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Abstract. This paper gives a unifying, abstract generalization of pattern search methods for
solving nonlinear optimization problems. Pattern search methods are a class of direct search methods—
methods that neither require nor explicitly approximate derivatives. We use the abstract description
of pattern search methods to establish a global first-order stationary point convergence theory that
neither requires the directional derivative nor enforces a notion of sufficient decrease. We also discuss
the relationship between the convergence analysis for pattern search methods and the analysis for both
line search and model trust region globalization strategies; in particular, the fact that we can relax the
requirements on the acceptance of the step, at the expense of stronger conditions on the form of the
step, and still guarantee global convergence.
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1. Introduction. In this paper, we study methods that require neither the di-
rectional derivative nor an approximation to the directional derivative to solve the
unconstrained minimization problem

min f(z),
where f: R® — R. Such methods generally are referred to as direct search methods.

The purpose of this paper is to define and analyze a generalization of pattern search
methods, a particular subclass of direct search methods. We give a global first-order
stationary point convergence theory for pattern search methods, which, to our knowl-
edge, provides the first known convergence result for some of these methods, and the
first general convergence theory for all of them.

A unique feature of the convergence analysis we present is that we are able to
guarantee first-order stationary point convergence without an explicit representation of
the gradient or the directional derivative. In particular, we can prove convergence for
pattern search methods even though they do not explicitly enforce fraction of Cauchy
decrease, the Armijo—Goldstein—Wolfe conditions, or some other notion of sufficient
decrease, on their iterates. However, the global convergence analysis of these methods
also shows that they share several important features with both line search and model
trust region methods. We believe this to be somewhat subtle and unexpected.
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The important ideas for the convergence analysis for pattern search methods come
from the convergence analysis developed by Torczon [20] for the multidirectional search
algorithm of Dennis and Torczon [9, 19]. The main contribution of this paper is a concise
abstraction of the key ingredients necessary for a more general convergence theory.

For some time we have been aware that the same style of argument used to prove
global convergence for the multidirectional search algorithm could be applied, individ-
ually, to such classical algorithms as coordinate search, with fixed step sizes, variants of
response surface methodology, first developed by Box and Wilson [4] and later popular-
ized by Box [2, 3], and the original pattern search algorithm of Hooke and Jeeves [10].
The challenge was to develop an abstraction that both allowed for a general conver-
gence theory and explained why such algorithms, often viewed as disparate direct search
methods, could be analyzed using the same techniques. The goal was to show that these
methods were special cases of a generalized pattern search method. The convergence
analysis we present will make it clear why these methods are as robust as their propo-
nents have long claimed, while clarifying some of the limitations that have long been
ascribed to these methods. In addition, now that the key ingredients these methods
share have been identified, it is possible to develop new pattern search methods for
which the analysis holds.

The abstraction we present should make the important elements of the global con-
vergence theory much clearer than those found in [20]. Furthermore, we hope that the
unexpected parallels with classical convergence analysis for both line search and model
trust region methods now will be more evident. This paper also includes a new analytic
argument for the proposition, found in [20], stating that if the sequence of iterates is
uniformly bounded away from the set of stationary points of the function, then the
multidirectional search algorithm can visit only a finite number of points. (This result
has also been extended to generalized pattern search methods.) In addition, we include
a correction to the specification for the scaling factors found in [20].

In the next section we will establish the notation and general specification of pattern
search methods. In §3, we will prove that if the function to be minimized is continuously
differentiable, then pattern search methods guarantee weak first-order stationary point
convergence. In §4 we will discuss the relationship between the convergence theory
for pattern search methods and the convergence theory for line search and model trust
region methods. In §5 we will show that the classical pattern search methods mentioned
above, as well as the newer multidirectional search algorithm of Dennis and Torczon,
conform to the general specification for pattern search methods. In §6, we give some
concluding remarks; §7 contains technical results needed for the proofs of §3.

Notation. We will denote by R, Q, Z, and N the sets of real, rational, integer,
and natural numbers, respectively.
All norms will be Euclidean vector norms or the associated operator norm. We also

define L(xzg) = {z : f(z) < f(x0)} and

(1) X. = {z: Vf(z) = 0}.
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2. The Generalized Pattern Search Method. We begin by introducing the
following abstraction of pattern search methods. We defer to §5 demonstrations that
the pattern search methods mentioned above fall comfortably within this abstraction.

2.1. The Pattern. To define a pattern we need two components, a basis matrix
and a generating matrix.

The basis matrix can be any nonsingular matrix B € R™*™,

The generating matrix is a matrix C € Z"*P, where p > 2n. We partition the
generating matrix into components

(2) Cp=[My —M, Ly]=[T% Ly].

We require that My € M C Z™"*", where M is a finite set of nonsingular matrices, and
that Ly € Z"**=?") and contains at least one column, the column of zeros.

A pattern Py is then defined by the columns of the matrix P, = B(C};. Because
both B and C} have rank n, the columns of P span R". For convenience, we use the
partition of the generating matrix C}, given in (2) to partition Py as follows:

(3) P.=BCy=[BM, —BM,; BL;|=]Bl'y BL;].
Given A € R, A}, > 0, we define a trial step s, to be any vector of the form
(4) st = ALBc,,

where ¢! denotes a column of Cy = [ct---cf]. Note that B¢}, determines the direction
of the step, while Ay serves as a step length parameter.

At iteration k, we define a trial point as any point of the form z! = z; + si, where
zy 1s the current iterate.

The Exploratory Moves. Pattern search methods proceed by conducting a se-
ries of exploratory moves about the current iterate before declaring a new iterate and
updating the associated information. These moves can be viewed as sampling the func-
tion about the current iterate z; in a well-defined deterministic fashion in search of a
new iterate xy11 = xx + s; with a lower function value. The individual pattern search
methods are distinguished, in part, by the manner in which these exploratory moves
are conducted. To allow the broadest possible choice of exploratory moves, and yet still
maintain the properties required to prove convergence for the pattern search methods,
we place two requirements on the exploratory moves associated with any particular
pattern search method. These requirements are given in the following Hypotheses on
Exploratory Moves. (Please note an abuse of notation that is nonetheless convenient.
Throughout this paper, it A is a matrix, then the notation y € A will mean the vector
y is contained in the set of columns of A.)

The choice of exploratory moves must ensure two things:
1. The direction of any step s accepted at iteration k is defined by the pattern P;
and its length is determined by Ay. Note that s; may be contained in Ay B Ly
rather than in A, BI'}.
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Hypotheses on Exploratory Moves.
2. fmin{f(zx +v), y € ApBUy} < flag), then f(zr + sp) < f(ak).

2. If simple decrease on the function value at the current iterate can be found
among any of the 2n trial steps defined by Ap BTy, then the exploratory moves
must produce a step s that also gives simple decrease on the function value
at the current iterate. Note that f(xy + si) need not be less than or equal
to min{f(zr + v), v € ApBlk}; s, only need satisfy f(axp + sp) < f(ag) if
min{f(zr +vy), y € ApeBL'y} < f(ag).

These are the properties of the exploratory moves that enable us to prove weak first-
order stationary point convergence by requiring only simple decrease on f, while avoid-
ing the necessity of enforcing either a fraction of Cauchy decrease or the Armijo—
Goldstein-Wolfe conditions on the iterates. To obtain a stronger result we need to
place stronger hypotheses on the exploratory moves, as well as placing a boundedness
condition on the columns of the generating matrices. These extensions will be discussed

further in §3.3.2.

The Generalized Pattern Search Method. We now specify the generalized
pattern search method for unconstrained minimization.

Algorithm 1. The Generalized Pattern Search Method.
Let g € R™ and Ag > 0 be given.

