using the inverse function (f‘l(];)) and stored in out_index_set_dim. The out_index_set



Given: subscript, loop, decomposition, and dependence information
Loop nest in equation 1
A & B are mapped to the same decomposition
for k¥ = 1,dim,
if dim; of B is distributed
calculate dim; of A and dim; of B mapped to dim; of the decomposition
rsd_setpg; = section of B accessed in dimg
rsd_sety; = section of A accessed in dim
iter_seta;(pj) = iterations to be executed by p;
index_setBk(pj) = array section accessed by p;
if (type(rsd_setpr) = constant) & (type(rsd_set,;) = constant)
ctyper = SEND RECV
else if shift range(iter_seta;(p;),index setpi(p;))
ctyper = SHIFT
else if all procs(rsd_set,;) & oneproc(rsdsetpy)
ctyper = BROADCAST
else if all procs(index_setpy(p;)) & all_procs(rsdseta;)
ctyper = ALL-TO-ALL
else if one proc(rsdsety;) & all procs(rsd_setpy)
ctyper = GATHER
else if no loop carried true cross processor dependences
ctyper = INSPECTOR/EXECUTOR
else
ctyper = RUNTIME RESOLUTION
endif
endfor

Figure 2: Communication Classification Algorithm

is the product set of out_index_set_dim. The send_p_set contains m-tuples constructed by the projection
[1: D — out_index_set;y x .... x out_index_set;y, where il,...;im are distributed dimensions of the array.

5.3 Example

We use simple examples to illustrate the algorithms in Figures 3 and 4. In the first example the arrays
A and B are distributed (block, block) and in the second example, they are distributed (block, cyclic).
The loop nests and array sections accessed by each processor are shown in figure 5. We have written
the loop nest in HPF to illustrate the use of PROCESSOR directive. For simplicity, we will use the
algorithms to partition the in_index_set, out_index_set, send_p and receive_p sets for processor 2
whose coordinates are (1,0). P, is the size of the processor grid in the second dimension. my_cy is the

processor co-ordinate in the second dimension.

{* in_index set partition for (BLOCK,BLOCK) distributionx}
index_set(2) = (((2:6),(6:10)))

index_set_dim;(2) = ((2:5),(6:6))

index_set_dimy(2) = ((6:10))

in_index set(2) = (((6:6),(6:10)))

send pset(2) = ((1,1))



Given : 1index setp for each processor
dtype = distribution type for each dimension
ctype = communication type for each dimension
bs = block size for each dimension distributed BLOCK
dim, = # of dimensions of B
Calculate: in_index_setp(t,)
{x Partition each dim of index set based on communication type *}
for j = 1, dim,
l:u:s € index_setp;(tp)
if (dtype; = ““:?’ ) i.e. not distributed
in_index_set_dim;(¢,) = U (l:u:s)
if (dtype; = BLOCK)
if (ctype; = (Shift V Send Recv V Broadcast))
While (1 < u)
in_index_set_dim;(¢,) = U (l:min(u, (1 + bs;~ 1)mod bs;:1))
1 =1+min(u, 1 + bs; - 1 mod bs;) + 1

end if
if (ctype; = (A11-To-All V Gather))
in_index_set_dim;(¢,) = U (l:u:s)
end if
if (dtype; = CYCLIC)
in_index_set_dim;(¢,) = U (l:u:s)
endif
endfor

{* Calculate in_index_setp(t,) *}

in_index_setp(t,) = Hfﬁ" in_index_set_dim;(t,)
for each n-tuple < Iy :uy :81,.clp Uy 8, > € H:h:nf" in_index_set_dim;(t,)
{x Calculate receive processor co-ordinates *}

k=0

for i = 1, dim,
if dim; is distributed
k=k+1
if (ctype; = (A11-To-All V Gather)) by = * i.e. all processors
if (dtype; = BLOCK) by = 1;/bs;
else if (dtype; = CYCLIC) by = 1; mod bs;
endfor
{* Add the m-tuple containing the processor co-ordinatesx*}
if (t, < b1, .., by >)
receivep setp(t,) = U < by, ... by >
else
delete n—tuple <l :uj sy, ...l Uy 18, >
endfor

Figure 3: in_index_set and receive_p_set for multidimensional block and cyclic distributions




Given : image setp(t,), data referenced and owned by processor t,
dtype = distribution type for each dimension
ctype = communication type for each dimension
dim, = # of dimensions of B
bs = block size for each dimension distributed BLOCK
Calculate: out_index_setp(t,)
{* construct out_set(t,) *}
out_set4(t,) = section of lhs accessed under image setp(t,)
image_setp(t,) @ out_set(tp)
{* partition each dim of out_setg based on communication type *}
for j = 1, dim,
l:u:s € image_setp;(tp)
if (dtype; = ““:?’ ) 1i.e. not distributed
out_index_set_dim;(t,) = U (l:u:s)
else 1:u:s € out_set,(t,)
if (dtype; = BLOCK)
if (ctype; = (Shift V Send Recv V Broadcast))
While (1 < u)
out_indexset dim;(t,) = U (1:min(u,l+bs;j~ 1 mod bs;:1))
1=1+min(u, 1 + bs; - 1 mod bs;) + 1
end if
if (ctype; = (A11-To-All V Gather))
out_index set dim;(¢,) = U f~1(j)(1:u:s)
end if
if (dtype; = CYCLIC)
if (ctype; = (Shift V Send Recv V Broadcast))
out_index set dim;(¢,) = U f!(j) (L:u:s)
endif
endfor
{x Calculate out_index_setg x}
dim,
i=1
for each n-tuple <l :uj :s1,...,0p uy 8, > € Hflznf"out_index_set_dimi
{x Calculate send processor co-ordinates x}
k=0
for i = 1, dim,
if dim; is distributed
k=k+1
if (dtype; = BLOCK) p; = f(1;)/bs;
else if (dtype; = CYCLIC) p; = f(1;) mod bs;
if (ctype; = (Shift V Send Recv V Gather)) V)) bp = p;
else if (ctype; = Broadcast V All-to-All)
by = *, i.e. all processors
endfor
{* Add the m-tuple containing the processor co-ordinates x}

if (t, < b1, ..., by >)
send psetp(ty) = U <by,...by,>
else
delete n—tuple <l :uj 81, ...l Uy 18y >
endfor

out_index_setp(t,) = [] out_index_set_dim;(t,)

