D Newsletter # 8

NP-completeness of Dynamic
Remapping

Ulrich Kremer

CRPC-TR93330-S
August, 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

From the Proceedings of the Fourth Workshop
on Compilers for Parallel Computers, Delft, The
Netherlands, December 1993.

NP-completeness of Dynamic Remapping *

Ulrich Kremer

kremer@cs.rice.edu

Center for Research on Parallel Computation
Department of Computer Science
Rice University
P.O. Box 1892
Houston, Texas 77251

1 Introduction

This paper focuses on the complexity of automatic data layout techniques for regular prob-
lems in the context of an advanced compilation system that allows dynamic data remapping.
Regular problems allow the compilation system to determine the communication require-
ments and to perform a variety of program optimizations at compile time. The initial step
of the strategy proposed for automatic data layout in the presence of dynamic remapping is
to partition the program into code segments, called program phases. Phases are intended to
represent program segments that perform operations on entire data objects. Data remap-
ping is allowed only between phases. An operational definition of a phase is given elsewhere
[KMCKC93]. Strategies for identifying program phases are a topic of current research.

A data layout for a single phase is specified by the alignment and distribution of the
arrays referenced in the phase. A data layout for an entire program consists of a collection
of data layouts, one data layout for each phase in the program. The data layout for an entire
program is determined in three steps. First, alignment analysis builds a search space of
reasonable alignment schemes for each phase. Then, distribution analysis uses the alignment
search spaces to build candidate data layout search spaces of reasonable alignments and
distributions for each phase. A first discussion of possible pruning heuristics and the sizes
of their resulting search spaces can be found in [KK93]. Finally, a single candidate data
layout scheme for each phase is selected, resulting in a data layout for the entire program.
The selection process must consider the tradeoff between the exploitable parallelism of data

*This research was supported by the Center for Research on Parallel Computation (CRPC), a Science
and Technology Center funded by NSF through Cooperative Agreement Number CCR-9120008. This work
was also sponsored by DARPA under contract #DABT63-92-C-0038, and the IBM corporation. The content
of this paper does not necessarily reflect the position or the policy of the U.S. Government and no official
endorsement should be inferred.

layouts for each phase and the remapping costs of data layouts between phases. This last
step solves the so called inter-phase data layout problem. This paper focuses on proving
that the inter-phase data layout problem is NP-complete.

Several researchers have published NP-completeness results in the context of automatic
data layout. Li and Chen showed that the problem of determining an optimal static align-
ment between the dimensions of distinct arrays is NP-complete [LC90]. Gilbert and Schreiber
proved that aligning temporaries in expression trees involving array sections is NP-complete
in the presence of common subexpressions [GS91]. Anderson and Lam showed that the dy-
namic data layout problem is NP-hard in the presence of control flow between loop nests
[AL93]. Mace discussed three different formulations of the dynamic data layout problem for
interleaved memory machines. She showed that all three problems are NP-complete [Mac87].
The NP-completeness result presented in this paper is similar to Mace’s third formulation
of the automatic data layout problem. It turns out that even in the absence of control flow
between phases and in the presence of a constant upper bound of the number of candidate
data layouts for each phase, the inter-phase data layout problem is NP-complete. The proof
reduces the 3-CNF satisfiability problem [CLR90] to the inter-phase data layout problem.

2 Problem Statement

For the purposes of this paper, programs are represented as a linear sequence of phases,
Py, ... P,, with no control flow between phases. Let V denote the set of variables in the
program, V = {vy,...v,.}. Let p; denote the variables referenced in the i-th phase P;, i.e.
p; €2V, 1 <i < n. For each P; there is a set of candidate data layouts D; = {d},... d"}.
Note that two phases may have a different number of candidate data layouts. A single
candidate data layout df = {dfjl, ...df]-qi},l < k < 'my, is a set of layouts, one layout for each
variable v € p; = {vj,,...vj, }.

The cost of executing phase P; under the data layout d¥ € D, is denoted by c(P;, d¥).
The remapping cost from one data layout scheme to another can be defined based on the
remapping costs of each individual variable common to both schemes. Let d? and dtﬁ be two
candidate data layouts for phase P, and phase Pg, respectively. The remapping cost is given

below:

C(dZJdtﬁ) = Z C(Ziadti)v

v;€EPalpg
where ¢(d?,
Let f; : pi — {1,...n} be a mapping that determines for each variable v € p; the phase
that most recently referenced v before P;. If no such phase exists, then f;(v) has the value

i. A data remapping of v may occur between phase Py, (,) and phase F;.

dj;) is the cost for remapping the single variable v;.

Definition 1 An instance of the inter-phase data layout problem consists of a program with
a linear sequence of n phases, a set of program variables V = {vq,...v,}, sets p; and D; for
each phase P;, and cost functions c¢(P;,d;), d; € D;, and c(dy;, dy,(v;);) for each v; € p; and
d; € D;, with 1 <i1<mnandl1<j<r.