For k=0,1,---,
a) Compute f(xy).
b) Determine a step s using an exploratory moves algorithm.

)
¢) Compute pp = f(xr) — f(xk + sk).
d) If pr > 0 then xpy1 = xp + 5. Otherwise xpy1 = 4.
e) Update C} and Ay,

To define a pattern search method, it is necessary to specify the basis matrix B,
the generating matrix C}, the result s; of the exploratory moves, and the algorithms
for updating Cj and Ay.

The Updates. The aim of the updating algorithm for Ay is to force py > 0. An
iteration with py > 0 is successful; otherwise, the iteration is unsuccessful. Again we
note that to accept a step we only require simple, as opposed to sufficient, decrease.

Algorithm 2. Updating Ay.
Given 7 € Q, let § = 7% and A\, € A = {r*1,.-- 7%} where 7 > 1 and
{wo,wy, -+, wr} CZ, L =|A| <+o0, wg<0,and w; >0,2=1,---, L.

a) If pr <0 then Agyq = 0A;.

b) If Pr > 0 then Ak-l—l = M\ AL,

The conditions on # and A ensure that 0 < 8 < 1 and A; > 1 for all \; € A. Thus,
if an iteration is successful it may be possible to increase the step length parameter Ay,
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but Ay is not allowed to decrease. Not surprisingly, this is crucial to the success of the
analysis. Also crucial to the analysis is the relationship (overlooked in [20]) between 6
and the elements of A.

The algorithm for updating Cj will depend on the pattern search method. For
theoretical purposes, it is sufficient to choose the columns of Cy so that they satisfy (2)
and the conditions we have placed on the matrices M, € M C Z"*" and L, € Znx(p=2n),

3. The Convergence Theory. Having set up the machinery to define pattern
search methods, we are now ready to analyze these methods. This analysis will produce
theorems of several types. The first, developed in §3.1, demonstrates an algebraic fact
about the nature of pattern search methods that requires no assumption on the function
f. This theorem is critical to the proof of the convergence results for it shows that
we only need require simple decrease in f to ensure global convergence. The second
theorem, developed in §3.2, describes the limiting behavior of the step length control
parameter Ay if we place only a very mild condition on the function f and exploit the
interaction of the simple decrease condition for the generalized pattern search method
with the algorithm for updating Aj. Finally, the third and fourth theorems, developed
in §3.3, give the results for first-order stationary point convergence. The first theorem
guarantees weak first-order stationary point convergence for any generalized pattern
search method that satisfies the specifications given in §2. This is significant since the
theorem applies to all the pattern search methods we will discuss in §5 without the need
to impose any modifications on the methods as originally stated. The second theorem is
equivalent to convergence results for line search and trust region globalization strategies.
We can guarantee first-order stationary point convergence, but to do so requires placing
stronger conditions on the specifications for generalized pattern search methods. These
stronger conditions are immediately satisfied by only one of the pattern search methods
we will present (that due to G. E. P. Box and Wilson [4]). We could certainly impose
these stronger conditions on the remaining pattern search methods presented in §5—
none of them are unreasonable to suggest or to enforce—but we would do so at the
expense of attractive algorithmic features found in the original methods.

3.1. The Algebraic Structure of the Iterates. The results found in this section
are purely algebraic facts about the nature of pattern search methods; they are also
independent of the function to be optimized. 1t is the algebraic structure of the iterates
that allows us to prove global convergence for pattern search methods without imposing
a notion of either sufficient or Cauchy decrease on the iterates.

We begin by showing in what sense Ay is a step length parameter.

LEMMA 3.1. There exists a constant (. > 0, independent of k, such that for any
trial step st # 0 produced by a generalized pattern search method (Algorithm 1) we have

[E=erive

Proof. From (4) we have s = ApBc.. The conditions we have placed on the
generating matrix Cy insure that ¢, € Z".
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Let 0,(B) denote the smallest singular value of B. Then
sl = Ael| Bl = Axow(B)lleill = Aron(B).

The last inequality holds because at least one of the components of ¢! is a nonzero
integer, and hence |ci|| > 1. O

From Lemma 3.1 we can see that the role of A; as a step length parameter is to
regulate backtracking and thus prevent excessively short steps.

THEOREM 3.2. Any iterate xy produced by a generalized pattern search method
(Algorithm 1) can be expressed in the following form:

N-1

TN =x0+ (ﬁ”Ba_TUB) AoB > z,

k=0

where
o 1 is the wnitial iterate,

Bla = 7, with a, € N and relatively prime, and 7 is as defined in the
algorithm for updating Ay (Algorithm 2),
e r;p and ryg depend on N,
o Aq s the initial choice for the step length control parameter,
o B is the basis matrixz, and
¢ 2, €Z2", k=0,--- N —1.

Proof. The generalized pattern search algorithm, as stated in Algorithm 1, guaran-
tees that any iterate xy is of the form
N-1

(5) TN = Zo+ Z Sk-

k=0

(We adopt the convention that s, = 0 if iteration k is unsuccessful.) We also know that
the step s, must come from the set of trial steps st, 7 = 1,---,p. The trial steps are of
the form st = A, Bet.

Consider the step length parameter Ay. For any & > 0, the update for Ay given in
Algorithm 2 guarantees that Ay is of the form

(6) A= 0NN N A,

where pi € Z and p} > 0. (Recall that L = |A|.) We have also placed the following
restrictions on the form of 6 and A;: for a given 7 € Q, 7 > 1, and {wg, wy, -+, wr} C Z,

9:7'7"00, wg < 0

and

We can thus rewrite (6) as:

(7) Ak — (Two)pg (Tw1 )p}ﬁ (Twz )pi . (TwL)pi' AO — TTkA(),
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where rp € Z. Let
8 rr,g = min {r ryg = max {ry}.
(8) LB 0§k<N{ e} vB 0§k<N{ 3

Then from (5) and (7) we have

N-1 N-1
TN = T + Z ApBep = g + AgB Z TRy,
k=0 k=0

Since 7 is rational, we can express T as T = g, where a, 3 € N are relatively prime.

Then, using (8),

N-1
(9) TN =0+ (ﬁ”Ba_TUB) AoB Y z,

k=0
where z, € Z™. 0

Theorem 3.2 synthesizes the requirements we have placed on the pattern, the defi-

nition of the trial steps, and the algorithm for updating Aj. Note that this means that
for a fixed N, all the iterates lie on a translated integer lattice generated by z¢ and the
columns of B"LBa™"VB AgB.

3.2. The Limiting Behavior of the Step Length Control Parameter. The
next theorem combines the strict algebraic structure of the iterates with the simple
decrease condition of the generalized pattern search algorithm, along with the algorithm
for updating Ag, to give us a useful fact about the limiting behavior of Aj.

THEOREM 3.3. Assume that L(xq) is compact. Then liminf,_ ;. Ar = 0.

Proof. The proof is by contradiction. Suppose 0 < Apg < Ay for all k. From (7)
we know that A, can be written as A, = 7"#*Aq, where r; € Z.

The hypothesis that Apg < Ay for all £ means that the sequence {77*} is bounded
away from zero. Meanwhile, we also know that the sequence {Ay} is bounded above
because all the iterates x; must lie inside the set L(zg) and the latter set is compact;
Lemma 3.1 then guarantees an upper bound Ayp < +oco for {Ax}. This, in turn, means
that the sequence {77#} is bounded above. Consequently, the sequence {77%} is a finite
set. Equivalently, the sequence {r;} is bounded above and below.

Let

(10) TLB = og?éﬂoo{r’“} TUB = ogril?foo{rk}'

Then (9) now holds for the bounds given in (10), rather than (8), and we see that for
all k, z; lies in the translated integer lattice G generated by zy and the columns of
/BTLBQ_TUB AOB‘

The intersection of the compact set L(xq) with the translated integer lattice G is
finite. Thus, there must exist at least one point x, in the lattice for which z, = z, for
infinitely many k.