Figure 4: out_index_set and send_p_set for multidimensional block and cyclic distributions
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Figure 5: Multidimensional Distributions

REAL DIMENSION(10,10) :: A,B
PROCESSORS DIMENSION(2,2) :: PROCS
ALIGN A(1,J) WITH B(L,J)

DISTRIBUTE A(BLOCK,BLOCK) ONTO PROCS

A(1:9,1:9) = B(2:10, 2:10)

REAL DIMENSION(10,10) :: A,B
PROCESSORS DIMENSION(2,2) :: PROCS

ALIGN A(1,J) WITH B(1,J)

DISTRIBUTE A(BLOCK,CYCLIC) ONTO PROCS

A(1:9,1:9) = B(2:10, 2:10)

{xout_index_set partition for (BLOCK, BLOCK) distributionx}

out_index set(2)
out_index_set_dim
out_index_set_dims
out_index set(2)
receive p_set(2)

2
2

(((1:5),(6:7)))
((1:5))

((6:7))
5),(6:7))
0))

2) =
) —_—
((1:
((0,

{xin_index_set partition for (BLOCK,CYCLIC) distributionx}
index_set(2) = (((2

index_set_dim;
index_set_dimy
in_index set(2

(2
(2
) =

:6),(3:10:2)))

) = ((2:5),(6:6))
= ((3:10:2))

(((2:5),(3:10:2)),((6:6),(3:10:2)))

)



send pset(2) = ((0,(my-cz+1) mod Ps),(1,(my-cz+1) mod Ps))

{xout_index_set partition for (BLOCK, CYCLIC) distributionx}
out_index_set(2) = (((1:5),(2:10:2)))
out_index_set_dim;(2) = ((1:5))

out_index_set_dimy(2)

= ((2:10:2))
out_index set(2) ((1:5),(2:10:2))
receive p_set(2) = ((0,0))

6 Block_Cyclic Distribution

In this section we present the analyses necessary for compiling codes with block_cyclic distributions.
The SPMD code generated in presence of the block_cyclic distributions is significantly more complicated
than that generated for either block or cyclic distribution.

6.1 Extensions to RSDs

First of all, we note that that the RSDs used for representing block and cyclic distributions can not
represent the block_cyclic distributions (e.g. consider the array elements of array A owned by the
Proc(0) (where P = 2) in Figure 8 : [1:3]4[7:9]+[13:15]+. . .). block_cyclic distributions do not result in
convex regions. Therefore, it is not possible to represent such distributions using the closed form Fortran
90 triplet notation, used for block and cyclic distributions.

For the sake of convenience, we use the following notation. In order to accommodate block_cyclic
distributions, we add another parameter, the block size, to the representation of the regular section
descriptors.

Definition : A block_cyclic set [l:u:b:s] consists of the following :

e | = lower bound of the section,

e u = upper bound of the section,

e b = block size given in the block_cyclic distribute directive and
e s = the stride which is equal to b*P.

Using this definition, [1:3]4+[7:9]4[13:15]+. . .is represented as [1:n:3:6]. The above-mentioned defini-
tion can be used to represent the block and cyclic distributions as before by setting s=n and b=| %] for
block distributions and s=P and b=1 for cyclic distributions.

We point out that this notation can not be used to represent the iteration sets. For example, in the
loop nest below,

REAL X(n), Y(n)
DECOMPOSITION d(n)
ALIGN X, Y with d
DISTRIBUTE d(BLOCK_CYCLIC(b))
doi=1i uj, s
X(i) = F(Y())
enddo

the first iteration executed by a processor depends on l; which, in turn, determines the number of
iterations executed by the processor the first time around. Therefore, we need to have two different
block sizes and the above-mentioned notation can not represent this case. Also, if the step s # 1, then
the memory access gap is non-constant (we handle this case in section 6.6) and once again the notation
is insufficient.

Despite these shortcomings, we use the notation mentioned above for the sake of convenience with
the understanding that the compiler will handle these cases by using appropriate data-structures to
store boundary conditions. The current compiler successfully stores boundary conditions for block
distributions [8]. Another way to handle this is to peel-off the first set of iterations and represent the
remaining iterations using the notation described in this section.



REAL A(n,n)
DISTRIBUTE A(:, BLOCK_CYCLIC(S8))

do k=1, n
doi=%k+1i, n

S1 A(i,k) = F(A(i,k))
enddo

do j = k+1, n
doi=%k+ti, n
S A(i,j) = G(A(4,]), A(d, k)
enddo
enddo
enddo

Figure 6: Code Generation with Block-cyclic distribution

6.2 Partition & Communication Analysis

Consider the program depicted in Figure 6. Readers familiar with Gaussian Elimination with pivoting
will realize that statement S; corresponds to the computation of the pivot while statement Sy corresponds
to row elimination with column indexing.

Performing the partition and communication analysis in a manner similar to the previous section
yields the following sets for statement Sy :

image_seta(t,) = [1 :n,t,*x8+1 :n: 8 : Px*8§]

iter_seta(tp) = [L:ndb:n:8: P*x8k+1: n

index_seta(t,) = [k+1 :n,1: n]
We will compute the lower bound 1b in a short while. Note that the indexz_set 4(t,) is computed for the
reference A(i,k). Note that the indexz_set4 and image_sety together indicate that each processor needs
to receive all the columns not owned by the processor. In other words, each processor needs to broadcast
its columns. Since there exists a dependence from the statement S; to Sy, the processor which computes
the kth column needs to perform a broadcast after executing the loop containing statement S .

The block_cyclic distribution allows another optimization. Since each processor owns a block of
columns, it can compute the pivot for one whole (or part of) block of columns it owns and then broadcast
the columns while maintaining the original computation order. That is, instead of sending separate mes-
sage for each column, the processors can send one message for each sub-block of a block of columns.
Since current distributed memory machines have high communication latency, this results in code which
runs faster than the code with either the block or cyclic distributions. The issue of selecting the block
size that gives the best performance for a particular target machine characteristics is a subject of current
investigations.

The Figure 7 shows the code with message vectorization. The code also suggests the need for handling
more complex message shapes than that handled by the current compiler: in the example the processors
need to send and receive the messages with trapezoidal shape. We performed experiments on the
Intel iPSC/860 which revealed that it is profitable to send the precise messages than the conservative
‘rectangular’ messages. Therefore, the Fortran D compiler needs to include routines in the run-time
library to handle more complex messages.

