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Abstract

We present a dataflow framework that extends classical partial redundancy elimination techniques and uses
a general producer-consumer concept. Consumers express a demand for certain computations to be performed,
either before or after consumption takes place, depending on the kind of problem to be solved. Producers
satisfy this demand, unless it is already satisfied as a side effect by some other operations. Production can be
viewed not only as an atomic operation, but it can also be separated into a beginning and an end. Beyond the
safety requirements of classical code motion techniques, the option of splitting production implies a need for
Balancedness, where a production, once started, is guaranteed to be finished, without an intervening restart.

We describe the general framework and its application to the problem of generating communication state-
ments for distributed memory machines. In the communication generation problem, we assume that references
to distributed data result in global reads, which can be split into a send from the owner of the data and a
receive at the processor referencing the data. We also assume that a definition of distributed data may re-
sult in a global write, which can be split into a send from the processor writing the data and a receive at
the processor owning them. This presents four different problems, all of which can be solved with the same
framework. We implemented the framework as part of a FORTRAN D compiler prototype, where it is used to
solve communication generation problems including the ones described in this paper.

1 Introduction

An important step in compiling data parallel languages, like FORTRAN D [HKT92a] or HiIGH PERFORMANCE
ForTRrAN [Hig93], onto distributed memory machines is the generation of communication statements that allow
each processor to reference and define data that they do not own by default. Since generating an individual
message for each not-owned datum would be prohibitively expensive on most architectures, optimizations like
message vectorization, latency hiding, and avoiding redundant communication are crucial for achieving acceptable
performance [HKT92b]. Dependence analysis can guide such optimizations, for example by guaranteeing the
safety of hoisting communication out of a loop nest.

However, dependence analysis alone is not powerful enough to take advantage of all optimization opportuni-
ties, since it only compares pairs of occurrences (i.e., references or definitions) and does not take into account how
control flow links them together. Gross and Steenkiste combine dependence analysis with data flow analysis and
regular sections to analyze, for example, reaching definitions [GS90]. It turns out that efficient communication
generation is closely related to partial redundancy elimination techniques, which were originally developed for
transformations like loop invariant code motion, common subexpression elimination, or strength reduction. The
original dataflow framework for performing partial redundancy elimination was developed by Morel and Ren-
voise [MR79] and has since then experienced various refinements [JD82, DS88, Dha88a, Dha91, DRZ92, KRS92].
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Dhamdhere uses partial redundancy elimination techniques for placing register loads and stores [Dha88b].
He uses an iterative approach, with separate frameworks for loads and stores. Carr and Kennedy combine
partial redundancy elimination with dependence analysis to perform scalar replacement [CK92]. Granston and
Veidenbaum combine dependence analysis and partial redundancy elimination to detect redundant global memory
accesses in parallelized and vectorized codes [GV91]. Their technique tries to eliminate these operations where
possible, also across loop nests and in the presence of conditionals, and they eliminate reads of not-owned variables
if these variables have already been read or written locally. However, they assume that the program is already
annotated with read/write operations, so they do not try to hoist memory accesses to less frequently executed
regions. They also treat each global memory access as a monolithic operation that is not, for example, divided into
a send and receive; therefore, they do not provide opportunities for prefetching or latency hiding. Duesterwald
et al. incorporate iteration distance vectors into an array reference data flow framework which is then applied to
memory optimizations and controlled loop unrolling [DGS93]. Amarasinghe and Lam optimize communication
generation using Last Write Trees [AL93]. They assume regular array access patterns and distributions. Gupta
and Schonberg use Available Section Descriptors, computed by interval based data flow analysis, to determine
the availability of data on a virtual processor grid [GS93]. They apply (regular) mapping functions to map
this information to individual processors and list redundant communication elimination and communication
generation as possible applications. An iterative data flow framework for generating communication statements
in the presence of indirection arrays has been developed by von Hanxleden et al. [HKK*92]. It uses a loop flow
graph designed to ease the hoisting of communication out of innermost loops. However, it handles nested loops
and jumps out of loops only to a limited degree, and communication is treated monolithically.

This paper presents a data flow framework, called GIVE-N-TAKE, that is designed for a broad class of code
generation placement/problems, including the classical domains of partial redundancy elimination techniques
as well as communication generation. Roughly speaking, GIVE-N-TAKE takes as input lists of items that are
needed, killed, or “provided for free” at each control flow graph node, and produces as output for each node a
list of items that have to be provided in order to satisfy the specified needs. As described in Section 2.1, there
are some fixed correctness and optimality criteria that GivE-N-TAKE is subject to; for example, any generated
code should be executed as infrequently as possible. However, the solutions computed by GIvE-N-TAKE vary
depending on which kind of problem it is applied to. In a BEFORE problem, items have to be produced before
they are needed (like reading in not-owned data), whereas in an AFTER problem, they have to be produced
afterwards (like writing out not-owned data). Orthogonally we can classify a problem as EAGER when it asks
for production as early as possible (like sending a message), or as LAzy when it wants production as late as
possible (like receiving a message); this definition assumes a BEFORE problem, for an AFTER problem “early”
and “late” have to be interchanged. Partial redundancy elimination, for example, can be classified as a Lazy,
BEFORE problem.

We have implemented GIvE-N-TAKE in the PARASCOPE environment at the Center for Research on Paral-
lel Computation at Rice University as part of a FORTRAN D compiler prototype, where it is used to generate
communication statements for distributed memory architectures. We are applying the framework to a variety of
communication generation tasks, namely global READ’s, global WRITE’s, and WRITE’s combined with several
possible reduction types (addition, multiplication, etc.). Furthermore, separate sends and receives can be sepa-
rated for each type of communication. The information derived by GivE-N-TAKE allows the compiler to reduce
both the number and the volume of messages and to hide communication latencies with other computation. Hav-
ing a single framework for generating all necessary types of communication statements simplified the compiler
and accelerated both high and low level debugging.

The rest of this paper is organized as follows. Section 2 begins with giving some further intuition for the
GI1VE-N-TAKE framework, followed by a brief review of interval analysis. It then describes the actual equations
and argues informally for their correctness and effectiveness. Section 3 describes the application of GIVE-N-TAKE
to the task of generating communication for a distributed memory architecture and gives a sample program with
the communications generated for it (see Figure 10). This application will also be used in other sections as
an illustrating example. Section 4 lists some further extensions of the framework, some of which are already
implemented, and concludes with a brief summary. The appendix contains formal correctness proofs for the
equations stated in Section 2.3 and for the algorithm given in Section 2.4.

2 The Give-N-Take Framework

The basic idea behind the GIVE-N-TAKE framework is to view the given code generation problem as a producer-
consumer process. In addition to being produced and consumed, data may also be destroyed before consumption.



Furthermore, whatever has been produced can be consumed arbitrarily often, until it gets destroyed.

For example, a processor running a distributed memory machine application typically locally references both
owned data, that by default reside on the processor, and not-owned data, that reside on other processors. Local
references to not-owned data induce a need for reading these data from other processors. The problem of
generating these READ’s can be interpreted as a BEFORE problem as follows:

e FEach reference to not-owned data consumes these data.

e Each READ, where a processor p sends data that it owns to another processor ¢ that receives and references
these data, produces the data sent.

e Each non-local definition (i.e., a definition at another processor) of not-owned data destroys these data.

If we want to split each READ into a READs¢pnq (the send issued at the owner) and a READ geey (the receive issued
by the referencing processor), then we can compute both the EAGER and the Lazysolution of the framework.
Since this is a BEFORE problem and we want to send as early as possible, the READg.,4’s will be given by the
EAGER solution, and the READ ge.,’s will be the Lazy Solution.

In addition, if we do not use a strict owner computes rule, we might have local definitions of not-owned data.
We assume that these data have to be written back to their owners before they can used by other processors.
(A feasible, but especially in the presence of indirect references difficult alternative would be the direct exchange
between a not-owner that writes data and another not-owner that reads them.) These not-owned definitions
can now be viewed as consumers, just as not-owned references, and we have to insert producers that in this
case communicate data to their owners (instead of from their owners). Since we want to write data after they
have been defined, this is an AFTER problem. Note that in this scenario, the previous problem of analyzing
communication for not-owned references can be modified to take advantage of not-owned definitions if they are
later locally referenced; i.e., not-owned definitions can also be viewed as statements that produce not-owned
references as a side effect (“for free”), potentially saving unnecessary communication to and from the owner.
Again, we can split each WRITE into a WRITEg,nq (given by the LAZY solution, since WRITE is a BEFORE
problem) and a WRITEg., (the EAGER solution).

2.1 Correctness and optimality

Given a program with some pattern of consumption and destruction, our framework has to determine a set of
producers that meet certain correctness requirements and optimality criteria. The requirements that GIvE-N-
TAKE has to meet in order to be correct are the following (with their specific implications for the communication
generation).

(C1) Balancedness: If we compute both the EAGER and the LAzy solution for a given problem, then these
solutions have to match each other. (For each executed READ send, a matching READ receive will be
executed, and vice versa; similarly for WRITE sends and receives; see Figure 1.)