We now appeal to the simple decrease condition in the generalized pattern search
method (Algorithm 1, d), which guarantees that a lattice point cannot be revisited
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infinitely many times since we accept a new step s; if and only if f(xy) > f(xx + sk).
Thus there exists an N such that for all £ > N, z; = z., which implies that p; = 0.

We now appeal to the algorithm for updating A, (Algorithm 2, a) to see that
Ay — 0, thus leading to a contradiction. 0O

3.3. First-Order Stationary Point Convergence. Throughout the discussion
in this section, we assume that f is continuously differentiable on L(x¢); however, this
assumption can be weakened, as we shall discuss further in §4.

3.3.1. The General Result. To prove Theorem 3.5 we need Proposition 3.4. We
defer the proof of this proposition to §7 in part because we wish to discuss there several
other issues that are tangential to the proof of Theorem 3.5. It is also the case that
the proof of this result is similar in style to that given for the equivalent result found
in [20], though now restated more succinctly in terms of the machinery we developed
in §2.

PROPOSITION 3.4. Assume that L(xg) is compact, that f is continuously differ-
entiable on L(xo), and that liminf,_ o ||V f(zk)|| # 0. Then there exists a constant
Arg > 0 such that for all k, A, > App.

We emphasize that the existence of a lower bound Appg for Ay is guaranteed only under
the null hypothesis that liminf,_ o ||V f(2)| # 0.

THEOREM 3.5. Assume that L(xg) is compact and that f : R™ — R is continu-
ously differentiable on L(xzg). Then for the sequence of iterates {xy} produced by the
generalized pattern search method (Algorithm 1),

liminf [V f(zy)]| = 0.

Proof. The proof is by contradiction. Suppose that liminfy_ ;e ||V f(2zs)|| # 0.
Then Proposition 3.4 tells us that there exists App > 0 such that Ay > Apg. But this
contradicts Theorem 3.3. 0O

3.3.2. The Stronger Result. We can strengthen the result given in Theorem 3.5
at the expense of wider applicability. To begin with, we must add three further restric-
tions: one on the pattern matrix, one on the hypotheses on the exploratory moves, and
one on the limiting behavior of the step length control parameter Ay.

First, we must ensure that the columns of the generating matrix C} are bounded
in norm, i.e., that there exists a constant C > 0 such that for all k&, C > ||ci||, for all
¢t =1,---,p. Given this bound, we can place an upper bound, in terms of Ay, on the
norm of any trial step s.

LEMMA 3.6. Given a constant C > 0 such that for all k, C > ||ci||, for all
t = 1,---,p, there exists a constant 1, > 0, independent of k, such that for any trial
step si. produced by a generalized pattern search method (Algorithm 1) we have

A > ulsill-
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Proof. From (4) we have s = ApBci. Then ||si| = Ag||Bck|| < Al Bll||cy]] <
ALC||B]|. Set ¥, = m. 0

Note that the columns of M), € M are bounded by the assumption that |[M| < 4o0;
we use this fact in the proof of Proposition 7.4. The stronger boundedness condition
on the columns of Cy = [My —My L] is needed to monitor the behavior of L.

Second, we must replace the original Hypotheses on Exploratory Moves with a
stronger version, as given below. Together, Lemma 3.6 and the Strong Hypotheses on

Strong Hypotheses on Exploratory Moves.
1. s, € AP, = A, BC, = A, [BFk BLk]
2. fmin{f(zr +v), y € ApBTy} < f(x), then
flak + sp) <min{f(axr +vy), y € AgBI:}.

Exploratory Moves allow us to tie decrease in f to the norm of the gradient when the
step sizes get small enough. This is the import of Corollary 7.5, which is given in §7.

Third, we require that limg_ 4. Ary = 0. We can use the algorithm for updating
Ay (Algorithm 2) to ensure that this condition holds. For instance, we can force Ay
to be nonincreasing by requiring w; = 0, ¢ = 1,---, L, which when taken together with
Theorem 3.3 guarantees that limy_ ;.o Ax = 0. All the algorithms we will consider
in §5, except the multidirectional search algorithm, enforce this condition by limiting
A = {1} = {r°}. However, it is not necessary to force the steps to be nonincreasing;
we need only require that in the limit the step length control parameter goes to zero,
which, in conjunction with Lemmas 3.1 and 3.6, has the effect of ultimately forcing the
steps to zero.

THEOREM 3.7. Assume that L(xq) ts compact and that f : R* — R is continuously
differentiable on L(xo). In addition, assume that the columns of the generating matrix
are bounded in norm, that the generalized pattern search method (Algorithm 1) enforces
the Strong Hypotheses on Fzxploratory Moves, and that limg_ ., Ay = 0. Then for the
sequence of iterates {xy} produced by the generalized pattern search method,

Jim V()] = 0.

Proof. The proof is by contradiction. Suppose limsup,_ . [|[Vf(zr)| # 0. Let
e > 0 be such that there exists a subsequence ||V f(z.,,)|| > ¢. Since

llim inf ||V f(x)|| = 0,

— 400

given any 0 < 7 < ¢, there exists an associated subsequence [; such that
IVf (@)l >0 for mi <k <L, ||V f(x)]l <n.

Then, since Ay — 0, we can appeal to Corollary 7.5 to obtain for m; < k < [;, ¢
sufficiently large,

f(@r) = f(2eg) 2 ol V(o) lllskll = onllskll,
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where o > 0. Then the telescoping sum:

(Fm) = )+ (Famen) = fomn)) o (i) = f@)) 2 3 onlli]

k=m,;

gives us

f(@m,) — flay) > Eécl:mz onlsell = l|@m, — 1]

Since f(@,) — f(x1,) — 0 as i — 400, ||&;m, — 21| — 0 as ¢ — +o00. Then, because V f
is uniformly continuous,

IV f(zm,) = V(z)

| <,

for ¢ sufficiently large. However,

(11) IVI@m) Il < IV F(2m) = V()

|+ V£ ()

| <21.

Since (11) must hold for any 7, 0 < 7 < ¢, we have a contradiction (e.g., try n = £). O

The proof of Theorem 3.7 is almost identical to that of an equivalent result for trust
region methods that was first given by Thomas [18] and which is included, in a more
general form, in the survey by Moré [11].

One final note: the hypotheses of Theorem 3.7 suggest that in the absence of any
explicit higher-order information about the function to be minimized, it makes sense to
terminate a generalized pattern search algorithm when Ay is less than some reasonably
small tolerance. In fact, this is a common stopping condition for algorithms of this sort
and the one implemented for the multidirectional search algorithm [21].

4. Parallels with Line Search and Model Trust Region Theory. The global
convergence analysis we have just presented for pattern search methods shares similar-
ities with the global convergence analysis for both line search and model trust region
methods.

Parallels with the line search theory are perhaps most obvious and are discussed in
[20]. The outline for the convergence theory follows the outline for global convergence
theorems as detailed by Ortega and Rheinboldt [14] and reviewed in the survey by
Nocedal [13]: we consider iterations of the form .1 = xp + s where sp € ApFPy; the
columns of P determine the search directions and Ay serves as a step length parameter.
In §7.1 we show that pattern search methods are descent methods (as defined in either
[8] or [14]) by showing that if z) is not a stationary point of the function then the
generalized pattern search method guarantees decrease in the value of the objective
function in a finite number of iterations. We then provide, in §7.2, a measure of the
goodness of the search direction by showing that pattern search methods are gradient-
related methods (as defined in [14]). Finally, in Theorem 3.3 and Proposition 3.4, we
consider the length of the step.