6.3 Send and Recelve Sets

To compute the send (out.index_set) and receive (in-index_set) sets, we need to find out, in the most
general case, the intersection of two block-cyclically distributed arrays. But, as the example in Figure 8
demonstrates, block-cyclic sets are not closed under intersection.

Stichnoth [16] treats the block-cyclic sets as a union of disjoint cyclic sets. Since the cyclic sets are
closed under intersection, the intersection of the two block-cyclic sets can be determined by intersecting
all possible pairs of the cyclic sets.

Generally, we need to intersect two block-cyclic sets only once : to compute the in_index_set and the



do kk =1, n, 8 do kk = 1, n, 8

do k = kk, min(kk+7, n) do k = kk, min(kk+7, n)
k$ = ... k$ = ...
if (my$p owns the kth column) then if (my$p owns the kth column) then
doi=%k+i, n doi=%k+1i, n
A(i,k$) = F(A(i,k$)) A(i,k$) = F(A(i,k$))
enddo enddo
broadcast A(k+1:n, k$) buffer A(k+1:n, k$)
else endif
recteve A(k+1:n, k$) enddo
endif if (my$p owns columns kk to kk+7) then
1b$l = ... broadcast buffer
ub$l = ... else
do j = 1b$1, ub$i recteve buffer
doi=%k+1i, n endif
A(i,j) = G(A(4,j), A(i,k$)) do k = kk, min(kk+7, n)
enddo k$ =
enddo 1b$1 =
enddo ub$l = ...
enddo do j = 1b$1, ub$i

doi=%k+1, n
A(i,j) = G(A(d,3), buffer(i,k$))
enddo
enddo
enddo
enddo

Figure 7: Hand compiled code : Block-cyclic distribution

out_index_set. A simple method to compute the intersection, in such a case, is to treat each block-cyclic
set as an array sorted in ascending order. We can then compute the intersection by a simple linear-time
algorithm similar to the merge sort algorithm. For example, to find out which elements processor 1
needs to send to processor 0, we need to determine [1:45:3:6] N [6:45:5:10]. In other words, we need to

find
{1,2,3,7,8,9,13,14,15,19,20,21,...,43,44,45}n {6,7,8,9,10,16,17,18,19,20,...,36,37,38,39,40}

which is simply all the numbers occurring in both the sets. Of course, we need not look at all the ar-
ray elements to determine the intersection because the pattern repeats after LCM(Block-size(A),Block-
size(B))*P (= LCM(3,5)*2 = 30, in this case) elements. Hence the time required to compute the inter-
section is O(LCM(Block-size(A), Block-size(B))*P) which compares favorably to the time complexity of
the method suggested in [16].

In case the number of processors or the loop bounds are unknown at compile time, the compiler needs
to perform the intersection at run time. Figure 9 gives the algorithm for computing the array elements
which need to be sent from one processor to another. The algorithm for computing the receive set is
similar to that for the send set.

In practice, though, we do not expect to find arbitrary block sizes (like 3 and 5 in the Figure 8).
Since the block sizes also affect the locality of the array accesses, and hence the memory hierarchy
optimizations, we expect the arrays to have the same block sizes or block sizes which are powers of 2. In
the case of perfectly aligned arrays, the intersection in such a case would still be a block-cyclic set with
block size equal to the smaller of the two original block sizes. The IN and OUT sets can be computed
trivially in this case.



REAL A(n), B(n)
DISTRIBUTE A(BLOCK_CYCLIC(3)), B(BLOCK_CYCLIC(5))
doi=1, 45
A(1) = F(B(1i))
enddo
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(a) Elements of A owned by processor 0 = elements of B needed by processor 0
(b) Elements of B owned by processor 1
(c) Elements which processor 1 needs to send to processor 0 = (a) N (b)

Figure 8: Intersection of Block-cyclic sets

6.4 Loop Indices and Bounds Generation

Consider the program depicted in the Figure 10. To generate the compiler output shown in the figure, we
need to compute Lower LoopBound, Upper LoopBound, Local LoopIndex, Global LoopIndex and OQwner.

Let B be distributed block-cyclically with block size = b. Also, let n = u — {4 1. Here we give the
formulae for a loop with unit stride. We handle the case of loops with non-unit strides in Section 6.6.
We assume processors are numbered 0,...,(P-1). ¢, owns B(i) if :

| =t d (b+P
- |mpen

LocalLoopIndez(i) = Lg*_lJ b+ ((i mod (b* P)) mod b+ 1

GlobalLoopIndex(i,t,) = L%J (P*b)+t,*b+(i—1) mod b+
LowerLoopBound(l; ) :

L=10-1

1b$—Lb*PJ *x b+ (I; mod b) +
( leobd PJ)then
= [i T+b+1
else 1f(p> LJIMJ) then
:L J*b—}—l

endlf
UpperLoopBound(u; ) :

up = u; - 1

ub$ = [7%5] * b+ (u; mod b) + 1

bx P

if (t, < [wmed bxP |y thep
ub$ = [755]*b

else if (t, > [“rmed 2P |y thep
ub$ = [755] *b

endif



Input : Arrays A and B as the lhs and the rhs arrays respectively.
The sender processor s, the destination processor d and the
block sizes bsize; and bsizes. We assume the presence of a function
"next_elem'" which, using the current location and the block-size,
increments the index pointer to the next array element owned by
the processor.
Output : The set of elements of array B which need to be sent from s to d.
Method :
s_index = first_elem(image_setp(s));
d_index = first_elem(index _setp(d));
while (s_index < LCM(bsize;, bsizes;) * P and
d_index < LCM(bsize;, bsizes) * P) do
if (s_index > procg-index) then
next_elem(s_index, bsize;);
else if (s_index < d_index) then
next_elem(d_index, bsizes);
else
buffer(s_index);
next_elem(s_index, bsize;);
next_elem(d_index, bsizes);
endif
endwhile
Using the elements belonging to the intersection (as computed above) and
the periodicity, buffer the rest of the elements which need to be sent.

Figure 9: Algorithm for computing the intersection

6.5 Example

To demonstrate the compilation technique and other optimizations, we consider the DGEFA subroutine
from Linpack. DGEFA is a key subroutine which performs Gaussian elimination with partial pivoting.
Since the subroutine contains triangular loop, block-cyclic distribution is desirable for maintaining good
load balance.