(C2) Safety: Everything produced will be consumed; see Section 2.2.1 for a discussion of safety in the presence of
zero-trip loop constructs. (No unnecessary READ’s or WRITE’s; see Figure 2, we assume that X2 destroys
X1. In our specific case this is more an optimization than a correctness issue.)

(C3) Sufficiency: For each consumer at node n in the program, there must be a producer on each incoming
path reaching n, without any destroyer in between. (All reads of not-owned data must be locally satisfiable
due to proceeding READ’s or local definitions, without intervening non-local definitions, and all definitions
of not-owned data must be brought back to their owners by WRITE’s before being referenced non-locally
or read; see Figure 3.)

The optimization criteria, subject to the correctness constraints stated above, are:

(01) Nothing produced already (and not destroyed yet) will be produced again. (Nothing will recommunicated,
unless it has been non-locally redefined; see Figure 4.)

(02) There are as few producers as possible. (Communicate as little as possible; see Figure 5.)

(03) Things are produced as early as possible for EAGER, BEFORE and LAzy, AFTER problems. (Send as early
as possible; see Figure 6.)

(O3') Things are produced as late as possible for LAzy, BEFORE and EAGER, AFTER problems. (Receive as
late possible; see Figure 7.)
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Figure 1: Unbalanced production (left) and possible solution (right).
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Figure 2: Unsafe production (left) and possible solution (right).
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Figure 3: Insufficient production (left) and possible solution (right).
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Figure 4: Redundant production (left) and possible solution (right).
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Figure 5: Too many producers (left) and possible solution (right).
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Figure 6: Too late production (left) and possible solution (right).

2.2 The data flow domain

Let G = (N, E) be a control flow graph with nodes N and edges E. Each n € N has a set of data flow variables
associated with it. Each variable represents a set of elements from the data flow universe, for example by a bit
vector. The GIVE-N-TAKE framework consists of a set of data flow equations, stated in Section 2.3, that define
the variables for each n. This definition often depends on the values of variables at nodes that are connected
to n through edges in E.

A general data flow analysis algorithm that considers loop nesting hierarchies is interval analysis. It can be
used for forward problems (like available expressions) [All70, Coc70] and backward problems (like live variables)
[KenT71], and it has also been used for code motion [DP93]. We are using a variant of interval analysis that is based
on Tarjan intervals [Tar74]. Like Allen-Cocke intervals, a Tarjan interval T'(h) is a set of control flow nodes that
corresponds to a loop in the program text, entered through a unique header node h, where h & T'(h). However,
Tarjan intervals include only nodes that are part of this loop (i.e., together with their headers they form nested,
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Figure 7: Too early production (left) and possible solution (right).



strongly connected regions), whereas Allen-Cocke intervals include in addition all nodes whose predecessors are
allin T'(h), i.e., they might include an acyclic structure dangling of the loop. Note that a node nested in multiple
loops is a member of the Tarjan interval of the header of each enclosing loop. Unlike in classical interval analysis,
we do not explicitly construct a sequence of graphs in which intervals are recursively collapsed into single nodes,
but instead we take the interval structure into account when traversing the control flow graph in one of the
orderings described in Section 2.2.3. RooT € N is the unique root of G. For n € N, LEVEL(n) is the loop
nesting level of n, counted from the outside in; LEVEL(RooT) = 0.

Figure 10 shows an example code, corresponding control flow graph is in Figure 11. The deepest loop nesting
level is three. The h-loop, for example, corresponds to the interval formed by nodes 3 ... 20, with header 2
(again, the header itself is not part of the interval). Note that this interval includes the intervals headed by nodes
4,10, 13, and 18. Node 5, for example, is included in the three intervals headed by nodes 4, 2, and 0.

2.2.1 Zero-trip loop constructs

One difficulty with flow analysis has traditionally been the treatment of zero-trip loop constructs, like for ex-
ample a Fortran DO loop. We are interested in hoisting computation out of such loops as well, but this may
introduce statements on paths where they have not existed before, which is generally considered unsafe. Several
techniques exist to circumvent this difficulty, like for example adding an extra guard and a preheader node to
each loop [Sor89], explicitly introducing zero-trip paths [DK83], or collapsing innermost loops [HKKT92]. These
strategies, however, result in some loss of information, and they do not fully apply to nested loops. Therefore,
the GIvE-N-TAKE framework generally treats a loop as if it will be executed at least once. In case this approach
is not valid as such for a particular application of the framework, there are several relatively simple refinements
to guarantee safety:

e The compiler can try to prove that a loop [ will be executed at least once.
o Hoisting a statement S out of a loop { can be prohibited by adding S to STEAL(!) (see Section 2.3.2).

¢ S may implicitly be void in case [ does not execute; for example, if [ has n iterations and S is a statement
communicating z(1:n), then n < 0 results in an empty statement.

e We can explicitly guard S by a test whether [ will be executed.

e S might be statement that results in some extra, but harmless computation, like an unnecessary commu-
nication statement. In this case, we might be willing to pay that extra cost if it is amortized as soon as [
is executed at least once.

e In case we rely on a statement S to be executed within [ (for example, to bring in some not-owned data
that are needed outside of [ as well), we can add a test after the loop that explicitly executes S in case [ is

empty. (These data are indicated in the framework by GIVE(!) \ GIVE;::(1)).

2.2.2 The control low graph

We classify each edge e = (m, n) € E as one of the following.

Entry Edge: An edge from an interval header to a node within the interval; n € T'(m).
Back Edge: An edge from a node in an interval to the header of the interval; m € T'(n).

Exit edge: An edge from a node in an interval to a node outside of the interval that is not the header node;
A #n:meT(),n¢&T(l). This corresponds to a jump out of a loop.

Forward Edge: An edge that is none of the above; VI:m € T(l)<=n € T(l).

In Figure 11, all non-forward edges are labeled as either entry, back, or exit edge. Note that forward edges
are the only edges not crossing nesting level boundaries.
We extend G to have the following properties:

o (G is reducible; i.e., each loop has a unique header node. This can be achieved, for example, by node

splitting [CM69].



e For each non-empty interval T'(h), there exists a unique g € T(h) such that (¢,h) € E; i.e., there is only
one back edge out of T'(h). This can be achieved by adding a post body node to T'(h). Note that exit edges
are not excluded, since these do not go to the header.

e There are no critical edges, which connect a node with multiple outgoing edges to a node with multiple
incoming edges. (Intuitively, a critical edge might indicate a location in the program where we cannot place
production without affecting paths that are not supposed to be affected by the production.) This can be
achieved, for example, by inserting synthetic nodes [KRS92]. Code generated for synthetic nodes would
reside in newly created basic blocks, like for example a new ELSE branch or a landing pad for a jump out
of a loop.

It can easily be seen that the graph shown in Figure 11 fulfills these properties. The empty nodes are the
synthetic nodes inserted to break critical edges. For example, each interval header has by definition multiple
successors (one of them being its first child) and multiple predecessors (one of them being its last child). Therefore,
each edge directly connecting two interval headers needs to be split with a synthetic node.

2.2.3 Traversal orders and neighbor relations

The order in which the nodes of the interval graph are visited depends on the given problem type (BEFORE / AFTER,
EAGER/LAZY) and on the pass of the GIVE-N-TAKE framework that is currently solved. E induces two partial
orderings on N:

Horizontally: Given a forward/exit edge (m,n), a FORWARD order visits m before n, and a BACKWARD order
visits m after n.

Vertically: Given m,n € N such that m € T(n), an UPWARD order visits m before n, whereas a DOWNWARD
order visits n after m.

Since these partial orderings do not conflict with each other, they can be combined into PREORDER (FORWARD
and DowNWARD), PosTORDER (FORWARD and UPWARD), REVERSEPREORDER (BACKWARD and UPWARD),
and REVERSEPOSTORDER (BACKWARD and DOWNWARD). For example, the nodes in Figure 11 are numbered
in PREORDER.

A data flow variable for some n € N might be defined in terms of variables of other nodes that are in some
relation to n with respect to G. Therefore, we not only have to walk GG in a certain order, but we also have to
access for each n € N a subset of N\ {n} that has a certain relationship with n.

CHILDREN(n): Assuming n heads an interval, the members of this interval that are one level deeper than n;
CHILDREN(n) = {c | ¢ € T(n), LEVEL(¢) = LEVEL(n) + 1}. (In Figure 11, it is CHILDREN(2) = {3...20})

FIRSTCHILD(n): Assuming n heads an interval, the first child of n; (n, FIRSTCHILD(n)) is an entry edge in E.
(E.g., FIRsTCHILD(2) = {3}.) START = FIRSTCHILD(ROOT) is the beginning of the program.

LasTCHILD(n): Assuming n is a header of an interval, the last child of n; (LASTCHILD(n),n) is a back edge
in E. (E.g., LasTCHILD(2) = {20}.) STOoP = LASTCHILD(ROOT) is the end of the program.

HEADER(n): The header of the interval that directly encloses n; n € CHILDREN(HEADER(n)). (E.g., HEADER(2) =
0.) We also introduce J(n)=T(HEADER(n)) as a shorthand for the interval directly enclosing n.