Given these major components for the convergence analysis, the one that is most
unusual is that involving the step length control. For a standard line search iteration, the
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strategy for choosing the step relies on satistfying the Armijo—Goldstein—Wolfe conditions
for sufficient decrease: the step length Ay is chosen to satisfy

Flae + Arpr) < flag) + a1 AV f2) pr

Vf(xr + Arpr) o > 0oV () pr,

where p; is the search direction and the constants o7 and o, are chosen to satisty
0 < 07 < 03 < 1. The first condition prevents very small decreases in the function
values relative to the lengths of the steps taken. The second condition prevents steps
that are too small relative to the initial rate of decrease of f. The standard convergence
analysis then proceeds on the assumption that these conditions for sufficient decrease
have been satisfied.

The obvious difficulty that arises in any attempt to extend the notion of sufficient
decrease to an iteration of any direct search method is that enforcement of the Armijo—
Goldstein—Wolfe conditions requires the directional derivative—information that the
direct search methods do not otherwise require.t

The point of both Theorem 3.2 and Theorem 3.3 is that the Armijo—Goldstein—
Wolfe conditions need not be enforced to guarantee weak first-order stationary point
convergence. The reason is that pattern search methods place strict limitations on the
choice of both the search directions and the step lengths. The set of search directions is
limited to the columns of Py. The step length parameter Ay must be a multiple of Ay,
0, and A € A. These restrictions guarantee an underlying lattice structure as stated in
Theorem 3.2. Once again we stress that this lattice structure is a purely algebraic fact
about the nature of pattern search methods.

What does this algebraic structure mean for the convergence analysis? The answer
lies in the simple control mechanisms imposed by the Hypotheses on the Exploratory
Moves and the update algorithm for A, (Algorithm 2). The Hypotheses on the Ex-
ploratory Moves require that if simple decrease can be found for some one of the steps
defined by I'x, then the exploratory moves must return a step that gives simple decrease.
This step can be defined by any column of the generating matrix. If we are lucky and
guess right, we may only have to consider a single step at any given iteration; however,
in the worst case we may have to consider all 2n steps defined by I';. The role of the
algorithm for updating Ay is to ensure that Ay is reduced only when the exploratory
moves algorithm fails to produce a step that gives simple decrease on the value of the
objective function.

The combination of these two mechanisms:

e Hypotheses on the Exploratory Moves

e Algorithm 2 for updating Ay
introduces backtracking into the generalized pattern search methods, which prevents
steps that are too short. This is the import of Lemma 3.1.

! The analysis in [22] enforces a notion of sufficient decrease by imposing on the methods an “error-
controlling sequence” that does not exist in the original algorithms. No suggestions are provided on
how to construct such a sequence in practice.
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The backtracking feature of the generalized pattern search methods is also critical
because it guarantees that descent will be realized if the current iterate is not a sta-
tionary point of the function. The matrix Iy guarantees that a descent direction exists,
even if we are not sure which of the 2n directions it may be. Thus we are assured
that the pattern search methods will produce descent once Ay becomes small enough.
However, the second of the Hypotheses on Exploratory Moves also prevents Ay from
becoming unnecessarily fine if decrease can be found for one of the trial steps defined
by AxT'x and thereby ensures that {z;} cannot bog down at points not included in X,.

The net effect of the algebraic structure of the pattern search methods, when com-
bined with the Hypothesis on the Exploratory Moves and the algorithm for updating
Ay, is to ensure that the pathologies which might otherwise occur were the Armijo—
Goldstein—Wolfe conditions to be ignored (see [8]) cannot happen. These simple, if
non-standard, mechanisms prevent the well-known pathologies that can arise if the
length of the steps is not monitored.

Parallels with the global convergence theory for model trust region methods are
perhaps less obvious. In fact, there is some temptation to call the pattern search
methods sample trust region methods. This arises from the observation that in the
basic version of each of the algorithms covered in §5, all possible steps can be seen to
lie on the boundary of a trust region in a weighted /., norm. We weight the norm by
using the inverse of the basis matrix B. (Recall that the basis matrix is required to be
nonsingular.) Thus, for all the pattern search methods (ignoring the acceleration steps
found in the Hooke and Jeeves algorithm and the multidirectional search algorithm,
which lie outside the trust region radius) all steps satisfy ||B7's{|l.c = Ag. In essence,
Ay gives the radius of the region within which we trust our sampling to be effective.
It the sampling does not produce simple decrease, we reduce the radius of the trust
region.

It is worth comparing the global first-order stationary point convergence results for
trust region methods and generalized pattern search methods. Roughly speaking, the
result due to Powell [15] says that

lim inf ; =

im inf ||V f(zx)]| = 0

assuming that V f is continuous and the Hessian (or its approximation) remains uni-
formly bounded. Thomas [18] assumes, in addition, that V f is uniformly continuous
to prove that

Jim [V ()] =0
Neither result requires L(xg) to be compact; instead, f must be bounded below. We have
shown comparable results for pattern search methods in Theorems 3.5 and 3.7 under
the hypothesis that L(z¢) is compact. The gap between Theorem 3.5 and Theorem 3.7
is due to the fact that while model trust regions link decrease in f to the norm of
the gradient, the generalized pattern search methods do not explicitly enforce such
a condition. Only when we place stronger conditions on the generating matrix, the
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Hypotheses on the Exploratory Moves, and the limiting behavior of A, which together
have the effect of implicitly linking decrease in f to the norm of the gradient, can we
obtain the stronger convergence result. Nonetheless, it is perhaps surprising that we
can prove any such convergence theorem for pattern search methods.

Having noted the unexpected similarities between pattern search methods and line
search and trust region methods, we now note one critical difference: the step control
mechanism for pattern search methods, however modest, is always active. Line search
and model trust region strategies are extensions to Newton or quasi-Newton methods
motivated by a need to ensure global convergence. These extensions are designed so
that the step length control mechanism introduced by the line search or model trust
region strategy “turns oftf” and the full Newton or quasi-Newton step is accepted once
the local quadratic model of the function is deemed reliable. Thus, the fast local
convergence properties of these algorithms are assured. However, at best the pattern
search methods are relying on implicit information about the gradient; they do not
construct local quadratic models of the function. The only natural notion of a full step
is that given by A;. As has long been recognized [16], this means that pattern search
methods do not enjoy fast local convergence properties. When using these methods one
trades speed of convergence for robustness and wider applicability.

One other point worth making is that pattern search methods are well-defined
even when the function to be minimized is not differentiable. It is trivial to extend
Theorem 3.5 to handle functions that are nondifferentiable; we need only modity the
set X.. This is reassuring in light of the fact that those who rely on these methods
typically only assume that the function is continuous. The modifications required are
discussed in further detail in [20]. The only qualification to be made is that the resulting
theorem is not a general result for the nonsmooth case; rather, it is an extension of the
result for the smooth case. Because the uniform continuity of the gradient over

Q. ={z € L(xo) : dist(z, X,) > €}.

is necessary for the proof of Theorem 3.5, the definition of X, given in (1) must include
not only the stationary points of the function, but also the points where the function
is nondifferentiable and where the gradient exists but is not continuous.

5. The Particular Pattern Search Methods. In §2 we stated the conditions
an algorithm must satisfy to be a pattern search method. We now illustrate these
conditions by considering the following specific algorithms:

e coordinate search with fixed step lengths,

e searches based on two-level factorial designs (see [4] and [5]),

e the original pattern search method of Hooke and Jeeves [10], and

e the multidirectional search algorithm of Dennis and Torczon ([9] and [19]).
We will show that these algorithms satisfy the conditions that define pattern search
methods and thus are special cases of the generalized pattern search method presented
as Algorithm 1. Then we can appeal to Theorem 3.5 to claim weak first-order stationary
point convergence for these methods.
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There are undoubtedly other algorithms for which the abstraction and accompany-
ing analysis holds—including various modifications to the algorithms presented—but we
shall confine our investigation to these, the best known of the pattern search methods,
to illustrate the power of our abstract approach to pattern search methods.