Definition 2 A solution of an instance of the inter-phase data layout problem is a set
{di,dy,...d,} of data layout schemes d; € D;,1 < i < n, such that

n

ZC(PZ,dZ) —|— Z Z d”,dfz U]

=1 1=1 v;€EP;

is minimized, where c(d;;,d;;) is 0. Note that this implies not associating any cost with an
initial data layout.

Definition 2 results in an optimization problem. Section 3 contains the proof that the

corresponding decision problem DYN-REMAP (k) is NP-complete.
Definition 3 DYN-REMAP(k) represents a decision problem defined as follows:

DYN-REMAP(k) := set of all instances of the inter-phase data layout problem such that
there exists a set of data layouts {dy,ds,...d,}, d; € D;;1 <1 < n, with a cost less or equal
to k, where k is a non-negative integer.

3 NP-completeness Proof

Definition 4 An instance of the 3 Conjunctive Normal Form Satisfiability Problem consists
of a boolean expression B in conjunctive normal form,

t
B = \F,
=1
where F; =1}V IZV I, 1<i<t, and each literal is a variable or ils negation in the set of
variables V = {vy,...v. }.
The decision problem 3SAT is represented as follows:

3SAT := set of all instances of the 3 Conjunctive Normal Form Satisfiability Problem for
which there exists a truth value assignment w : V — {true,false} such that B evaluates to
true under w.

Theorem 1 DYN-REMAP(k) is NP-complete.

Proof: The proof consists of two parts. Lemma 1 shows that DYN-REMAP(k) is in NP.
Lemma 2 states that 3SAT can be reduced to DYN-REMAP(k) in polynomial time. Since
35AT is NP-complete, DYN-REMAP(k) has to be NP-complete.

O

Lemma 1 DYN-REMAP(k) is in NP.

Proof: Let {d,ds,...d,}, d; € D;;1 <1 < n, be a set of data layouts for an instance of the
inter-phase data layout problem, one data layout for each phase in the program. The overall
cost of this set can be computed in polynomial time as described in Definition 2. Therefore
it can be verified in polynomial time whether a given set of data layouts has a cost smaller

or equal to a given cost k. Hence, DYN-REMAP(k) is in NP.
O

Lemma 2 3SAT can be reduced in polynomial time to DYN-REMAP(k).

Proof: Part 1 of the proof defines the function g that maps an instance B of the 3SAT
problem onto an instance g(B) of the DYN-REMAP(0) problem. Part 2 contains the proof
that B € 35AT < ¢g(B) € DYN-REMAP(0). Finally, Part 3 shows that g can be computed

in polynomial time.

Part 1: Let B be an arbitrary instance of the 3 Conjunctive Normal Form Satisfiability
Problem, B = Al_,(I} VI?V [?). ¢ maps the instance B to an instance of the inter-phase
data layout problem as follows:

o V ={vy,...v.}, i.e. the sets of variables are the same.
e Each clause F; is represented by a distinct phase P;, 1 < i < t.

o p; = {v; | I¥ is a literal of variable vj, 1 < k < 3}, where 1 < 7 < t. Note that
Ipi| < 3.

e Bach variable v € p; has 2 possible data layouts, called T and F. D; contains 27| can-
didate layouts, one layout for each possible combination of the single variable layouts.
In other words, each d; € D; represents a truth value assignment w; for all variables in

Pi:

wi(v;) = true ifd; =T
Willi) =\ false if di; =F

e Assume D; = {d},... d"}.
& 0 if F; is true under the truth value assignment represented by d¥ |
C(PZ d) = . !
¢ 1 otherwise ,
where] <:<tand 1<k <m.
o Assume df; € df € D; and df,'] € df € Dy, where i = f;(v;).

150 Yly) T

o(d* d,_ﬂ/) B { 0 if both data layouts are identical

1 otherwise

In other words, c(dfj, df,/]) = 0 if and only if no remapping of v; is required between

the two data layouts.

Note that there are at most eight data layouts for each phase. An example of the
application of ¢ to an instance of 3SAT is given in Section 4.

Part 2a: Claim: B € 3SAT = ¢(B) € DYN-REMAP(0).

Proof: Let w : V — {true,false} be a truth value assignment that satisfies the problem
instance B. There is exactly one data layout scheme in each phase P; of g(B) that represents

4

w restricted to the variables in p;. Call this data layout scheme d.. For all ¢, 1 <7 < ¢,
¢(P;,d}) = 0. Since w specifies a unique data layout for each single program variable v; € V,
redistribution between the set of data layouts {d},d,,... d;} does not occur. Therefore the
set has an overall cost of 0. Hence g(B) € DYN-REMAP(0).

Part 2b: Claim: ¢(B) € DYN-REMAP(0) = B € 3SAT.

Proof: Let {di,ds,... d;} be a set of data layouts, one data layout for each phase P;, with
an overall cost of 0. Therefore no remapping can occur between the data layouts and each
data layout d; has to represent a truth value assignment that satisfies F;. Hence, there exists
a unique truth value assignment w that satisfies all F;,1 < ¢ < t. The existence of such a
truth value assignment means that B is in 3SAT.