Sucacs(n): The sink nodes of forward or exit edges originating from n; s € Succos(n)<=(n,s) € E,Yh € N :
s € T(h)Y=n € T'(h). (E.¢., Succs(2) = {21},Succs(8) = {9,25}.) We refer to the transitive closure
of Succs(n) as the descendants of n. Note that Succs(n) does not include all successors, where by
“successors” we generally refer to the set of all sinks of sources of edges originating in n (3 as well is a
successor of 2).

PREDS(n): The source nodes of forward or exit edges reaching n; p € PREDs(n)<=n € Suvccs(p). (E.g.,
PREDs(25) = {8}.) We refer to the transitive closure of PREDS(n) as the ancestors of n.

Succst(n): The sink nodes of forward or exit edges originating from n, plus the sink nodes, excluding 7'(n), of
any exit edge originating from a node in T'(n); s € Succst(n)<=3Im € T(n) U {n} : (m,s) € E,Yh € N :
s € T(hy=»n € T(h). (E.g., Succst(2) = {21,25}, Succst(8) = {9,25}.)



PREDsT(n): The source nodes of forward or exit edges reaching n, plus the headers of intervals that enclose the
source but not the sink of these edges; p € PREDS* (n)<=n € Succst(p). (E.g., PREDsT(25) = {2,8}.)

Succs™(n): The sink nodes of forward edges originating from n; s € Succs™(n)<=(n,s) € E,s € J(n). (E.g.,
Succs™(2) = {21}, Suces™(8) = {9}.)

Note that the lack of critical edges has several implications for some of the sets defined above:

o Let e = (n,s) be an exit edge. Then there exists an h € N with n € T'(h),s ¢ T'(h). Since T'(h) U h is by
definition strongly connected, n must have successors within 7'(h) U h. Since s as well is a successor of n, n
has multiple outgoing edges. However, G does not have critical edges, therefore s has only one predecessor;
i.e., PREDS(s) = {n}. In other words, the sink of an exit edge never has any predecessors besides the source
of the exit edge.

e Let e = (n, h) be a back edge. h then is an interval header, which by definition has multiple predecessors.
Since h is a successor of n, n may not have any other successors (otherwise e would be critical). However,
by definition of Succs it is h € Succs(n). It follows Succs(n) = 0 for each source n of a back edge.

Even though the equations and their correctness and effectiveness are the same for both BEFORE and
AFTER problems, we will for simplicity assume in the following that we are solving a BEFORE problem un-
less noted otherwise. To get the equivalent formulations for an AFTER problem, all occurrences of FORWARD,
FirsTCHILD, PREDS, PREORDER, and PoSTORDER have to be interchanged with BACKWARD, LASTCHILD,
Succs, REVERSEPOSTORDER, and REVERSEPREORDER, respectively.

2.3 Give-N-Take equations

In the following, let n € N, let L denote the empty set, and let T be the whole data flow universe. If an equation
asks for certain neighbors (like PREDS(n)) and there are no such neighbors (like for a loop entry node), then an
empty set results. For example, if Succst(n) is empty, then Equation 4 will set TAKEN ,,:(n) to L. Subscripts
in, out denote variables for the entry and the exit of a node, respectively. Subscript loc indicates information
collected only from nodes within the same interval (nodes in J(n)), and init identifies variables that are supplied
as input to GIVE-N-TAKE. Figure 8 contains the equations for the data flow variables, which will be introduced
in the following sections (with their specific meaning for our communication generation example).

2.3.1 Initial variables

The following variables get initialized depending on the problem to solve, where L is the default value. Sections 3.2
and 3.3 describe the initializations specific to generating READ’s and WRITE’s for distributed memory accesses,
respectively.

STEAL;pit(n): All elements whose production would be voided at n. (In our communication problem, this
includes a portion p — see Section 3.1 — if either the contents of this portion get modified at n, or if the p
itself gets changed, for example if p is an indirect array reference and n modifies the indirection array.)

GIVE;pit(n): All elements that “come for free,” i.e., who are already produced at n. (If we do not use the owner
computes rule, then this includes local definitions of not-owned data, since a later reference to these data
does not need to communicate them in any more.)

TAKE;pit(n): The set of consumers at n. (The set of not-owned array portions.)

2.3.2 Propagating consumption
The following variables, together with the variables defined in Section 2.3.3, analyze consumption.

STEAL(n): All elements whose production would be voided by n, or by some m € T(n) without being resupplied
by a descendant of m within T'(n).

GIVE(n): All elements that are already produced at n, or at some node in T'(n) without being stolen later within

T(n).

BLOCK(n): Elements whose production is blocked by n, i.e., whose production cannot be hoisted across n because
it is stolen or already produced at n or a node in T'(n).



STEAL(n) = STEAL;n;t(n)USTEAL (LASTCHILD(n)) (1)
GIVE(n) = GIVE;nit(n) U GIVE(LASTCHILD (1)) (2)
BLOCK(rn) = STEAL(n)U GIVE(n) U BLOCK;,.(FIRSTCHILD(R)) (3)
TAKEN,u(n) = (]  TAKEN;.(s) (4)
sESUCCS+(n)
TAKE(n) = TAKE;ui(n) U (TAKEN,,(FIRSTCHILD(n)) \ STEAL(n))
U(TAKE . (FIRSTCHILD(n)) N (TAKEN,4:(n) \ BLOCK(n))) (5)
TAKEN;,(n) = TAKE(n) U (TAKEN,u(n)\ BLOCK(n)) (6)
BLOCK,(n) = (BLOCK(n)U U BLOCKoc(s)) \ TAKE(n) (7)
seSuccs™ (n)
TAKE;o(n) = TAKE(n) U ( U TAKE,.(s) \ BLOCK(n)) (8)
seSuccs (n)UFIRSTCHILD(n)
GIVEjc(n) = (GIVE(n) U TAKE(n)U ﬂ GIVE:(p)) \ STEAL(n) (9)
pePREDS(n)
STEALye(n) = STEAL(m)U | (STEALwc(p) \ GIVEs.(p)) U U STEAL;.(p) (10)
PEPREDS(n) pePrEDST (n)\PREDS(n)
GIVEN(HEADER(n)) if n is a first child,
GIVEN;,(n) = { (1 GIVEN,u(p) U(TAKEN, () | ] GIVEN,u(p)) otherwise. (11)
pePREDS(n) pePREDS(n)
GVEN(r) = Ve { TR ot 12
GIVEN,u(n) = (GIVE(n) U GIVEN(n))\ STEAL(n) (13)
RES;,(n) = GIVEN(n)\ GIVEN;,(n) (14)
RES,u:(n) = [ J GIVEN;,(s)\ GIVEN,yu(n) (15)

se3uccs(n)

Figure 8: GIVE-N-TAKE equations.

TAKEN,,t(n): Things guaranteed to be consumed (before being stolen) on all paths originating in n, excluding n

itself. Here we also have to take loop exit edges originating in T'(n) into account.

TAKE(n): The set of consumers at n. This includes items that are guaranteed to be consumed by nodes in 7'(n)

and not stolen at n, and items that may be consumed by T'(n) and are guaranteed to be consumed on exit
from n without being blocked by n.

TAKEN;,(n): Similar to TAKEN ,4¢, except that the effect of n itself is included.

BLOCK ,c(n): Items blocked by n or by descendants of n within J(n).

TAKE oc(n): Ttems taken by n, by descendants of n within J(n), or by nodes within 7'(n). Here (unlike for

BLOCKjoc) we have to explicitly include TAKE;o.(FIRSTCHILD(n)) since this is not guaranteed to be in
TAKE(whereas BLOCKo(FIRSTCHILD(n)) is always included in BLOCK(n)).



2.3.3 Blocking consumption

The following variables are used by the interval headers to determine whether items are stolen or taken within
the interval.

GIVEoe(n): Ttems produced by n or by ancestors of n within the same interval. Here items are treated as
produced also if they are consumed, since consumption is guaranteed to be satisfied by production.

STEALjec(n): Items stolen by n, or stolen by a predecessor p of n without being resupplied by p. Furthermore,
if there exists an h €PREDsY(n) \ PREDS(n) (i.e., n is the sink of an exit edge, and h is the header of an
interval enclosing the source of the exit edge but not n itself), then we also have to include items stolen
by h; however, since the interval headed by h is not guaranteed to be completed before n is reached (since
taking the exit edge corresponds to a jump from within the interval), we cannot exclude items resupplied
by h.

2.3.4 Placing production

After analyzing what is consumed (and not already produced) at each node, the production needed to satisfy all
consumers is computed by the following variables.

GIVEN;,(n): Things that are guaranteed to be available at the entry of n. If n is a first child, then it has
everything available that is available at HEADER(n). Otherwise, things are guaranteed to be produced if
they are produced along all incoming paths, or if they are produced at least along some incoming paths and
guaranteed to be consumed. In the latter case, the result variables will ensure that things will be produced
also along the paths that originally did not have them available.

GIVEN(n): Items guaranteed to be available at n itself, either because they come from predecessors of n, or
because they are consumed at n itself (for a LAzY problem) or a descendant of n (for an EAGER problem).