5.1. Coordinate Search with Fixed Step Lengths. The method of coordinate
search is the simplest and most obvious of all the pattern search methods. Davidon de-
scribes it concisely in the opening of his belated preface to Argonne National Laboratory
Research and Development Report 5990 [7]:

Enrico Fermi and Nicholas Metropolis used one of the first digital com-
puters, the Los Alamos Maniac, to determine which values of certain
theoretical parameters (phase shifts) best fit experimental data (scat-
tering cross sections). They varied one theoretical parameter at a time
by steps of the same magnitude, and when no such increase or decrease
in any one parameter further improved the fit to the experimental data,
they halved the step size and repeated the process until the steps were
deemed sufficiently small. Their simple procedure was slow but sure....

This simple search method enjoys many names, among them alternating directions,
alternating variable search, axial relazation, and local variation. We shall refer to it as
coordinate search.

Perhaps less obvious is that coordinate search is a pattern search method. To see
this, we begin by considering all possible outcomes for a single iteration of coordinate
search when n = 2, as shown in Fig. 1. We mark the current iterate z;. The zi’s
denote trial points considered during the course of the iteration. The next iterate xj1
is marked. Solid circles indicate successful intermediate steps taken during the course
of the iteration while open circles indicate points at which the function was evaluated
but that did not produce further decrease in the value of the objective function. Thus,
in the first scenario shown a step from zj to x} resulted in a decrease in the objective
function, so the step from z} to x4, was tried and led to a further decrease in the
objective function value. The iteration was then terminated with a new point zjyq
that satisfies the simple decrease condition f(xg41) < f(xr). In the worst case, the last
scenario shown, 2n trial points were evaluated (z}, z}', 23, and xi’) without producing
decrease in the function value at the current iterate x;. In this case, 441 = x; and the
step size must be reduced for the next iteration.

We now show this algorithm is an instance of a generalized pattern search method.

5.1.1. The Matrices. Coordinate search is usually defined so that the basis ma-
trix is the identity matrix; i.e., B = I. However, knowledge of the problem may lead
to a different choice for the basis matrix. It may make sense to search using a different
coordinate system. For instance, if the variables are known to differ by several orders
of magnitude, this can be taken into account in the choice of the basis matrix (though,
as we will see in §7.2, this may have a significant effect on the behavior of the method).

The generating matrix for coordinate search is fixed across all iterations of the
method. The generating matrix C = C contains in its columns all possible combina-
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Fi1G. 1. All possible subsets of the steps for coordinate search in R2.

tions of {—1,0,1}. Thus, C' has p = 3" columns. In particular, the columns of C will
contain both I and —1, as well as a column of zeros. We define M = I; L consists of the
remaining 3" — 2n columns of C'. Since C is fixed across all iterations of the method,
there is no need for an update algorithm.

For n = 2 we have

O 1 0 -1 0 1 1 -1 -1 0
N 0o 1 0 -1 1 -1 -1 1 0
Thus, when n = 2, all possible trial points defined by the pattern P = BC', for a given

step length Aj, can be seen in Fig. 2. Note that the pattern includes all the possible
trial points enumerated in Fig. 1.

5.1.2. The Exploratory Moves. The exploratory moves for coordinate search
are given in Algorithm 3, where the e;’s denote the unit coordinate vectors.

The exploratory moves are executed sequentially in the sense that the selection of
the next trial step is based on the success or failure of the previous trial step. Thus,
while there are 3" possible trial steps, we may compute as few as n trial steps, but we
compute no more than 2n at any given iteration, as we saw in Fig. 1.
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Ay

Lk

Fi1G. 2. The pattern for coordinate search in R? with a given step length Ay.

Algorithm 3. Exploratory Moves Algorithm for Coordinate Search.
Given i, Ak, f(x), and B, set s, =0, pr = 0, and min = f(xy).
For:=1,---,n do
a) st = s, + ApBe; and z, = x5 + st. Compute f(z}).
b) If f(zi) < min then p, = f(xx) — f(zL), min = f(zl), and s; = s..
Otherwise,
i) st = s, — ApBe; and zt = z;, + si. Compute f(z}).
i) If f(z}) < min then py = f(zx) — f(a}), min = f(z}), and s, = s..
Return.

From the perspective of the theory, there are two conditions that need to be met
by the exploratory moves algorithm. First, as Figs. 1 and 2 illustrate, all possible trial
steps are contained in A.P.

The second condition on the exploratory moves is the more interesting; coordinate
search demonstrates the laxity of this second hypothesis. For instance, in the first
scenario shown in Fig. 1, decrease in the objective function was realized for the first

Si = Ak] (é) 5
so the second trial step

1 1 0

was tried, and accepted. It is certainly possible that greater decrease in the value of

trial step

the objective function might have been realized for the trial step

S;C = Ak] (?) 5

which is defined by a column in the matrix M (the step s} is defined by a column in the
matrix L), but s, is not tried when simple decrease is realized by the step si. However,
in the worst case, as seen in Fig. 1, the algorithm for coordinate search ensures that all
2n steps defined by Ay BTI' = Ay B[M —M| = A, B[I —1] are tried before returning the
step sy = 0. In other words, the exploratory moves given in Algorithm 3 will examine
all 2n steps defined by A BI' unless a step satisfying f(zx + sx) < f(xx) is found.
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5.1.3. Updating the Step Length. The update for A is exactly as given in
Algorithm 2. As noted by Davidon, the usual practice is to continue with steps of the
same magnitude until no further decrease in the objective function is realized, at which
point the step size is halved. This corresponds to setting § = 1/2 and A = {1}. Thus,
T =2, wo=—1, and wy; = 0.

This suffices to verify that coordinate search with fixed step length is a pattern
search method. Theorem 3.5 thus holds. The exploratory moves algorithm for coordi-
nate search would need to be modified to satisty the Strong Hypotheses on Exploratory
Moves for the conditions of Theorem 3.7 to be met, though this is a straightforward
modification.

5.2. Response Surface Methodology. In 1951, Box and Wilson [4] introduced
the notion of “response surface methodology” as a way to investigate an objective func-
tion by performing function evaluations at the vertices of some geometric configuration
in the space of independent variables. This paper prepared the way for the development
of direct search methods, in general, and what we now call pattern search methods, in
particular.

In its earliest forms, response surface methodology was based on two-level factorial
designs: evaluate the function at the vertices of a hypercube centered about the current
iterate. (In fact, Box refers to this as one of a variety of “pattern of variants” [3].) If
simple decrease in the value of the objective function is observed at one of the vertices,
it becomes the new iterate. Otherwise, the lengths of the edges in the hypercube are
halved and the process is repeated. Further discussions of the basic approach can be

found in [5] and [17].

5.2.1. The Matrices. As with coordinate search, the usual choice for the basis
matrix is B = [, though, as with coordinate search, other choices may be made to
reflect information known about the problem to be solved.

The generating matrix for response surface methodology is fixed across all iterations
of the method. The generating matrix Cy = C contains in its columns all possible
combinations of {—1,1}; to this we append a column of zeros. Thus C has p = 2" + 1
columns.

We take M to be any linearly independent subset of n columns of C'; — M necessarily
will be contained in C'. Once again, L is fixed and consists of the remaining (2" 41)—2n
columns of C.

Since the generating matrix is fixed, there is no need for an algorithm to update C'.