Figure 11 shows the original program as well as the hand-compiled Fortran D program. For good
load balance, we choose a column block-cyclic distribution which distributes the blocks of width b in a
round-robin fashion across the processors. Note that we use a relaxed owner-computes rule to replicate
some computation and to avoid expensive and unnecessary communication [10].

{* Original Program *} {* Compiler Output *}
REAL B(L:U) REAL B((U-L+1)/n$p)
do i =1L;,U; 1b$ = LowerLoopBound(L;)
S1 B(i) = F1(1) ub$ = UpperLoopBound(U;)
do j =L;,U; do i = L;,U;
Sa B(j) = F2(3) i$ = LocalLoopIndex(i)
enddo if (Owner(B(i))) B(i$) = Fi(1)
enddo do j = 1b$,ub$

j$ = GlobalLoopInder(j, my$proc)
B(j) = F2(i$)
enddo
enddo

Figure 10: Loop Indices and Bounds Generation




{* Original Fortran D Program x}
SUBROUTINE DGEFA(n,a,ipvt)
INTEGER n,ipvt(n),j,k,1

DOUBLE PRECISION a(n,n), al, t {* Hand Compiled Output for 4 Processors x*}
DISTRIBUTE a(:,BLOCKCYCLIC(b)) SUBROUTINE DGEFA(n,a,ipvt)
dok =1, n-1 INTEGER n,ipvt(n),j,k,1
{* Find max element in a(k:n,k) *} DOUBLE PRECISION a(n,n/4), al, t, dp$bufi(n)
S, 1=k dok =1, n-1
Sy al = dabs(a(k, k)) owner$proc = MOD((k-1), (b*n$p))/b
doi=k+1,n k$ = ((x - 1)/(b#n$p))b + MOD(MOD((k-1), b*n$p), b) + 1
if (dabs(a(i, k)) .GT. al) then {* Find max element in a(k:n k$) *}
Ss al = dabs(a(i, k)) if (my$p .EQ. owner$proc) then
Sa l1=1 1=k
endif al = dabs(a(k, k$))
enddo doi=k+1, n
ipvt(k) = 1 if (dabs(a(i, k$)) .GT. al) then
if (al .NE. 0) then al = dabs(a(i, k$))
if (1 .NE. k) then 1=1
t = a(l,k) endif
a(l,k) = a(k,k) enddo
a(k,k) = t broadcast 1, al
endif else
{* Compute multipliers in a(k+1:nk) *} recv 1, al
t = -1.040/a(k,k) endif
doi=k+ti, n ipvt(k) = 1
a(i, k) = a(i, k) * t if (al .NE. O0) then
enddo if (my$p .EQ. owner$proc) then
{* Reduce remaining submatrix *} if (1 .NE. k) then
do j =k+1, n t = a(l,k$)
t = a(l,j) a(l,k$) = a(k,k$)
if (1 .NE. k) then a(k,k$) = ¢
a(l,j) = a(k,j) endif
a(k,j) =t {* Compute multipliers in a(k+1:nk$) *}
endif t = -1.0d0/a(k,k$)
do i=%k+1i, n do i=%k+1, n
Sy a(i, j) = a(i, j) + t * a(i, k) a(i, k$) = a(di, k$) * ¢t
enddo enddo
enddo endif
endif {* Reduce remaining submatrix *}
enddo if (my$p .EQ. owner$proc) then
ipvt(n) = n buffer a(k+1:n, k$) into dp$bufi
end broadcast dp$bufi(1:n-k)
else
recv dp$bufi(1:n-k)
endif
1b$1 = LowerLoopBound(k+1)
do j = 1b$1, n/4
t = a(l,j)

if (1 .NE. k) then
a(l,j) = a(k,j)
a(k,j) = ¢t
endif
doi=%k+1i, n
a(i, j) = a(i, j) + t * dp$bufi(i-k)
enddo
enddo
endif
enddo
ipvt(n) = n
end

Figure 11: DGEFA: Gaussian Elimination with Partial Pivoting




We now consider various optimizations which can speed up the code in Figure 11. Interestingly, even
without any optmizations, empirical results show that the DGEFA with block-cyclic distribution runs
faster than the DGEFA with cyclic distribution. This is because in the case of cyclic distribution, for each
column, (P — 1) processors have to wait for the processor which owns that particular column to find the
maximum element and broadcast it to others. On the other hand, with block-cyclic distribution, though
the number of broadcast messages remains the same, since the processors own a block of columns, once
the processor starts executing, it can execute b iterations without waiting for a message. This reduces
the time each processor spends waiting for other processors, thus improving the overall execution time.

An obvious optimization is to use message vectorization to reduce the number of messages broadcasted.
We can coalesce the messages for a block of columns without changing the order of computation (Note
that doing a similar thing for cyclic distribution changes the order). In other words, we strip-mine the
outer k loop and then distribute the strip-mined loop. To vectorize the second set of broadcasts, we first
need to divide the body of the “if (al .NE. 0) then” into two parts so that one contains the message passing
statements (and the preceeding code) and the other contains the loop to reduce remaining submatrices.
We enclose both parts within the same conditional and then perform another loop distribution. Of
course, we need to determine whether it is legal to perform the loop distribution; in this case it is, as
determined from array kill analysis and because the recvs define the values they receive and thereby kill
the dependence.

The code after message vectorization is shown in Figure 12. Note that the loop can be further optimized
by performing the classical optimizations like loop-invariant code motion and loop unswitching.

6.6 Loops with non-unit stride

In the case of block-cyclic distribution, we can not write closed-form expressions for the local iteration
set, send & receive sets, etc. In the presence of non-unit stride loops or/and non-unit array subscripts,
the block-cyclic distribution gives rise to non-constant (local) memory stride pattern.