GIVEN,4¢(n): Things that are available on exit from n. This includes whatever comes for free at n itself, but it
excludes things stolen by n.

2.3.5 Result variables
The result of GIVE-N-TAKE analysis is expressed by the following variables.

RES;n(n): The production generated at the entry of n. This includes everything that is guaranteed to be available
at n itself but is not yet available at the entry of n.

RES,ut(n): The production at the exit of n. This includes items whose availability has been guaranteed to some
successors of n and that are not already available on exit from n.

2.4 The algorithm

This section presents an algorithm, Give N Take, for solving a code placement problem using the GIVE-N-TAKE
framework. Section 2.3 already presented the equations that lead from the initial data flow variables to the result
variables. What is left towards an actual algorithm is a recipe for the order in which to evaluate these equations
such that the values of the data flow variables reach a fixed point that is consistent with all equations (where a
fixed point might be reached after a constant number of iterations, as is generally the case in interval analysis). In
general, the evaluation order is also important for the convergence rate and, in some cases, termination behavior
of the algorithm. In our case, there exists an order where the right hand side of each equation to be evaluated
is already fully known due to previous computation. Therefore, GiveNTake has to evaluate each equation only
once for each node, which implies guaranteed termination and low computational complexity. However, since the
direction of the flow of information varies across the equations, we still need multiple passes over the control flow
graph.

An objective for GiveNTake is to minimize the number of passes, therefore we partition the equations into
different sets that can be evaluated concurrently, i.e., within the same pass. It turns out that each of the Sections
2.3.2, 2.3.3, 2.3.4, and 2.3.5 defines one set of equations that can be evaluated concurrently. We will refer
to these sets as S1 (Equations 1...8), Sz (Equations 9, 10), Ss (Equations 11...13), and S4 (Equations 14,15),
respectively. Note that since all equations except Equation 12 in S3 are the same for EAGER and LAZY problems
and since S7 and Sy are computed before Sz, the variables defined in S; and Sy are the same for both kinds of
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Procedure GiveNTake

Input: G = (N, E); Vne N: TAKEZ‘m‘t(n), STEALmZ't(n)’ G|VEth(n)
Output: Vn € N: RES®*"(n) and/or REslazy(n)

forall n € N, in REVERSEPREORDER[P0OSTORDER]
if (isHeader(n)) then
forall ¢ € CHILDREN(n), in FORWARD [BACKWARD] order
Compute Equations 9, 10
endforall
endif
Compute Equations 1...8
endforall
forall n € N, in PREORDER[REVERSEPOSTORDER]
Compute Equations 11...13 for EAGER and/or for LAazy
endforall
forallne N
Compute Equations 14,15 for EAGER and/or for Lazy
endforall
end

Figure 9: Algorithm GiveNTake for a BEFORE[AFTER] problem, computing an EAGER and/or LAZY code gen-
eration.

problems. Therefore, we need to differentiate between EAGER and LAZY only for variables defined in S5 and Sy.
We distinguish these variables by superscripts eager and lazy.

The resulting algorithm, with orderings given for a BEFORE problem (followed by the corresponding orderings
for an AFTER problem in brackets), is shown in Figure 9. RES without subscripts stands for both RES;, and
RES,4:. A proof that it does indeed obey all ordering constraints can be found in Appendix B.

3 An example application: Communication analysis

The following sections outline the application of the GIvE-N-TAKE framework in the FORTRAN D compiler for
generating READ’s, i.e. reads of locally referenced not-owned data, and WRITE’s, i.e. writes of locally defined
not-owned data. In addition to the applications listed here, our actual implementation also recognizes reduc-
tion operations (like accumulating a sum or product) and generates special, combining messages for them (like
WRITEADD and WRITEMULT).

3.1 The data flow universe

Our data flow universe consists of the set of array portions occurring in the program. An array portion corresponds
to one or several array occurrences (i.e. references or definitions) of the form z(sub), where z is an array and sub
an arbitrary subscript expression, like a loop index or an indirection array lookup. A portion is identified by the

following fields:
e Data array; i.e., the symbol table index of x.

e Subscript value; i.e., the value number of sub. This value numbering makes the portion classification inde-
pendent of its syntactic representation. For example, in the program shown in Figure 10, value numbering
allows us to recognize that v(j) and v(k) are equivalent.

o Data array distribution; i.e., the distribution in effect for z at the point of reference. We assume that there
is only one distribution statement reaching each occurrence; this can be ensured, for example, by cloning
occurrences that are reached by multiple distributions [HHKT92].
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e Computation distribution; z.e., how the computation of the statement containing the occurrence is dis-
tributed.

Two occurrences are assigned to the same portion iff they agree on all four fields. For each control flow graph
node n, each data flow variable is represented as a bitvector corresponding to the set of all portions; each portion
corresponds to one bit. Our current prototype has a control flow graph node for every statement; however, they
could also be basic blocks.

Each subscript of each portion may correspond to different sets of array elements, depending on the nesting
level. For example, consider a loop [ indexed by j that is nested in a loop k indexed by i, where the lower and
upper bounds on ¢, j are i1, 12, j1, j2, respectively. Depending on our “point of view” within this loop nest, a
portion z(7,j) may correspond to (i1 : 42,71 : ja), (i, 41 : j2), or just x(Z,5). At the deepest nesting level, a
portion always corresponds to a single datum. This has to be kept in mind when generating the communication
statements.

Since sends and receives have to match each other not only in the data that are exchanged but also in the
way how these data are packaged into messages, we have to make sure that data are only sent together if they
are also received together and vice versa. In the code example, the receive matching “READ Send {[z(1:25)]}”
is contained in “READ Recv {w(a(1:25)), [2(1:25)]}.” To generate executable code, a heuristic must be applied
to split the receive into two individual statements. (Not implemented yet.)

3.2 Not-owned references

To combine messages and to hide message latencies, we want to read as early as possible, i.e., READ calls should

be shifted up in the control flow graph. Therefore, generating READ statements is a BEFORE problem. For

generating monolithic statements (i.e., a single statement that combines the send and receive), we generate code

as indicated by RES®¥¢". Otherwise, RES°*" generates the sends and RES!%*Y generates the matching receives.
We initialize the data flow variables as follows:

TAKE;nit(n) = {p|n references p}, (16)
{ T if n = START,

STEALinit(n) = {p | n redefines the subscript of p or partially redefines p} otherwise;

(17)
GIVEjnit(n) = {p|n defines p}. (18)

Defining STEAL;y;:(START) = T implies that everything is stolen at the beginning of the program, which is
a safeguard against advancing production out of the program.

When treating local definitions of not-owned data as additional producers, we must be sure that these not-
owned definitions are unique, i.e., that there is no other processor defining the same elements. This can be a
non-trivial problem, especially in the presence of indirection arrays, in which case user assistance (for example
by rewriting an enclosing DO loop as a FORALL loop) might be needed.

3.3 Not-owned definitions

To combine messages, we want to write as late as possible, i.e., write calls should be shifted down in the control
flow graph. Therefore, this is an AFTER problem, and when splitting communication, RES¢*9¢" generates the
receives and RES!**¥generates the sends.

We initialize the data flow variables as follows:

TAKEinit(n) = {p|n defines p}; (19)
STEALp;t(n) = {p | n redefines the subscript of p, partially references p, or partially reads p}; (20)
{ T if n = SToP,

1 otherwise.

G|VEZ‘m‘t(n) =

Defining GIVE;n;+(STOP) = T suppresses WRITE’s at the very end of the program (by making them available
for free), which implies that everything is dead at the end of the program.

12



prograin prog orig

do h=1,20
doi=1,100
u(i) = v(a(1)) +v(b(2))
t(b(i)) = u(r)

enddo

if (mod(h, 5) .eq. 0) then
if (b .eq. 20) goto 7

do j =1,100

v(7) = w(a(s))
enddo
do k =1,100
v(k) = u(a(k)) + 2 * v(k)
enddo
endif
do ! = 1,100
w(l) = t(a(l)) + u(a(l)) + v(a(l)) + z(a(l))
enddo
enddo
do m = 1,100
z(b(m)) = v(m) + z(m) + z(a(m))

enddo

7don=1,100
y(n) = u(a(n)) + w(a(n)) + z(a(n)) + 2(n) + t(c(n))
enddo
end

prograim progtrans

READ Snd {[z(1:25)]}
READ Snd/Rcv {v(a(1:25)), z(a(1:25))}
doh=1,20
READ Snd/Rev {v(b(1:25))}
doi=1,25
u(i) = ofa(i)) + o(b(i))
(b)) = uli)
enddo
WRITE Snd {t(b(1:25))}
WRITE Snd/Rev {[u(1:25)]}
READ Snd {u(a(1:25))}
if (mod(h, 5) .eq. 0) then
READ Snd {w(a(1:25))}
if (h .eq. 20) then
WRITE Rev {t(b(1:25))}

(b
READ Snd {t(c(1:25))}
READ Recv {u(a(1:25))}
goto 7
endif

WRITE Recv {t(b(1:25))}
READ Snd {t(a(1:25))}
READ Rev {w(a(1:25))}

doj=1,25

v(7) = wla(y))
enddo
READ Recv {u(a(1:25))}
dok=1,25

v(k) = u(a(k)) + 2 % v(k)
enddo

WRITE Snd/Recv {[v(1:25)]}

READ Snd/Rcv {v(a(1:25))}
else

WRITE Recv {t(b(1:25))}

READ Snd {t(a(1:25))}

READ Recv {u(a(1:25))}

endif

READ Recv {t(a(1:25))}

dol=1,25

du(,l(l) = t(a(l)) + u(a(l)) + v(a(l)) + z(a(l))

WRITE Snd/Rev {[w(1:25)]}
enddo
READ Snd {t(c(1:25)), w(a(1:25))}
READ Snd/Rev {[v(1:25)], z(a(1:25))}
dom=1,25

READ Snd/Recv {[z(m)]}

z(b(m)) = v(m) + z(m) + z(a(m))

WRITE Snd/Recv {z(b(m))}
enddo

READ Snd/Rcv {z(a(1:25))}

7 continue

READ Recv {t(c(1:25)), w(a(1:25)), [#(1:25)]}
don=1,25

y(n) = ufa(n)) + w(a(n)) +
enddo
end

z(a(n)) + z(n) +

t(c(n))

Figure 10: Original and transformed code, assuming four processors.
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Figure 11: Control flow graph for example program.