5.2.2. The Exploratory Moves. The exploratory moves given in Algorithm 4
are simultaneous in the sense that every possible trial step s, € A P = A,BC is
computed at each iteration. It is then the case that every trial step si is contained in
A, P. The second observation of note is that since

sp = arg min{f(z} + s})},
steALP
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then, if min{f(xx + vy),y € AxBI'} < f(xg), we have f(xr + sx) < f(xk), regardless
of our choice of M (and thus, by extension, our choice of I'). Furthermore, we are
guaranteed that the Strong Hypotheses on Exploratory Moves are satisfied.

Algorithm 4. Exploratory Moves Algorithm for Response Surface Methodology.
Given g, Ay, f(zg), B, and C = [¢'---cP], set s, =0, pr = 0, and min = f(zy).
For:=1,---,2" do

a) st = AyBc' and zi = x), + si. Compute f(z}).

b) If f(zi) < min then p, = f(xx) — f(zi), min = f(zi), and s; = s..
Return.

5.2.3. Updating the Step Length. The algorithm for updating Ay is exactly
as given in Algorithm 2, with 6 usually set to 1/2 and A = {1}.

Since we have shown that response surface methodology satisfies all the necessary
requirements, we can therefore conclude that it, too, is a pattern search method, so
Theorem 3.5 holds. The algorithm, as stated above, also satisfies the conditions of

Theorem 3.7.

5.3. Hooke and Jeeves’ Pattern Search Algorithm. In addition to introduc-
ing the general notion of a “direct search” method, Hooke and Jeeves introduced the
pattern search method—a specific kind of search strategy—in their 1961 paper [10]. The
pattern search of Hooke and Jeeves is essentially a variant of coordinate search that
incorporates a pattern step in an attempt to accelerate the progress of the algorithm by
exploiting information gained from the search during previous successful iterations.

The Hooke and Jeeves pattern search algorithm is opportunistic. If the previous
iteration was successful (i.e., pr—1 > 0), then the current iteration begins by conducting
coordinate search about a speculative iterate xy + (x5 — xx—1), rather than about the
current iterate xj. This is the pattern step. The idea is to investigate whether further
progress is possible in the general direction x —x,_1 (since, if x # xj_1, then xp— a1y
is clearly a promising direction).

To make this a little clearer, we consider the example shown in Fig. 3. Given

T+ (25 — 2p_1)

Tk

Tk—1

F1a. 3. The pattern step in R?, given x, # xp_1, k > 0.

zr—1 and zj (we assume, for now, that & > 0 and that x; # x_1), the pattern search
algorithm takes the step xy — x;_1 from xj. The function is evaluated at this trial step
and it is accepted, temporarily, even if f(zr + (xx — x4-1)) > f(xx). The Hooke and
Jeeves pattern search algorithm then proceeds to conduct coordinate search about the
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temporary iterate x; + () — xx_1). Thus, in R?, the exploratory moves are exactly as
shown in Fig. 1, but with xy + (2 — 24—1) substituted for x.

If coordinate search about the temporary iterate ay + (xx — x—1) is successful, then
the point returned by coordinate search about the temporary iterate is accepted as the
new iterate xpyq. If not, ie., f((zr + (2x — xk—1)) + sx) > f(xr), then the pattern
step is deemed unsuccessful, and the method reduces to coordinate search about xy.
For the two dimensional case, then, the exploratory moves would simply resort to the
possibilities shown in Fig. 1.

If the previous iteration was not successful, so xy = xx_1 and (xy — x4_1) = 0, then
the iteration is limited to coordinate search about x;. In this instance, though, the
updating algorithm for A, will have reduced the size of the step (i.e., Ay = 0A,_1).
The algorithm does not execute the pattern step when k& = 0.

To express the pattern search algorithm within the framework we have developed,
we use all the machinery required for coordinate search. Once again, the basis matrix
is usually defined to be B = I. We append to the generating matrix another set of 3"
columns to capture the effect of the pattern step and we change the exploratory moves
algorithm, as detailed below.

5.3.1. The Generating Matrix. Recall that the generating matrix for coordi-
nate search consists of all possible combinations of {—1,0,1} and is never changed.
For the Hooke and Jeeves pattern search method, we allow the generating matrix to
change from iteration to iteration to capture the effect of the pattern step. We append
another set of 3" columns, consisting of all possible combinations of {—1,0,1}, to the
initial generating matrix for coordinate search. Thus C} has p = 2 - 3" columns. The
additional 3" columns allow us to express the effect of the pattern step with respect to
xy, rather than with respect to the temporary iterate xy + (xx — x4—1), which is how
the Hooke and Jeeves pattern search method usually is described. The matrix M is
unchanged; M = I. Now, however, L, € Z"*?=2%) is allowed to vary, though only in
the 3" columns associated with the pattern step. For n = 2,

1 0-1 01 1I-1-120

) B 1 0-1 01 1—-1-1 0
(12)  Co= 061 0-1 1-1-1 10 01 0-1 1-=1-1 1 0"

For notational convenience, we require that the last column of Cy, which we denote
as ¢(, be the column of zeros. In both the algorithm for updating C) (Algorithm 5)
and the algorithm for the exploratory moves (Algorithm 6), we use the column ¢/ to
measure the accumulation of a sequence of successful pattern steps. This can be seen,

in (13), for our example from Fig. 3. In this example, we have the generating matrix

1

_ [ 10-1 01 1-1-110 2 0
(13)  Ch= 1 2 1

0
01 0-1 1-1-1 10 1

1 1 2 20
2 02 00

The pattern step (z — xj_1) is represented by the vector (1 1)7, seen in the last column
of Cr. Note that the only difference between the columns of Cy given in (12) and the
columns of C}, given in (13) is that (1 1)T has been added to the last 3% columns of .
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The algorithm for updating the generating matrix updates the last 3" columns
of Cy; the first 3" columns remain unchanged, as in coordinate search. The purpose
of the updating algorithm is to incorporate the result of the search at the current
iteration into the pattern for the next iteration. This is done using Algorithm 5. Note
the distinguished role of ¢f, the last column of Cj, which represents the pattern step

(.fL’k — .fL’k_l).

Algorithm 5. Updating Cj.
For: =3"+1,---,2-3" do

g1 = G+ (1/Ar)sk — ¢
Return.

Since (1/Af)sy is necessarily a column of Ci, and Cy € Z"*?  an argument by
induction shows that the update algorithm for C} ensures that the columns of Cj
always consist of integers.

5.3.2. The Exploratory Moves. In Algorithm 6, the e;’s denote the unit coor-
dinate vectors and ¢/ denotes the last column of C,. We set p_; = 0 so that py_q is
defined when k& = 0.

A useful example for working through the logic of the algorithm can be found in
[1], though the presentation and notation differ somewhat from that given here.

Algorithm 6. Exploratory Moves Algorithm for Hooke and Jeeves.
Given zy, Ak, f(xr), B, and pg_1, set py, = pr—1 and min = f(xy).
If pr > 0 then set s, = ApBce), pr = f(ar) — f(ar + sk), and min = f(xr + si).
For:=1,---,n do
a) st = sy + ApBe; and zt, = z;, + si. Compute f(z%).
b) If f(2%) < min then p, = f(zx) — f(2L), min = f(zl), and s; = st.
Otherwise,
i) st = sp — AgBe; and zi = x + s;. Compute f(zi).
ii) If f(2%) < min then p, = f(zx) — f(zi), min = f(zl), and s; = s..
If pr <0 then set s, =0, pr =0, and min = f(xy).
For:=1,---,n do
a) st = sy + ApBe; and z% = z), + si. Compute f(z%).
b) If f(2%) < min then p, = f(zx) — f(2L), min = f(z!), and s; = s..
Otherwise,
i) st =s, — AgBe; and z, = z + si. Compute f(z}).
i) If f(2%) < min then p, = f(zx) — f(zl), min = f(zl), and s; = s..
Return.