As an example, consider the array distribution shown in Figure 13. Here we assume that block size(=
b) = 4, P = 4 and loop stride(= s) = 5. The layout of the array in the processor memories can be
visualized as courses of blocks. The offset of an array element A(i) is its offset within the course. Since
the elements accessed by processor 0 are 1, 36, 51, 66, 81, ..., the stride for processor 0 is 11, 3, 3, 3,
11, and so on. In other words, after accessing element 1, the next element accessed by processor 0 is
36, which is 11 away from 1. Similarly, 51 is the third element after 36. We wish to compute these
distances (which would be kept in the array AM indexed by the offset). As mentioned in [2], the
offset of an element determines the offset of the next element on the same processor. Since the offsets
range between 0 and (block-size-1), by pigeon hole principle, at least two of the first (block-size+1) local
memory locations on any particular processor must have the same offset. Moreover, since the offset of
the next element depends only on the offset of the current array element, we conclude that there exists
a cycle of memory access gaps.

Suppose we wish to find the first element (if any) of the regular section that resides on a processor.
This is equivalent to finding the smallest nonnegative integer j such that

((L+sj—La)mod (P xb))divh = t,

where L = loop lower bound, L4 = array lower bound, and the rest are as defined before.
The above equation reduces to

bxt, < (L+sj—La)modPxb < bx(t,+1)—1
which is equivalent to finding an integer ¢ such that
bxt, —L+Ls < sj —q(P+b) < bx(t,+1)—L+Ls—1
The above inequality can be written as a set of b linear Diophantine equations in the variables j and g¢,

{s] —q(P*b)=A|b*t, —L+Ls < XA < bx(t,+1)—L+Ls—1}



{* Hand Compiled Output for 4 Processors *}
SUBROUTINE DGEFA(n,a,ipvt)
INTEGER n,ipvt(n),j,k,1,1$buf(b),m,count$,offset$,owners$
DOUBLE PRECISION a(n,n/4),al,al$buf(b),t,dp$bufi(b*n)
do kk = 1, n-1, b
owner$ = MOD((kk-1), (b*n$p))/b
kk$ = ((kk - 1)/(b*n$p))b + MOD(MOD((kk-1), b*n$p), b) + 1
k$ = kk$
count$ = 1
do k = kk, kk+b-1
{* Find max element in a(k:mn,k$) *}

if (my$p .EQ. owner$) then {* buffer a(k+1:n, k$) into dpSbufl *}
1=k offset$ = count$*(n-kk)-(count$*(count$-1))/2+1
al = dabs(a(k, k$)) doi=k+1, n
doi=k+1,n dp$bufi(offset$) = a(i, k$)
if (dabs(a(i, k$)) .GT. al) then offset$ = offset$ + 1
al = dabs(a(i, k$)) enddo
1=1 endif
endif endif
enddo k$ = k$ + 1
1$buf(count$) = 1 count$ = count$ + 1
al$buf (count$) = al enddo
count$ = count$ + 1 if (my$p .EQ. owner$) then
endif broadcast dp$bufi(1:b*(n-kk)-b*(b-1)/2)
k$ = k$ + 1 else
enddo recv dp$bufil(1:b*(n-kk)-b*(b-1)/2)
if (my$p .EQ. owner$) then endif
broadcast 1$buf, al$buf {* Reduce remaining submatrix =}
else k$ = kk$
recv 1$buf, al$buf count$ = 0
endif do k = kk, kk+b-1
k$ = kk$ 1 = 1$buf(count$+1)
count$ = 0 al = al$buf(count$+1)
do k = kk, kk+b-1 if (al .NE. 0.0d40) then
1 = 1$buf(count$+1) 1b$1 = LowerLoopBound(k+1)
al = al$buf(count$+1) ub$1 = UpperLoopBound(n)
ipvt(k) =1 do j = 1b$1, ub$i
if (al .NE. 0) then t = a(l1,j)
if (my$p .EQ. owner$) then if (1 .NE. k) then
if (1 .NE. k) then a(l,j) = a(k,j)
t = a(l,k$) a(k,j) = t
a(l,k$) = a(k,k$) endif
a(k,k$) = t offset$ = count$*(NMAX-kk)-(count$*(count$-1))/2+1
endif doi=k+1i, n
{* Compute multipliers in a(k+1:n,k$) *} a(i, j) = a(i, j) + t * dp$bufi(offset$)
t = -1.0d40/a(k,k$) offset$ = offset$ + 1
doi=%k+1i, n enddo
a(i, k$) = a(i, k$) * t enddo
enddo endif
enddo
enddo
ipvt(n) = n
end

Figure 12: DGEFA: Gaussian Elimination with Partial Pivoting
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Figure 13: Block-cyclic distribution

dol=1,n

ipnt = ipntp
ipntp = ipntp+il

do k =

ipnt+2, ipntp, 2
i=1i+1
X(1) = X(k) - V(k)*X(k-1) - V(k+1)*X(k+1)
enddo
enddo

Figure 14: Livermore Kernel 2 : ICCG Excerpt

The equations can be solved independently (solutions exist for an individual equation if and only if A
is divisible by GCD(s, bxP). The general solution of a linear Diophantine equation can be found using
extended Euclid algorithm.

The extended Euclid algorithm would give us not only the first such memory location but all the
locations (array elements). We could then sort the array to list all the array elements accessed by the
processor and hence find out the memory access gaps. Using this idea, Chatterjee, et al give algorithms
for computing the memory access gap sequence for loops with arbitrary array alignments and step size [2].
The running time of the algorithm using this approach is O(log min(s, P x b) + blogb) which reduces to
O(min(blogb + log s, blogb + log P)).

However, in practice, most of the step sizes are small as compared to the block size used for the block-
cyclic distribution. As an example, consider the stripped down version of the loop (Figure 14) which
appears in the kernel 2 (Incomplete Cholesky-Conjugate Gradient) of Livermore suite. In the following
section, we present a linear time algorithm for the two more commonly occurring cases. Figures 15 and
16 depict the two cases.

6.6.1 Algorithm to calculate the memory access sequence

The following algorithm computes the local-memory access sequence for loops with non-unit stride. It is
assumed that the data distribution is aligned perfectly with the decomposition. Otherwise, if the data
distribution is aligned to the decomposition using affine alignment, then we would need two applications
of the following algorithm to get the memory access sequence.

Input : Offset of a valid iteration for processor 0 (offset), Block size (b), step (s), processor number
(tp), number of processors (P).

Output : The AM table. The algorithm can also be used to record the starting memory location and
the length of the table.

Method : The following is an algorithm to compute the steps for loops with block-cyclic distribution.