3.4 Example

Figure 10 shows a contrived example program, prog.r;s, and the corresponding output of the ForTRAN D
compiler, progirans. The corresponding flow graph is in Figure 11. Data declarations, initializations, distribution
statements; etc., have been omitted. Communication schedule generation, which is a non-trivial problem in
itself [HKK*92], is also excluded. For simplicity, we assume that all arrays are distributed BLOCK-wise and
that we use the owner computes rule. In case of an indirect definition (like the z(b(m))), we assume that
computation is distributed based on the owner of the indirection array. In prog, these assumptions result in
distributing all inner loops by performing loop bounds reduction (even though the carried dependence on the m
loop effectively makes it sequential). Note that prog does not have any output dependences that are not already
covered by other dependences. For example, the potential output dependence on w(b(m)) carried by the m
loop is accompanied by a true dependence that also prohibits running the m loop in parallel; therefore, we do
not violate the output dependence arising from a sequential interpretation of the m loop. In general, however,
indirect array definitions may make parallelization unsafe, unless the compiler recognizes the computation as a
reduction operation, it can prove that the indirection array is a permutation, or the loop is explicitly parallel.

The transformed code contains communication statements in a high level format that does not include any
schedule parameters, message tags, and so on. The possible communication types are the following.

READ Snd {p}: The owner of p sends p to a processor that will reference p.
READ Rcv {p}: A processor that will reference p receives p from the owner.
WRITE Snd {p}: A processor that has defined p but does not own p sends p to the owner of p.

WRITE Rcv {p}: The owner of p receives p from a processor that has defined p.
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“READ Snd/Rcv {p}” is an abbreviation for a “READ Snd {p}” followed by a “READ Rcv {p},” similarly for
“WRITE Snd/Rcv {p}.” For simplicity we also do not consider already locally available data, like the z(1:25),
that are owned by each processor but for which prog still has a READ. Furthermore, when reading p; = v(b(1:25)),
for example, we know that pa = v(a(1:25)) is already available, so we only need to send data that are in p; and
not in pa, see also Section 4. When generating messages in their final form, we also have to take into account
that the transformed code has a local name space on each processor, whereas the original code operates with a
single global name space.
Some specific comments on the generated communication:

e The “READ Snd {[2(1:25)]}” at the beginning of the program is matched by the “READ Rev {w(a(1:25)),
[2(1:25)]}” before the n loop that contains the reference to z(n). Communication is hoisted out of the n
loop, and the h and m loops can hide the message latency.

e Reading v(a(1:25)) is hoisted out of the i and { loops that contain references to v(a(é)) and v(a(l)), respec-
tively, then it is combined and hoisted out of the h loop as well. However, v(a(1:25)) gets stolen by the
true-branch of the conditional in the A loop, so it has to be read again at the end of that branch.

e Reading v(b(1:25)) is not hoisted out of the h loop, since unlike the v(a(1:25)), it is not guaranteed to be
available at the end of the h loop.

e There is no READ for the reference to u(i) since it already come for free due to the proceeding definition

of u(i).

e u(a(1:25)) is referenced in the k, !, and n loops. It is read by one send and three receive statements,
one for each possible flow of control. Similarly, ¢(6(1:25)) is written by one send and three receives. This
necessitated introducing an ELSE branch to the IF statement and turning the conditional branch into a
conditional block terminated by an unconditional branch.

e w(a(1:25)) is referenced in the j and n loops. It is read by two sends and two receives, where both receives
can match the first send.

e The m loop carries a dependence on x, therefore the READ for z(m) and the WRITE of #(b(m)) are not
hoisted out of the m loop.

e Reading z(a(1:25)) is not shifted before the h loop because of the conditional jump out of the h loop that
goes around the z(a(m)) reference. This was not the case for the z(n) reference that could therefore be
communicated at the very beginning of the program.

e y(1:25) is recognized as dead at the end of the program and therefore not written.

In general, we assume that aggregate communication primitives capable of handling irregular array accesses
are used for communication, like for example the PARTI communications library [SBW90]. However, the compiler
recognizes regular subscripts (for example, subscripts linear in loop variables or auxiliary induction variables) and
communicates these using simpler, faster communication routines. In prog, such simple subscripts are enclosed

in brackets (like “[z(1:25)]”).

4 Extensions and Conclusions

After running GiveNTake, RES contains a producer placement that satisfies the correctness and optimality
constraints. Code can be generated by mappingeach n to the source code and inserting communication statements
as indicated by RES(n). This, however, turns out to be a non-trivial task in itself, because there may be no location
in the source code directly corresponding to a given n. For example, if communication is placed at a synthetic
node that was created to break a critical edge, then we might have to create a new basic block, like an additional
ELSE branch for an IF statement. Furthermore, we might generate basic blocks unnecessarily when doing this
naively. For this reason, we supplemented our implementation of the GIVE-N-TAKE framework with a data flow
phase that does additional postprocessing on the generated results. This phase shifts results out of synthetic
nodes if this can be done without altering the run time behavior of the program.

While this paper focuses on the data flow analysis nature of GIVE-N-TAKE, we also would like to take
advantage of dependence analysis that can legitimate some code placements that would otherwise be considered
unsafe. For example, assume an ¢ loop enclosing a j loop that in turn encloses a definition Sy of p; = z(¢) and
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a reference Sy of pa = (i — 1), and no other occurrences of z. Dependence analysis discovers that the true
dependence 716;75 is carried by the outer ¢ loop, and therefore it is legal to hoist the communication of p; out of
the inner j loop. It is relatively straightforward to provide this information to GIVE-N-TAKE by shifting STEAL
sets out from the original statements. In the example, instead of including ps in STEAL(S:), we can include
p2 in STEAL(!), where [ is the header of the 7 loop. Since py is then not stolen any more in the j loop, the
communication will be hoisted out as desired.

We can also take advantage of overlapping portions by taking into account what data are already available
when generating communication. This information is already contained in GIVEN;, (for RES;,) and GIVEN ;y;
(for RES,ut). An incremental schedule can take advantage of these situations [HKK*92]. A similar effect can be
achieved with mode vectors [GV91]; however, they do so not by compile time analysis but by keeping track of
available data at run time.

To summarize, this paper has outlined a general code generation framework that is based on and subsumes
partial redundancy elimination as one of several types of problems (BEFORE/AFTER, EAGER/LAZY) that can
be solved with the framework. An important property is the Balancedness of the solutions GIVE-N-TAKE
produces when asked for both an EAGER and a LAzY placement. We have proven the framework’s correctness
and illustrated its efficiency when applying it to generating messages for distributed memory computers. Its
flexibility allowed us to apply the same algorithm to very different tasks that traditionally were solved with
separate frameworks. This simplified the implementation in the FORTRAN D compiler significantly. We expect
GIVE-N-TAKE to have potential use in other areas as well, like general memory hierarchy issues (cache prefetching,
register allocation, parallel I/O) and classic partial redundancy elimination applications.
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A Proof of correctness of the data flow equations

To simplify the discussion of correctness for different cases of control flow, we expand a control flow path into its
different program points [DK93], namely the entries and exits of nodes passed through. For

p: (START =) ng—n1— ... —n, (= STOP),
we define the expanded control flow path to be
E(p) : ((START, out) =) (go,70)—(q1,71)— ... —(gt, ) (= (STOP, in)),

where t > s and Vi,0 < i <t:q € N,r; € {in,out}. (g;,in) stands for the entry of ¢;, and (q;, out) denotes
the exzit of ¢;. Of course, paths and expanded paths do not always have to originate at START and terminate at
SToP.