All possible steps are contained in Ay Py since C} contains columns that represent
the “pattern steps” tried at the beginning of the iteration. And, once again, the ex-
ploratory moves given in Algorithm 6 will examine all 2n steps defined by Ay BI' unless
a step satisfying f(xx + sx) < f(xx) is found.
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Since we have shown that the pattern search algorithm of Hooke and Jeeves satisfies
all the necessary requirements, we can therefore conclude that it, too, is a special case
of the generalized pattern search method and Theorem 3.5 holds.

5.4. Multidirectional Search. The multidirectional search algorithm was intro-
duced by Dennis and Torczon in 1989 [19] as a first step towards a general purpose
optimization algorithm with promising properties for parallel computation. While sub-
sequent work led to a class of algorithms, based on the multidirectional search algorithm,
that allows for more flexible computation ([9] and [21]) one of the unanticipated results
of the original research was a weak first-order stationary point convergence theorem for
the multidirectional search algorithm [20].

The multidirectional search algorithm is a simplex-based algorithm. The pattern of
points can be expressed as a simplex (i.e., n + 1 points, or vertices) based at the current
iterate; as such, multidirectional search owes much in its conception to its predecessors,
the simplex design algorithm of Spendley, Hext, and Himsworth [16] and the simplex
algorithm of Nelder and Mead [12]. However, multidirectional search is a different
algorithm—particularly from a theoretical standpoint. Convergence for the Spendley,
Hext and Himsworth algorithm can be shown only with some modification of the original
algorithm, and then only under the additional assumption that the function f is convex.
There are numerical examples to demonstrate that the Nelder-Mead simplex algorithm
may fail to converge to a stationary point of the function because the uniform linear
independence property (discussed in §7.2), which plays a key role in the convergence
analysis, cannot be guaranteed to hold [19].

The multidirectional search algorithm is described in detail in both [9] and [20].
The formulation given here is different and, in fact, introduces some redundancy that
can be eliminated when actually implementing the algorithm. However, the way of
expressing the algorithm that we will use here allows us to make clear the similarities
between this and other pattern search methods.

5.4.1. The Matrices. It is most natural to express multidirectional search in
terms of multiple basis matrices By and a fizred generating matrix C', which is at odds
with our definition for generalized pattern search methods. As we shall see, however,
it is possible to convert the more natural specification to one that conforms to our
requirements for a pattern search method.

The multidirectional search algorithm centers around a family of basis matrices
B that consists of all matrices representing the edges adjacent to each vertex in a
nondegenerate n-dimensional simplex that the user is allowed to specify. Since the
ordering of the columns is not unique, and typically not preserved in the implementation
of the method, we consider all possible representations of the columns of the matrices
associated with the edges adjacent to the (n + 1) vertices of the simplex. We then add
the negatives of these (n + 1)! basis matrices to account for the effect of the reflection
step allowed by the multidirectional search algorithm. Thus the cardinality of the set
Bis |B|=2(n+ 1)

Fortunately, there is no need to actually construct and “store” this unwieldy number
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of basis matrices to initialize the method. We can update the basis matrix after each
iteration k by reconstructing the new basis matrix Bii1, given the outcome of the
exploratory moves, from the trial points zt, 7 = 1,---,n, considered during the course
of the exploratory moves. This procedure is given in Algorithm 8. The scalar scale
is chosen during the course of the exploratory moves (see Algorithm 7) to ensure that
Bi41 € B by factoring out any change in the size of the simplex introduced by a change
in Ag. This has the further effect of preserving the role of Ay as a step length parameter.

Algorithm 8. Updating Bj.
Given By, scale, best, and zt for : = 0,---,n, denote By = [bi], 1 =1, ,n.
If pr. > 0 then
For¢=0,---,(best — 1) do
bith = scale* (2} — J:EeSt).

For ¢ = (best + 1),---,n do

b};_H = scale * (”c}C — :cEeSt).
Otherwise
For:=1,---,n do
by = by
Return.

Given this use of a family of basis matrices to help define the multidirectional search
algorithm, the generating matrix is then the fixed matrix ¢ = [I —1 —pul 0]. Thus,
C' contains p = 3n 4+ 1 columns, with M = [I. To ensure that C' € Z"*?, we require
p € Z. Furthermore, to ensure that the role of Ay as a step length parameter is not lost
with the introduction of the expansion step represented by —ul, we require p € A. The
algorithm is defined so that A = {7** 72} with g = 7*2. This requires the further
restriction that 7 € N. Again, this is not an onerous restriction. Multidirectional search
usually is specified so that 7 = 2, wy = 1, and thus p = 2.

Now, to bring this notation into conformity with our definition for a generalized
pattern search method, observe that we can represent all possible basis matrices B, € B
in terms of a single reference matrix B € B so that

B,=BB, v=1,---,|B]|.

A convenient feature of using the edges of a simplex to form the set of basis matrices
is that the matrices B, consist only of elements from the set {—1,0,1}. The matrices
B, are necessarily nonsingular because of the nondegeneracy of the simplex. We use B
to represent the set of matrices B, and observe that since B is a finite set, the set B is
also finite.

We then observe that

Po=BC=B,[I -1 —pul 0]=B[B, —B, —uB; 0] = BC.

Thus we can define the pattern in terms of the single reference matrix B and the
redefined generating matrix

Ck: [Bk —Bk _Nék 0],
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with M, = Bk and M = B. Since ped Lye Z7* (1) and the column of zeros has
been added explicitly.

5.4.2. The Exploratory Moves. The exploratory moves for the multidirectional
search method are given in Algorithm T7; the e;’s denote the unit coordinate vectors.
We use the notion of By € B for consistency with the update algorithm given in
Algorithm 6, but we could just as easily substitute BB, for By, in the algorithm given
below.

Algorithm 7. Exploratory Moves Algorithm for Multidirectional Search.
Given i, Ak, f(xr), Bi, and g = 72 € N, set s = 0, pr =0, min = f(xy),
M =1, scale = 1/Ag, best = 0, and ) = zy.
For:=1,---,n do
a) st = ApBye; and zi = z + s;. Compute f(zi).
b) If f(2%) < min then p, = f(zx) — (%), min = f(2), s, = si, and best = 1.
It pr. <0 then
For:=1,---,n do
a) st = —AyBge; and z} = z;, + si. Compute f(z}).
b) If f(2L) < min then p, = f(xx) — f(al), min = f(zl), sp = s}, and best = 1.
If pr > 0 then set scale = 1/uAy.
For:=1,---,n do
a) st = —uAyBye; and i = x5 + 5. Compute f(zi).
b) If f(2t) < min then p, = f(zx) — f(2), min = f(), sp = si, best = 1,
and A\; = p.
Return.

Clearly, sp € AgPy. Since the exploratory moves algorithm will consider all steps
of the form AyBT'y, unless simple decrease is found after examining only the steps
defined by Ay BMj, this guarantees we satisfy the condition that if min{f(zr +y),y €
AkBFk} < f(:l?k), then f(.fl?k + Sk) < f(:Ek)

5.4.3. Updating the Step Length. The algorithm for updating Ay is that given
in Algorithm 2. In this case, while § usually is set to 1/2 so that 7 = 2, wg = —1, and
wy = 0, we also include an expansion factor g = 72, where w, usually equals one. Thus
A = {1, pu}, where p is usually 2. The choice of Ay € A is made during the execution of
the exploratory moves.

Since we have shown that the multidirectional search algorithm satisfies all the
necessary requirements, we conclude that it is also a pattern search method and thus
Theorem 3.5 applies. Note that since we allow g > 1, which is a useful algorithmic
feature, we cannot guarantee that limy_ ., Ax = 0 and so Theorem 3.7 does not auto-
matically apply.