CaseI:s<b



Processor O Processor 1 Processor 2 Processor 3 Processor 4
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(61 2 3[4 5 6 [7] 8| o[70] 1+ 2|[3] 4 5 [6] 7 s [9]80
Figure 15: Example : Case I (step = 3)
count = 1;

AM(i] = NOT_DEFINED, i=0,.. ,b-1;
offset = s - (tp,*b - (offsety + ij *3));
while (count < b) do

if (AMoffset] # NOT_DEFINED) break;

numLocalHops = LMJ :

for (i=1; i < numLocalHops; i++)
AMoffset] = s;
offset = offset + s;
endfor
lastLoc = offset + 1;
nextOffset = s - [(P-1)b + (b-lastLoc)] mod s - 1;
AM |offset] = b - offset + nextOffset;
offset = nextOffset;
count+4+4;
endwhile

Case II : s mod b*P < b

count = 1;
AM][i] = NOT_DEFINED, i=0,...,b-1;
GlobalStep = s mod b * P;
RowsSkipped = s div b x P;
offset = GlobalStep - (t,*b - (offsety + |
while (count < b) do

if (AMoffset] # NOT_DEFINED) break;
b—(offset+1 J

numLocalHops = | GlobalSiep
for (i=1; i < numLocalHops; i++)
A M offset] = bxRowsSkipped + GlobalStep;
offset = offset + GlobalStep;
endfor
lastLoc = offset + 1;
ElementsLeft = b x P - lastLoc;

TotalRowsSkipped = (l%%J + 1) * RowsSkipped;

GlobalElemsLeft = ElementsLeft mod GlobalStep;
nextOffset = GlobalStep - GlobalElemsLeft - 1;
AM]|offset] = b * TotalRowsSkipped + (b-(offset+1)) + (nextOffset+1);
offset = nextOffset;
count++4;
endwhile

tp*xb—(offseto+1)

GlobalStep ]*GlobalStep));

bl




Processor O Processor 1 Processor 2 Processor 3 Processor 4
1] 2 3 a5 & 7 8| 9 10 11 12[13 14 15 16|17 18 19 20
21 22 23[ 24|25 26 27 28|29 30 31 32|33 34 35 36|37 38 39 40
41 2 3 a| 5 6 8l 950 1 2 3 a4a 5 6| 7 8 9 e0
61 2 3 4| 5 6 7 8| 9 1 23 a 5 6| 7 8 9 so
81 2 3 4| 5 6 7 8| 9 90 1 2 a 5 6| 7 8 9100
1012 3 4|5 6 7 8/ 910 1 2/ 3 a4 5[6] 7 8 9 20
21 2 3 a4l 5 6 7 8| 930 1 2|3 a4 5 6| 7 8[9]a0
41 2 3 4|5 6 7 8/ 95 1 23 4 5 6| 7 8 9 60
61 3 4|5 6 7 8/ 970 12 2 3 a4 5 6| 7 8 9 8
81 2 3 4 6 7 8/ 99 1 2|3 a4 5 6| 7 8 9200
2002 3 4| 5 6 7 [8] 910 1 2|3 a4 5 6|7 8 9 20
21 2 3 4|l 5 6 7 8| 9 30 2l 3 4 5 6| 7 8 9 40
41 2 3 4| 5 6 7 8| 950 1 2| 3 5 6| 7 8 9 e0
61 2 3 4| 5 6 7 8/ 9 70 1 2| 3 a4 5 6 8 9 80
81 2 3 4| 5 6 7 8| 9 90 1 2| 3 a s5 6| 7 8 9|o0]
3012 3 4/ 5 6 7 8| 9 10 1 2| 3 4 5 6| 7 8 9 20
21 2 4l 5 6 7 8/ 9 30 1 2| 3 4 5 6| 7 8 9 40
41 2 3 4| s5[6] 7 8l 950 1 2|3 a4 5 6| 7 8 9 60
61 2 3 4| 5 6 7 8|[9]70 1 2| 3 a4 5 6| 7 8 9 s0
8L 2 3 4| 5 6 7 8| 9 9 1[2| 3 4 5 6| 7 8 9400
401 2 3 4| 5 6 7 8| 9 10 1 2| 3 a 6| 7 8 9 20
21 2 3 4| 5 6 7 8| 9 30 1 2| 3 a 5 6| 7 9 40
41 2 3 4| 5 6 7 8/ 9850 1 2|3 4 5 6| 7 8 9 60
2 3 a4l 5 6 7 8|/ 9 70 1 2 3 a 5 6| 7 8 9 so0
81 2 3[4 5 6 7 8/ 99 1 23 a4 5 6| 7 8 9500

Figure 16: Example : Case II (step = 23)

Given the loop lower bound L and the array lower bound L 4, for case I :

_J (L=La)mods, if(L—La)mods # 0
offseto —{ s if(L — La)mods = 0

bl

For case II, we need slightly more work :
Let global step g = s mod bP, the processor which owns L be p = ((L-L4) mod b*P) div b, the offset of
L within its course be 0o = ((L-L4) mod bxP) mod b. Therefore, the number of elements left in the row,
e = b — (0+1) + (P-p)*b and the number of elements left after the last iteration (in the sense that the
next iteration would be executed by Processor 0) in the sequence (refer to figure 16),! = emodyg. Now,
offseto =g — 1 — 1

Explanation : The important property satisfied by both s < b (Case I) and s mod b*P < b (Case
IT) is that if processor p executes the ith iteration then the (i+1)¢h iteration would be executed either
by processor p itself or by processor (p 4+ 1) mod P. This fact is used to compute the offsets (and the
memory access gaps) without requiring to actually solve the Diophantine equations.

For case I, the algorithm works as follows :
Given an offset for the processor p, we first compute the set of iterations executed within the same course.
Using the value of the last iteration in the course, we can compute the number of elements needed to be
stepped through before reaching processor p again (which is e = (P-1)xb + (b-lastLoc)). e mod s then
gives the number of array elements left after the last iteration on the (p — 1) mod P processor. Therefore,
s — e mod s — 1 is the offset (within the next course) of the next iteration executed by p.

For case II, the algorithm works almost identically by treating s mod bxP as the step size (which is
less than b). However, in this case, the algorithm also keeps track of the number of skipped rows to
compute the memory gaps correctly.



An interesting fact which could be used to further speed up the algorithm is that the length of the
memory access gap sequence cycle divides the block size. Others tricks like treating mults and divs as
shifts in case of step size or block size being powers of 2 can also be used to improve the running time
of the algorithm.