How exactly an edge e = (m, n) is expanded depends on the type of edge (Section 2.2.2).

o If e is a forward or exit edge, then E(e) = (m, out)—(n, in).
o If ¢ is an entry edge, then E(e) = (m, in)—(n, in).
o If e is a back edge, then E(e) = (m, out)—(n, out).

e Note that edges of the form (n, in)—(n, out) do not correspond to actual edges in the control flow graph;
we will refer to such edges as internal edges.

e Furthermore, there is no direct expanded equivalent for a control flow path that goes from the end of a
loop through the loop header back to the beginning of the loop, since it goes through the header without
going through either its entry or its exit. This, however, does not affect our proofs, since we can take the
full effect of each loop into account by traversing it once (we might also not execute it at all).

For example, a path (with a loop iteration)
p:l1—-2-3—-2-4
would be expanded into
E(p): (1, 0ut)—(2,in)—(3,in)—(3, out)—(2, out)—(4, in)

Let x be an arbitrary entry in our data flow universe. For a data flow variable VAR and a node n € N, let

“VAR(n)” denote z € VAR, and let “VAR(n)” denote « ¢ VAR.

A.1 Balancedness
A.1.1 The Balancedness Theorem

Balancedness is equivalent to matching, at run time (i.e., along all possible control flow paths), all EAGER
productions with succeeding LAzY productions, without any intervening EAGER production, and vice versa.
This has to hold for for BEFORE and AFTER solutions, but with different orientations relative to the flow of
control. The following theorem expresses these constraints.

Theorem 1 (C1: Balancedness.) Given: An expanded path
p: ((START, out) =) (g0, 70)—(q1,71)— ... —(¢s,7s) (= (STOP, in))
with an EAGER production for somee, 0 < e < s:
RES;™(g.). (22)
Claim: In a BEFORE solution, there exists an q; € N,e <1 < s, such that
RES,™ (q1), (23)
Vgr € N,e < k < 1: REST®(gy). (24)

Simalarly, a LAzY production RESlrizy(qe) 1s balanced by an EAGER production. In an AFTER solution, the same
holds with the flow of control reversed.
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We will show the proof for balancing EAGER production in a BEFORE problem (in our communication gener-
ation application, this corresponds to guaranteeing that each READ g4 will be matched by a READ gy, without
any READg.nq in between). The proofs for the other cases are analogous.

The underlying idea is to show that if an EAGER production has been placed on a path but no LAzY production
has taken place yet, then this information is propagated forward (for a BEFORE problem) or backward (for an
AFTER problem) by both GIVEN®4¢" and TAKEN being true and by GIVEN'®* being false (control flow graph
node numbers omitted here). The following contains some lemmata on which the inductive proof of Theorem 1
will be based (Section A.1.4).

A.1.2 Induction base lemmata

Lemma 1 (EAGER implies Lazy.) Claim: For alln € N, the following holds:

GIVENS™(1) D GIVENP# (1), (25)
GIVENea&er(l) D GIVEN'22Y(1), (26)
GIVENS6"(1) D GIVENZ4 (D). (27)

Proof:
The only difference between EAGER and LazY is in Equation (12), where GIVEN%9¢" gets induced by TAKEN,,
and GIVEN'##Y follows from TAKE. (6) implies that for all n € N:

TAKEN,,,(n) D TAKE(n). (28)

PrEDS(RooT) = ) implies by (11) that GIVEN(**"(RooT) = GIVEN{**¥(RooT) = L, which can serve as a base
for a simple induction using (11), (12), (13), and (28) to prove (25), (26), and (27).
O

Lemma 2 (Production at entry.) Given: A node n € N such that

RESL#(n), (29)
RES?™ (n). (30)
Claim:
GIVEN®?&"(n), (31)
GIVEN'™ (), (32)
TAKEN;, (n). (33)
Proof:

(Read the following as: “Fact (29) implies by rule (14) that (31) holds, and that (34), i.e., GIVEN;Y“"(n),
holds as well. Fact (34) implies by rule (25) ...”)

(290 Y (31), GIVENZ7 (n), (34)
34) 2L GIVEN™(n). (35)

From (31) and (34) follows (33) by (12). (32) can be derived from (35) and (30) via (14).
O

Lemma 3 (Production at exit.) Given: A node n € N such that

RESGE™ (n), (36)
RES™# (n). (37)
Claim: For all s € Suces(n):
GIVEN; ™ (s), (38)
GIVEN™ (), (39)
TAKEN;, (s). (40)
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Proof:

36) 22 GIVEN"T(n), (41)
3t € Succs(n) : GIVENZ*" (1), (42)
41) 22 GIVEN™Y(n). (43)

Note that (42) implies that Succs(n) # @, and therefore n cannot have an outgoing back edge (see Sec-
tion 2.2.3). This implies that any path originating in n has to go through some s € Succs(n), which makes
this lemma particularly useful. Furthermore, (41), (42) imply by Equation (11) that ¢ has multiple predecessors.
Since we exclude critical edges in E (see Section 2.2.2), t must be the only successor of n. Therefore, (42) is
equivalent to (38). (37), (43) imply (39) by (15), and (40) follows from (38) and (41) using (11).

O

A.1.3 Induction step lemmata

Lemma 4 (Balancedness entering a node.) Given: A node n € N such that

GIVEN:?(n), (44)
GIVENE™ (n), (45)
TAKEN;, (n). (46)

Claim:
RES{®%(n), (47)
GIVEN®?&"(n), (48)

and either
RESL™ (n) (49)

or

GIVEN'?Y (n), (50)
TAKEN ¢ (n), (51)
TAKE(n). (52)

Proof:

(44) implies (47) by (14) and (48) by (12). Assume (49) does not hold. This together with (45) implies by
(14) that (50) must hold, which in turn implies (52) by (12). (51) follows by (6) from (46) and (52).
O

Lemma 5 (Balancedness within a node and its interval.) Given: A node n € N such that

GIVEN®*&r (), (53)
GIVEN™ (), (54)
TAKEN: (n). (55)
Claim:
RESGL™ (n), (56)
GIVENZE® (), (57)
GIVENZ (), (58)
TAKENou: (). (59)
Furthermore, for allm € T(n):
GIVEN®*&r (), (60)
GIVEN™% (), (61)
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RES{ 5% (m), (62)
RES (m), (63)
RESZE (m), (64)
RESE (m). (65)
Proof:
We first prove the claims for n itself (claims (56) ... (59)). Then we will show that there is no consumption

within T'(n). From there we will derive that EAGER and LAZY availability stay unchanged throughout 7'(n)
(claims (60), (61)). Proving that there will be no production of either type within 7'(n) (claims (62) ... (65))
concludes the proof.

(54) 2 TAKE(m), (66)

(55),(66) 2% (59),BLOCK(n), (67)

67) 2. STEAL(n), (68)

GIVE(n). (69)

(58) follows by (13) from (54) and (69). (53),(68) imply via (13) that (57) holds, which in turn implies (56) by

(15).

Having proven the claims for n itself, we will inductively show for each node in 7'(n) that EAGER and
Lazy availability stay unchanged (claims (60), (61)). Induction base: Let m = FIRSTCHILD(n). From
n = HEADER(m), it follows for m:

67) 2L BLOCK,.(m), (70)
(59), (66), (67) % TAKEps(m). (71)

Induction step: Assume that (70), (71) hold for some arbitrary m € N. We can then also prove for m:

(711) L TAKE(m), (72)
(72),(70) "L BLOCK(m), (73)
(713) L GIVE(m), (74)
STEAL(m). (75)

Let s € Succs™(m) (if there are any such successors), let ¢ = FIRSTCHILD(m) (if it exists). From (73) follows
(70) for ¢ by definition (3). (70) for s follows by definition (7) from (70),(72). (71) for both ¢ and s follows from
(71) and (73) by Definition (8).

Let { = LasTCHILD(n). It follows:

Sucest(l) =0 2 TAKEN, () (76)

(72),(76) %L TAKEN,,(1). (77)

Let m € PreDS({) N T(n). This implies { € Succst(m), and from (77) then follows by Equation (4) that (76)
must hold for m as well. This together with (72) implies in turn (77) for m. In this manner we can prove

inductively that (76), (77) hold for all t € T(n), i.e., there is no consumption within T'(n).
We proceed to prove inductively that EAGER and LAzy availability stay unchanged throughout 7'(n) (claims
(60), (61)). Induction base: Let m = FIRSTCHILD(n).

(53) 22 GIVENZ“ (m), (78)
(54) 1 GIVEN"(m). (79)
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Induction step for (60): Assume that (78) holds for some arbitrary m € T'(n). Equation (12) implies (60) for
m. It follows:

(60),(75) %2 GIVEN®" (). (80)
Let s NT(n) such that (80) holds for all m € PREDS(s). Equation (11) then implies (78) for s, which concludes
the induction. Induction step for (61): Assume that (79) holds for some arbitrary m € T(n). (72) then
implies via Equation (12) that (61) holds for m. It follows:

61),(74) %2 GIVEN"(m). (81)
As for (80), we can assume to have inductively proven (81) for all m € PREDs(s). Equation (11) then implies
(79) for s, which concludes the induction.