Part 3: Claim: ¢g(B) can be computed in polynomial time.

Proof: The collection of functions f; can be computed in O(t r), where t and r are the
number of phases and program variables, respectively.

There are at most 8 data layouts per phase. Therefore there are at most ¢ *8 data layout
costs of the form ¢(P;, d¥) for the entire program. For each data layout d¥ of phase P;, at
most 3 * 8 remapping costs for individual variables v; € p; of the form c(dfj, df]) have to be
computed, resulting in at most 3 * 8% remapping costs for each phase and at most ¢ * 3 x 8
for the entire program. Hence, ¢ can be computed in polynomial time.

O

4 Example Reduction

The function g maps the instance B = (v1 V -w3Vus) A (7o VoaVog) A (v VgV —wy)
of the 3SAT problem into an instance of the decision problem DYN-REMAP(0) as follows:

[} V = {‘Ul, V2, U3, ‘04}

e There are three phases, P;, Py,and Ps;. The ordering of the phases is given by their
indices.

p1 = {v1, 09,03}, p2 = {v1,v2, 04}, and p3 = {v1, v3, v4}.

e Dy = {{('UlvF)v(v%F)v(USv)} {(Ulv) ('U27) (USvT)}v{(Ulv) (v?vT)v(vSvF)}v
(U37F)}7{(Ula) (v?’F)’('U&T)}a
}

('017 F)? (‘02, F)? ('U47 T)}7 {(vh F)? ('027 T)v ('U4a F)}a

vy, F UQvT)7(v47T)}7 ('UlaT)v(U%F)a('U47F)}7{(vlvT)v(v?vF)v('U%T)}v
v, 1), (v2, T'), (va, F)}, {(v1, 1), (02, T'), (v4, T)} }, and
D3 = { U17F)7 U37F)7(U47F)}7{(vlvF)v(U37F)7(U47T)} {(UlvF)v(1037T)7('U47F)}7

) {('Ulv T)v ('037 F)v (1047 T)},

ot

e The costs for the data layouts for the phases and the costs for remapping of individual
variables is shown in Figure 1. Individual remapping costs are only shown for d} €
D3, d5 = { (v1,T), (v3, F), (v4, F) }. Each edge in the graph represents a cost function
value c(dgj,df%(vj)j), J € {1,3,4}.
Figure 2 shows a solution s to the example inter-phase data layout problem, s = {d, d5,d5} €
DYN-REMAP(0). Note that all costs are 0. The corresponding truth value assignment is
{(v1,true), (vg,true), (vs,false), (vy,false)}. This truth value assignment satisfies B.

Acknowledgements

[would like to thank Ken Kennedy, John Mellor-Crummey, and Reinhard von Hanxleden
for their helpful comments and suggestions.

References

[AL93] J. Anderson and M. Lam. Global optimizations for parallelism and locality on scal-
able parallel machines. In Proceedings of the SIGPLAN 93 Conference on Program
Language Design and Implementation, Albuquerque, NM, June 1993.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

[GS91] J.R. Gilbert and R. Schreiber. Optimal expression evaluation for data parallel ar-
chitectures. Journal of Parallel and Distributed Computing, 13(1):58-64, September
1991.

[KK93] K. Kennedy and U. Kremer. Initial framework for automatic data layout in Fortran

D: A short update on a case study. Technical Report CRPC-TR93-324-S, Center for
Research on Parallel Computation, Rice University, July 1993.

[KMCKC93] U. Kremer, J. Mellor-Crummey, K. Kennedy, and A. Carle. Automatic data layout for
distributed-memory machines in the D programming environment. In Christoph W.
Kessler, editor, Automatic Parallelization — New Approaches to Code Generation,
Data Distribution, and Performance Prediclion, pages 136-152. Vieweg Advanced
Studies in Computer Science, Verlag Vieweg, Wiesbaden, Germany, 1993. Also avail-
able as technical report CRPC-TR93-298-5, Rice University.

[LC90] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing
between distributed arrays. In Frontiers90: The 3rd Symposium on the Frontiers of
Massively Parallel Computation, College Park, MD, October 1990.

[Mac87] M. E. Mace. Memory Storage Palterns in Parallel Processing. Kluwer Academic
Publishers, Boston, MA, 1987.

G G ©H @ @ @ @ @ p{vv,v)

%z{vazvﬁ

%:{Vrvévﬁ

C) cost of layout isO

L__' cost of layoutis1 ~ -------- cost of remapping is1

cost of remapping is0

Figure 1: Sample costs for ¢(B), B = (v1 V —va Vusz) A (mvg Vg Vug) A (v VsV —wy)

FEED @ @ @ @ pE{v, v,V

(FFF) (FFT) (FTR) (FTT) 35

GG NG, @ @ @ Pe{v Vv

C) cost of layout isO

L__' cost of layoutis1 ~ -------- cost of remapping is1

cost of remapping is0

Figure 2: A solution for ¢(B), B=(v1V —va2Vv3) A (71 Vo Vg A (v1 VgV -vy)