Complexity Each element of the array AM is filled at most once by the algorithm and as soon as
an already filled array element is enountered, the algorithm stops. Therefore, the ’while’ loop (together
with the inner 'for’ loop) iterates atmost b times and hence it is an O(b) algorithm. Therefore, not only
is our approach conceptually more intuitive, the algorithms given above are an O(b).

6.7 Send and Recv Sets

Once we have computed the memory access sequence for an array access, the computation of the send
and receive sets is comparatively easier. For example, consider the following example :

REAL A(n)
DISTRIBUTE A(BLOCK_CYCLIC(4))
doi=1,N,5

AG) = F(AGD), A(), Ai+1))
enddo

If P=4, then we would get the same memory access sequence as before. Only those iterations which
assign to the array elements A(i) s.t. its offset is 0 or 3 (= the block-size-1) need to receive some data
(corresponding to A(i-1) and A(i+1) respectively).

In general, in case of communication required because of shifts, we can find both the processor which
need to send the data and the location of the array element within the owner processor. Note that, in
case of shifts, a processor communicates with at most two processors.

Suppose that element A(i) is located on processor t, with offset 0. We want to find the processor and
local memory location of A(i-d). Let d = q.(P*b)+r and AP = [(r — 0)/b], where b is the block-size.
Then the owner processor of A(i-d) is (¢, — AP+P) mod P. Since 0 < 0o < b, AP can assume only two
values.

The location of A(i-d) (say M’) can be computed from the location of A(i) (say M) as follows. We
define AL such that M’ = M + AL(o).

AL(0) = ((o — r) mod b)—o—bqg—n,
{ b if (ty,xb—r+0) <0,

K = 0 otherwise.

Now, since the memory access sequence algorithm can compute offsets also, we can determine the
iterations which need communication as well as the elements which need to be sent without any extra
work.

In the case of block-cyclic distributions with different block sizes, the send and receive sets can be
computed by computing the local index sets, local iteration sets, etc. For more complicated patterns,
for example in case of stride changes, there does not exist any simple lookup technique for generating
the communication sets because the pattern of destination processors can have period longer than the
block-size b. In such cases, we resort to the inspector-executor model [15] for irregular loops.

7 More General SPMD Code Replication Checking

As mentioned elsewhere in the literature [5], a sequential code segment can be converted to SPMD code if
there are no storage-related dependences in the segment. While storage-related dependences are unsafe,
flow dependences do not cause safety problems. Fortunately, storage-related dependences can always be
removed by using additional storage [4]; one of the ways being privatization.

The Fortran D compiler recognizes that statements which cause either input dependences in a loop
or output dependences impede parallelism. E.g. if there is a Fortran "read” statement in the loop or if
there is a scalar variable which can not be privatized, the loop can not be converted into SPMD code.
Currently, the compiler creates a guard around all ”write” statements so that only processor 0 performs
all the output.



The loops with function calls may be handled similarly. The compiler will make use of the interpro-
cedural array section analysis (not yet fully implemented) and other procedure summary information to
determine if the loops may be parallelized. If the functions have side-effects that may cause input or
output dependence then the loop will not be converted to an SPMD loop.

8 Code Generation

Code generation is divided into two parts, partitioning and message generation. The partitioning phase
applies loop bounds reduction and inserts guards, modifying the AST according to the information in the
iteration sets. The message generation phase uses the information in the RSDs for to generate messages.
We have described in previous sections, the extensions required for iteration and index sets. These sets
will be used to generate the necessary communication.

8.1 Run Time Support

One of the key limitations of the code generation phase in the current Fortran D compiler is its lack of
a run time library that may be used in the presence of symbolic index and iteration sets.

8.1.1 Loop Bounds Partition Library

Routines that return local upper and lower bounds based on the distribution of the array and the
subscript or loop bounds expressions must be provided. The equations described in will be used to build
the run time library. Below are some of the routines that must be provided.

block_upper() block_upper_stride()
cyclic_upper() cyclic_upper_stride()
block_cyclic_upper() block_cyclic_upper_stride()
block_lower() block_lower_stride()
cyclic_lower() cyclic_lower_stride()

block_cyclic_lower() block_cyclic_lower_stride()
8.1.2 Communication Library

The actual communication that may take place may be known only at run time due to symbolic index
sets. The compiler must be able to generate code which determines at run time the communication that
occurs. This is one of the major weaknesses of the current compiler. We begin by describing in the
context of a simple loop, the transformations the compiler must perform.

real a(100,100), b(100,100)
decomposition d(100,100)
align a,b with d
distribute d(cyclic, :)

do j=1,n
doi=1,n

a(i,j) = b(i+k,j)
enddo
enddo

In the loop nest above, since the upper loop bounds are symbolic values and k occuring in the subscript
expression is also a symbolic whose value is known at run time. The iteration and index sets are
classified as symbolic and the communication classification algorithm sets the communication type as
shift. The code generation phase uses this information to insert calls to routines that generate lower
and upper bounds for cyclic distribution and messages for shift communication with one dimensional
cyclic distribution. The psuedo code generated is shown below.

¢ u = lower_cyclic(....)



¢ 1 = upper_cyclic(....)
¢ kloc = local offset

¢ 1s there any communication required?
if (mod(k, P) .ne. 0)
1d_cyclic_shift_dim2(b, 1, n, cyclic,1,n, local, k, 0, temp)
do j=1,n
doi=1,u
a(i,j) = temp(i)
enddo
enddo
else
do j=1,n
doi=1,u
a(i,j) = b(i+kloc,j)
enddo
enddo
endif

The function 1d_cyclic_shift_dim2 contains code that determines the in_index_set, out_index set,
receive p_set, and send p_set for every processor. It uses the algorithm depicted in Figure 17. We
need a run time library that contains functions that generate communication in the presence of symbolic
values and distributions of the type block, cyclic, block_cyclic. Below are some of the functions to be
included in the library.