It remains to prove that there is no production within 7'(n)) (claims (62) ... (65)). Definition (14) implies
(62) from (78), and (63) from (61). From (80) follows (64) via (15). Claim (65) is slightly more complicated, since
we have to prove (79) to hold for all s € Succs(m), including successors connected to m through an exit edge.
In other words, we must ensure that exit edges do not push production back into T'(n). Let e = (im, s) be an exit
edge with m € T'(n), s € T(n). From the lack of critical edges follows PREDs(s) = {m} (see Section 2.2.3). (81)
for m then implies by Equation (11) that (79) holds for s. Since (79) was already proven to hold for all s € T'(n),
we now know (79) to hold for all s € Succs(m), from which (65) follows by Equation (15).

O

Lemma 6 (Balancedness along forward/exit edges.) Given: Nodes p,n € N such that p € PREDsS(n) and

GIVENS25 (p),

out

82)

(
GIVENGZ (p), (83)
TAKENyu:(p), (84)
RES: (p). (85)
Claim:
GIVEN:™(n), (86)
GIVEN™ (n), (87)
TAKEN;, (n). (88)
Proof:

(88) follows from (84) by (4). (82) and (88) imply (86) by (11). (83), (85) imply (87) by (15).
O

A.1.4 Proof of the Balancedness Theorem

Based on the lemmata developed so far, we now inductively prove Theorem 1 (as mentioned before, we will only
show the EAGER, BEFORE case, the other cases are analogous).

Induction base.
RES/%*Y(q.) would correspond to (23) for I = e. (24) would be vacuously true, and we would be done. Let
n = ¢.. Suppose

RES;“*¥(n). (89)
The following is the induction invariant that the induction base will prove to hold:
GIVEN®%9¢" (), (90)
GIVEN'**¥(n), (91)
TAKEN,,(n). (92)

(The induction step will then prove that the invariant for some ¢; implies that either the invariant holds for
¢i+1 as well, or that (89) cannot hold for ¢;4+1, in which case we would be done.) We have to differentiate

22



between production at entry and production at exit of n. If r. = in, then the invariant follows directly from
(22),(89) through Lemma 2. Suppose r. = out; let s = g.41. We cannot prove the invariant for n itself ((22)
actually contradicts (90) via (15) and (13)), but we will show that the invariant to hold for s. (22) implies
by (15) that Succs(n) # 0, therefore e cannot be a back edge (see Section 2.2.3). It follows s € Succs(n).
(22),(89) then imply through Lemma 3 that (38), (39), (40) hold for s. This implies (92) (= (40)) and also makes
Lemma 4 applicable ((38)=(44), (39)=(45), (40)=(46)). Invariant (90) then corresponds to (48). Assumption
(89) contradicts (49), so the last invariant, (91), follows from (50).

Our induction has not only to prove that (23) will eventually come true for some ¢;, e < { < s, (i.e., that (89)
will fail for ¢;), but it also has to prove that (24) holds for all ¢ € N,e < k < {. For r, = in, the induction base
corresponds to e = ! (since we proved the invariant for ¢, itself), and (24) is vacuously true again. For r, = out,
we have to prove (24) for s = g.41. This, however, is equivalent to result (47) of Lemma 4 whose prerequisites
were already fulfilled.

Induction step.

Let gy € N, e < k; let m = g, n = qp41. Assume (89) ... (92) to hold for m. We want to prove that either
(89) does not hold for n, or that (90) ... (92) do hold for n. We also have to show (24) for n. We perform the
induction along the edge (m, ry)—(n,rt41), based on the actual type of edge.

Case 1 (internal edge): r; = in, ry41 = out. Since this is an internal edge, it is m = n, and the invariant
to prove is already part of the induction step assumptions. From the invariant also follows via Lemma 5 that
(24) (= (56)) holds for n. O

Case 2 (forward/exit edge): r; = out, rp41 = in. We can apply Lemma 5 for m ((53)=(90), (54)=(91),
(55)=(92)). This lemma, together with (89), implies the prerequisites for Lemma 6 ((57)=(82), (58) =(83),
(59)=(84), (89)=(85)). Lemma 6 in turn makes Lemma 4 applicable ((86)=(44), (87)=(45), (88)=(46)). As in
the induction base, it follows that for n either (89) does not hold or (90), (91), (92) hold; (24) (=(47)) follows as
well. O

Case 3 (entry edge): rp = rp41 = in. We can apply Lemma 5 for m, which then states in (62) ... (65)
that there will be no production anywhere within 7'(m) (implying (24) for all nodes in T(m)). Therefore, we
will perform an induction step that leads directly to the first g5, f > k, such that ¢y € T(m), ¢5+1 ¢ T(m). Let
P=4qs, s = gs+1. We want to prove the invariant (90), (91), (92) for s. Let ¢ = (p,s); g can be either a back
edge or an exit edge.

If g is a back edge, then we are exiting 7'(m) as we entered it (i.e., through it’s header, m). Since in this case
the induction invariant is already proven for s (= m), we are done and can continue with Case 1 (with f = k).

If g is an exit edge, it is s € Succst(m), r; = out, ry41 = in. Lemma 5 implies in (59) via (4) that (92)
holds for s. From the proof of Lemma 5, we know that (79) holds for s. The same proof states that (80) holds for
p, which together with (92) implies via (11) that (78) holds for s. Now we can apply Lemma 4 for s ((78)=(44),
(79)=(45), (92)=(46)), and we are done. O

Case 4 (back edge): ry = ri41 = out. In this case, m is the last child of an interval. Since we do not allow
critical edges, it is Succst(m) = . From Equation (4) follows that (59) does not hold for n, which together
with (92) implies via (6) that (66) does not hold. This, however, is by (12) a contradiction with (91), therefore
we do not have to consider this case further. Note the implication that after an EAGER placement has occurred
along p within some loop, we can never delay LAZY production past the exit of the loop. O

To conclude the proof of the theorem, we notice that since TAKEN,,:(STOP) = L, the induction invariant
(92) eventually leads to a contradiction along p; therefore, (89) cannot hold for all nodes visited after ¢., and
(22) becomes true.

O

A.2 Safety

Safety is guaranteed if each production is succeeded by a consumption specified in the initial input for the
framework. This is equivalent to the following theorem:

Theorem 2 (C2: Safety.) Given: An expanded path
p : ((START, out) =) (qo,70)—(q1,71)— ... —(gs,7s) (= (STOP, in))

such that for some p, 0 < p < s,
RES,, . (93)
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Claim: there exists in a BEFORE solution an q. € N, 0 < p < ¢, such that r. = in and
TAKEinit (2.)- (94)
In an AFTER solution, the flow of control is reversed.

Proof:
Let m = ¢,. For r, = in, it is

93) 2 GIVEN(m), (95)
and  GIVEN;,(m), (96)
(95), (96) a2 TAKEN;,(n) for an EAGER Problem, (97)
or  TAKE(n) for a Lazy Problem. (98)
The proof of the theorem follows by a straightforward induction from (97) and (98) using Equations (4), (5),
(6), and (8).
O

A.3 Sufficiency
A.3.1 The Sufficiency Theorem

Sufficiency requires that each consumption is proceeded by production, without being destroyed before reaching
the consumption. Furthermore, there has to be both an EAGER and a LAzYy production, in this order. This is
implied by the following theorem, which also reflects that EAGER production only occurs on node entries (and
not on exits).

Theorem 3 (C3: Sufficiency.) Given: An ezpanded path

p: ((START, out) =) (qo,70)—(q1,71)— ... —(gs,7s) (= (STOP, in))

such that for some ¢, 0 < ¢ < s, r, = in,

TAKEinit (7.)- (99)
Claim: There exists in a BEFORE solution a q., 0 < e < ¢, such that r. = in and
GIVEinit (ge)- (100)

or

RES;*®“(q.) (101)
In the latter case, there also exists an l, e <1 < ¢, such that
RESS™ (q1)- (102)
Furthermore, for all i with r; = out, e <1 <, it is
STEALni: (:)- (103)
In an AFTER solution, the flow of control is reversed.

Again, we will show the proof for a BEFORE problem (in our communication generation application, this
corresponds to guaranteeing that each reference will be proceeded by a local definition or a READg.,q and a
READ R, without any non-local definition in between). The proof for an AFTER problem is analogous.

The basic idea of the proof is to backtrace on p from ¢, until we reach a producer. While walking backwards,
we keep the invariant GIVEN, and we also ensure STEAL holds along all internal edges crossed. The following
contains some lemmata on which an inductive proof of Theorem 3 will be based.
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A.3.2 Induction step lemmata
Lemma 7 (Local availability implies global availability.) Claim: For all n € N, the following holds.
GIVENgyut(n) D GIVEc(n). (104)

Proof:
If n = Roor, then GIVEN,,:(RooT) = GIVE;,.(RooT) = L, and we are done.
For n # Roor, it is

GIVEN,we(n) 2 (GIVE(n)U GIVEN(n))\ STEAL(n)
(12),(28)
5" (GIVE(n) U GIVEN,,(m) U TAKE(n)) \ STEAL(n) (105)
If n = FIRSTCHILD(m), it is
PRrEDS(n) = 0, (106)

GIVEN, ¢ (n) = (GIVE(n) U TAKE(n)) \ STEAL(n)

@89 GIVE . (n).
Otherwise, assume (104) to hold for all p € PREDs(n). It follows inductively:

(105),(11)

GIVEN e (n) D (GIVE(n)U ]  GIVEN,u(p) UTAKE(n))\ STEAL(n)
pePREDS(n)
by ind.
D (GIVE(n) UTAKEU (] GIVEso(p)) \ STEAL(n).
pePREDS(n)

O

Lemma 8 (Items are either propagated or stolen locally.) Given: A node n € N such that for all p €
PREDS(n):

STEALjoc(p) (107)
or  GIVENgu:(p). (108)
Claim:
STEALjpc(n), (109)
or  GIVENgyut(n) (110)
and  GIVEN(n). (111)
Proof:
Assume
STEALjoc(n). (112)
(112) 2% STEAL(n) (113)

Case 1: Assume (108) holds for all p € PREDs(n).