1d_block_shift 1d_cyclic_shift
1d_block_broadcast 1d_cyclic_broadcast
1d_block_send_recv 1d_cyclic_send_recv
1d_block_shift_dim2 1d_cyclic_shift_dim
1d_block_broadcast_dim2 1d_cyclic_broadcast_dim2
1d_block_send_recv_dim2 1d_cyclic_send_recv_dim2
1d_block_cyclic_shift 1d_block_cyclic_shift_dim2
1d_block_cyclic_broadcast 1d_block_cyclic_broadcast_dim2
1d_block_cyclic_send_recv 1d_block_cyclic_send_recv_dim2

The list above is by no means complete. It simply lists the type of functions we will have in our run
time library

8.1.3 Imspector/Executor and Run Time Resolution

When complex index sets are generated, the compiler will not be able to optimize the code and will have
to resort to generating inspector/executors described in [17] in the case where true loop carried cross
processor dependences do not exist and run time resolution otherwise. The classification algorithm will
clagsify the communication and the run time system will perform the appropriate transformations to
generate code.

9 Experimental Results

In this section we present the performance results of compiling Gaussian elimination with block-cyclic
distribution.

9.1 Block-cyclic Distribution

Experiments reveal that we achieve the same speedup irrespective of whether we send the 1$buf and
al$buf as two separate messages or if we copy them both onto a buffer and then send the buffer as a



Block Size (time in secs)

Program | Problem Size | Proc 1 2 4 8 | 16 32 | 64 | 128
1 sequential time = 2.151
2 1.135 | 1.017 | 0.973 | 0.962 | 0.971 0.992 | 1.081 1.248
256 X 256 4 0.816 | 0.723 | 0.679 | 0.673 | 0.693 | 0.725 | 0.826 | 1.343
8 0.731 | 0.625 | 0.586 | 0.577 | 0.606 | 0.640 | 0.924 | 1.441
16 0.790 | 0.665 | 0.599 | 0.578 | 0.605 | 0.738 | 1.020 | 1.537
32 0.895 | 0.730 | 0.646 | 0.621 | 0.707 | 0.836 | 1.117 | 1.633
1 sequential time = 17.53
2 8.021 7.818 | 7.693 | 7.724 | 7.730 | 7.848 | 8.194 | 8.882
Gauss 512 x 512 4 4.869 | 4.659 | 4.566 | 4.591 | 4.669 | 4.826 | 5.197 | 6.049
8 3.457 | 3.273 | 3.199 | 3.224 | 3.343 | 3.539 | 3.900 | 6.440
16 3.095 | 2.834 | 2.724 | 2.732 | 2.855 | 2.993 | 4.280 | 6.819
32 3.129 | 2.800 | 2.674 | 2.665 | 2.760 | 3.376 | 4.660 | 7.196
1 estimated sequential time = 140
2 66.84 | 66.61 | 66.37 | 67.29 | 67.16 | 67.92 | 69.42 | 72.59
1K x 1K 4 36.33 | 36.10 | 35.97 | 36.51 | 36.81 37.62 | 39.15 | 43.52
8 21.89 | 21.61 21.53 | 21.93 | 22.44 | 23.49 | 25.44 | 28.77
16 15.67 | 15.24 | 15.12 | 15.41 16.00 | 17.00 | 18.46
32 13.33 | 12.80 | 12.64 | 12.86 | 13.42 | 14.06 | 19.97

Table 1: Intel iPSC/860 Execution Times for Gaussian Elimination with BlockCyclic distr

single message.

Surprisingly, we also noted that it is faster to broadcast the precise trapezoidal region instead of the
more conservative rectangular regions. One would guess that since the startup cost remains the same,
sending a few extra array elements per message but simplifying the array index calculation will give
better results; but our experiments point otherwise.

Table 1 contains the timings for the Gaussian Elimination with pivoting for the various block sizes,
processors and the problem sizes. An important observation is that the block size which yields the best
performance is independent of the number of processors and depends only on the original problem size.
In other words, the best block size depends on the ratio of the communication and computation inherent
in the algorithm used in the program and not on the number of processors. The following graphs show
these results more clearly. Also, as expected, the block-cyclic distribution with appropriate block sizes

outperforms both the cyclic and the block distribution.
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10 Summary

A usable yet efficient machine-independent parallel programming model is needed to make large-scale
parallel machines useful for scientific programmers. We believe that Fortran D, one of the first data-
placement languages, can provide such a portable data-parallel programming model. The key to achiev-
ing good performance is applying advanced compiler analysis and optimization to automatically extract
parallelism and manage communication. This paper describes techniques that will significantly extend
the class of problems the Fortran D compiler can efficiently compile.



Given:
a(ly tuq, ... n s up)
align a, b with d
distribute d(ji,...,jn) s.t. dimension j; is distributed
CYCLIC and the remaining dimensions are not distributed
Loop nest:

Do il = lbl,ubl

Sy b(ooyit, ) = a(f(i1), ix + ..., F(in)

Enddo
Send Receive Sets for Statement S;:
if (¢, < (lby — lx) mod P) then
lbpr = [Lem ] % P 4+ 144,
else
by = |25 |« P + 11,
endif
it (¢, < (uby — ) mod P) then
ubpy = Wl |4 P+ 14 ¢,
else
ubpy = [L2 ] 4P — P 4+ 1+ 8,
endif
iter_set(t,) = (uby :uby,... lbg1 :ubgy: P,... by : uby)
index_set(t,) = (Iby :uby,... lbp1+cp ubpr+cp 2 Py... byt uby)

if (¢x — I mod P #0)
in_index_set(ty) = (Ib1 :uby,... lbp1+cp i ubpr+cp: P,... by uby)
else

inindex_set(t,) = 0
endif
out_index set(t,) = in_index_set(t, — ¢y mod P+ P) mod P

receive_p_set(t,) = (tp +c¢x mod P+ P)mod P
send_p_set(t,) = (tp —cr mod P+ P) mod P

Figure 17: Shift Communication for Cyclic Distribution




In this paper we described the analysis required to compile Fortran D programs in the presence
symbolic loop bounds and array sizes, non-unit loop strides and variable number of processors. We
compute symbolic iteration and index sets and use them to generate efficient code. The iteration and
index sets are used by the communication classification algorithm to select for each non local right hand
side reference, the type of communication that occurs. We propose a code generation strategy that
uses the communication type for each non local right hand side reference to generate efficient code. We
provide the analysis necessary to generate communication in the presence of multidimensional block and
cyclic distributions and optimize the messages when possible. Partitioning and communication analysis
for block_cyclic distribution is dealt with in detail. We provide empirical results on our compilation
strategy for block_cyclic distribution that provide an insight into the usefulness of our analyses.
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