(108) X GIVEN,,(n). (114)

(111) follows from (114) via (12), and (111), (113) together result by (13) in (110). O
Case 2: Assume Jp € PREDs(n) such that (108) does not hold for p; this implies (107) for p.

(107),(112) 22 GIVEL.(p). (115)

This, however, implies (108) for p by Lemma 7, which is a contradiction.
O
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Lemma 9 (Sufficiency throughout intervals.) Given: A node n € N such that

GIVEN(n), (116)
GIVENgyut(n). (117)

Claim: For [ = LasTCHILD(n),
GIVENyut (1), (118)

and for all ¢ € CHILDREN(n):

STEALjec(c), (119)
or both GIVEN(¢) (120)
and  GIVENyys(c). (121)

Proof:

The main result of this lemma that we are interested in is (118). However, we first prove inductively that
(119) or both (120) and (121) hold for all children. Furthermore, this induction might lead us to deeper nesting
levels of T'(n) than just the children of n.

Let f = FIRSTCHILD(n).

(116) 2 GIVEN,(f), (122)
(122) 22 GIVEN(S) (=(120) for f), (123)
(123) 22 GIVEN,w(f) (=(121) for f), (124)

or STEAL(f), (125)
(125) 2% STEAL,.(f) (=(119) for f). (126)

If for all ¢ € CHILDREN(n), PREDS(¢) C CHILDREN(n) (i.e., no exit edge from any loop nested within n is
reaching any child of n), then we can apply Lemma 8 as induction step to prove for all ¢ € CHILDREN(n) that
(119) or both (121) and (120) hold.

Otherwise, let ¢ be the first (leftmost) child of n such that there exists an exit edge e = (p,¢), and let
h € CHILDREN(n) such that p € T(h) (i.e., h is the header of the outermost loop exited by €). Note that since
we do not allow critical edges,

h € PREDsY(c¢) \ PREDS(c). (127)

Since ¢ was the first child of n reached by an exit edge, we can prove inductively by Lemma 8 that (119) or both
(120) and (121) hold for all ancestors of ¢. including h.

If (119) holds for A, then (127) implies (119) for ¢ via (10). Assume (119) does not hold for h. Then (120)
and (121) hold for h, and we can apply Lemma 9 for A. In this manner, we can perform an induction over the
nesting level; due to the finite nesting depth of T'(n), (119) has eventually to hold for some header and we are
done. O

This concludes the induction for (119) or both (121) and (120). We also have:

(13)

117) 22 STEAL(n) (128)
(128) L STEALL.(0). (129)

In other words, (119) does not hold for !, which implies (118) for { (= (121)) and concludes the proof of the
lemma.
O

A.3.3 Proof of the Sufficiency Theorem

Based on the lemmata developed so far, we now prove Theorem 3 (as mentioned before, we will only show the
EAGER, BEFORE case, the other cases are analogous).

Induction base. We will prove that for both flavors there exists a producer ¢, reaching consumer ¢.. Balanced-
ness then implies that they are actually in the right order.
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Let n = q..

99) L TAKE(n), (130)
(130) %L TAKEN,,(n). (131)
This implies for both EAGER and Lazy:
(130),(131) 22 GIVEN(n) (132)
(132) Y RES;.(n) (133)
or  GIVEN,(n). (134)

If (133) were true, then we would have reached production and would be done. Assume (134); this will be the
induction invariant we will use for node entries.

Induction step.

Let ¢; € N, i < ¢; let m = ¢;_1, n = ¢;. We perform the induction along the edge (m, r;_1)—(n,r;), based on
the actual type of edge. We have to prove for m that we either reach production ((133) at entry, or (135) at exit),
or that availability is preserved (the invariant, (134) at entry and (136) at exit). The exit invariant (136) then
implies via (13) and (1) that nothing is stolen ((103) at exit). A special case arises when traversing internal edges
of interval headers, which corresponds to skipping the interval (e.g., not executing a loop; see Section 2.2.1).

Case 1 (forward/exit edge): r;_; = out, r; = in. From the invariant (134) for n follows for m directly
from (15) either

RES ut(m) (135)

or the invariant

GIVEN e (m). (136)

O

Case 2 (entry edge): r;_1 = r; = in. Since in this case m = HEADER(n), it follows from the invariant
(134) for n via (11) that (132) must hold for m. We can proceed as in the induction base to prove that at m we
either reached production or preserve the invariant. O

Case 3 (internal edge): 7;_; = in, r; = out. Since this is an internal edge, it is m = n. The invariant
(136) for n implies by (13) that either (132) must hold for n, in which case we could proceed as in Case 2 and
would be done, or that the following holds:

GIVE(n), (137)
137 2 GIVELu(n), (138)
or GIVEo.(LasTCHILD(n)). (139)

(138) would be equivalent to (100), and we would be done. If (138) does not hold, then we have encountered
the special case mentioned above, where data are produced in T(n) and not in n itself or a predecessor of n. As
described in Section 2.2.1, GIVE(n) \ GIVE;,i:(n) are the data for which we rely on them being produced in the
loop, or being produced in a separate node that gets executed if the loop does not get executed. O

Case 4 (back edge): r;_1 = r; = out. As in Case 3, (138) or (139) must hold. If (138) were true, we would
be done. Otherwise, (139) would imply for m (= LASTCHILD(r)) by (104) that the invariant (136) for m, and
we would be done in this case as well. O

This completes the proof of the Sufficiency Theorem.

B Proof of correctness of the algorithm

After proving in Appendix A the correctness of the equations form Section 2.3, this section proves the correctness
of the GiveNTake algorithm presented in Section 2.4 by demonstrating that it computes a fixed point for these
equations. We are guaranteed to reach a fixed point if each equation gets evaluated after its right hand side is
fully known.

For the discussion of how the equations are linked to each other, we define the E(e,n) as a shorthand the
variable defined by Equation e for node n; E(e1,n1)—— E(e2,n2) then expresses that E(ej,n;) depends on
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E(ez,ny). We let S;(n) denote the evaluation of the equations in set S; for node n. We assume that each set
is evaluated in increasing equation number. Therefore, constraints of the form E(e;, n)—— FE(ez, n) are satisfied
for all e1, ey from the same set with e; > es and will be omitted from further discussion. For example, the
dependence of GIVE(n) on STEAL(N) (i.e., E(2,n)— E(1,n)) is already satisfied under this assumption.

S1 depends on itself as follows:

e E(4,n) «— E(6,Succs(n)); E(7,n) «— E(7,Succs(n)); E(8,n) — E(8,8uccs(n)).

This implies that S; should be evaluated in BACKWARD order to make sure all the successors of n are
processed before n itself.

e F(3,n) «— E(7, FIRSTCHILD(n)); E(5,n) — E(6, FIRsSTCHILD(n)), F(8, FIRSTCHILD(n)).

S should be evaluated in an UpwARD fashion to make sure that each header can access the values of its

children.

The above constraints alone could be satisfied by evaluating S; in REVERSEPREORDER. However, S; also
depends on Sy as follows:

e E(1,n) «— E(10,LasTCHILD(n)); E(2,n) — E(9,LasTCHILD(n)).
This can be satisfied by evaluating S1(n) after So( CHILDREN(n)).
Furthermore, S; depends on Si:
e F(9,n) — E(1,n), E(2,n), E(5,n). E(10,n) — E(1,n), E(2,n), E(5,n);
S3(n) should be computed after Sq(n).
Finally, Ss depends on itself:
e E(9,n) — E(9,PrREDS(n)). E(10,n) «— E(10, PREDS(n));
S5 should be evaluated in FORWARD order.
The dependencies for S3 and S, are somewhat simpler:

e F(1l,n) «— E(6,n), F(12, HEADER(n)), E(13, PREDS(n)); E(12,n) — E(6,n), E(5,n); E(13,n) —
E(2,n), E(1,n).

These constraints are satisfied when evaluating S3 in FORWARD, DowNWARD fashion (i.e., PREORDER)
after S7.

e F(14,n) — E(6,n), E(12,n), E(11,n); E(15,n) — E(4,n), E(11,n), E(11,Succs(n)), E(13,n).

S4 has to be evaluated after S; and Ss, in any order.

It can easily be verified that the algorithm in Figure 9 observes all the constraints.
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