6. Conclusions. We have presented a framework in which one can analyze pat-
tern search methods. This framework abstracts and quantifies the similarities of the
classical pattern search methods and enables us to prove weak first-order stationary
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point convergence for this class of algorithms. We also specify the conditions under
which first-order stationary point convergence can be shown to hold.

These convergence results are perhaps surprising, given the simplicity of pattern
search methods, but derive from the algebraic rigidity imposed on the iterates produced
by pattern search methods. This is gratifying, since while this rigidity originally was
introduced as a heuristic for directing the local search, it turns out to be the key to
proving convergence as well. This analysis also highlights just how weak the conditions
on the acceptance of the step can be and yet still allow a global convergence analysis,
an observation that may prove useful in the analysis of other classes of optimization
methods.

7. Appendix. We deferred the proof of Proposition 3.4 for several reasons. First,
many of the results in this section are generalizations of similar results to be found
in [20]. The abstraction in §2 leads to more succinct proofs. Second, the proof of
Proposition 3.4 is closely related to that of several other results presented in this section
and requires us to introduce several additional notions before tackling its proof.

We return to our definition of the pattern as P, = BC} to show that the pattern
contains at least one direction of descent whenever V f(xz)) # 0.

Recall that we require the columns of C to contain both M, and —Mj. Thus, P;
can be partitioned as follows:

P.=BCy=B[M, —M, Ly]=B[T} L]

We now elaborate on these requirements. Since M} is an n X n nonsingular matrix,
and B is nonsingular, we are guaranteed that BM; forms a basis for R*. Thus at any
iteration k, if V f(z;) # 0 we are guaranteed that Bcl will be a direction of descent for
at least one column ¢ contained in the block I'.

7.1. Descent Methods. Of course, the existence of a trial step in a descent di-
rection is not sufficient to guarantee that decrease in the value of the objective function
will be realized. To guarantee that a pattern search method is a descent method, we
need to guarantee that in a finite number of iterations the method will produce a posi-
tive step size Ay that achieves decrease on the objective function at the current iterate.
We now show that this is the case.

LEMMA 7.1. Suppose that f is continuously differentiable on L(xo). If V f(xy) # 0,
then there exists p € Z, p > 0, such that pryp, > 0 (i.e., the (k + p)* iteration is
successful ).

Proof. A key hypothesis placed on the exploratory moves is that if descent can be
found for some one of the trial steps defined by ApBI'y, then the exploratory moves
will return a step that produces descent.

Because BCy has rank n, if V f(x;) # 0, then there exists at least one trial direction
di. = Bci, where ¢, € 'y, such that V f(x;)?di # 0. But, since —ci € 'y, without loss
of generality, V f(z;)Td:, < 0. Thus, there exists an kj > 0 such that for 0 < h < hy,
flan + hdy) < fla).

It at iteration k, Ay > hy, then the iteration may be unsuccessful; that is, pr =
flzr) — flzr + sk) < 0. When the iteration is unsuccessful, the generalized pattern
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search method sets xx41 = z; and the updating algorithm sets Ay = AL, Since 6§
is strictly less than one, there exists p € Z, p > 0, such that §?A; < hy. Thus we are
guaranteed descent, i.e., a successful iteration, in at most p iterations. 0O

7.2. Uniform Linear Independence. The pattern P, guarantees the existence
of at least one direction of descent whenever V f(z;) # 0. We now want to guarantee
the existence of a bound on the angle between the direction of descent contained in
BTy, and the negative gradient at x; (whenever Vf(z)) # 0). We will show, in fact,
that this bound is uniform across all iterations of the pattern search algorithm. To do
so, we use the notion of uniform linear independence [14].

LEMMA 7.2. For a pattern search algorithm, there exists a constant ¢ > 0 such
that for all k > 0 and x # 0,

(14) maX{W—_M,izl,---,p}Zf.

|2[[[l} — 4]

Proof. To demonstrate the existence of &, we first consider the simplest possible
case, B=1and C = [M —M 0] = [I —I 0], and use this to derive a bound for any
choice of B and ('}, that satisfies the conditions we have imposed.

LEMMA 7.3. Suppose ||y||=1. Let

cos 0(y)| = ax {lo";1}.

where the e;’s are the unil coordinate vectors.

If B=1and C =11 =1 0], then

1
0(y)| = —.
i feos 1) = =
Proof We have [y7e;| = lysl, where y = (ya,- - y)?. Since Yoy [ysl? = 1, we
are guaranteed that |y;| > 1/y/n for some j, so |yle;| > 1/\/n for some j. Thus

cos 0(y)] > 1/v/m.

Now note that cos f(y) attains this lower bound for any y = aje;+azea+- - -+ ey,
where a; = £1/4/n. 0O

Thus, if the pattern search is restricted to the coordinate directions defined by
P =1[I -10],¢=1/\n gives the lower bound on the absolute value of the cosine of
the angle between the gradient and a guaranteed direction of descent. We now use the
bound for this particular case to derive a bound for the general case.

Assume a general basis matrix B and a general matrix My € M, where [M| < 4o0.
We adopt the notation BMj, = [y}.-- - y7]. Then for any x # 0 we have the following:

, T
‘xTyi‘ ‘wTBMkej‘ ‘((BMk)Tf) €;
lzlllyill Nzl BMyesll ||| BMye;|

|cos 8] =
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If we set w = (BMy)Tz, so that z = (BM},)~Tw, we have

jwle;| jwle;|

>
I(BMy)~Fwl|| BMie;|| — [|(BMy)=*[[wl|[| BMk[]e]

|cos 0] =

_ 1 ( |'wTej| ) _ 1 ( |wTej| )
[ (BM)=|[|| BM|| \ |lwll]e;]] [ (BM) =l BMi|| \ lwllle;]]
1 1

>
- IQ(BMk) \/57
where k(BM}) is the condition number of the matrix BMj. Thus, we have

1
|cos | > ————= > 0.

*(BM.)v/n

To ensure a bound ¢ that is independent of the choice of any particular matrix
M € M, we simply observe that the set M is required to be finite. Thus, £ is taken to
be

X = i)

The bound given in (15) points to two features that explain much about the behav-
ior of pattern search methods. Since we never explicitly calculate—or approximate—the
gradient, we are dependent on the fact that in the worst case at least one of our search
directions is not orthogonal to the gradient; ¢ gives us a bound on how far away we
can be. Thus, as either the condition number of the product BM) increases, or the
dimension of the problem increases, our bound on the angle between the search direc-
tion and the gradient deteriorates. This suggests two things. First, we should be very
careful in our choice of B and M for any particular pattern search method. Second, we
should not be surprised that these methods become less effective as the dimension of
the problem increases.

Nevertheless, even though pattern search methods neither require nor explicitly
approximate the gradient of the function, the uniform linear independence condition
demonstrates that the pattern search methods are, in fact, gradient-related methods, as
defined by Ortega and Rheinboldt [14], which is one reason why we can establish global
first-order stationary point convergence.

7.3. The Descent Condition. Having introduced the notion of uniform linear
independence with the bound ¢, we are now ready to show that pattern search methods
reduce Ay only when necessary to find descent. This enables us to prove Proposition 3.4.

PROPOSITION 7.4. Suppose that L(xg) is compact and f is continuously differen-
tiable on L(xg). Given € > 0, let

O ={z € L(xg) : dist(z, X)) > €}.
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Suppose also that g € Q.. Then there exists 6 > 0, independent of k, such that
if v € Q. and Ay < 6, then the kth iteration of a generalized pattern search method
(Algorithm 1) will be successful (i.e., pr = f(ag)— f(xr+sk) > 0) and thus Appq > Ay

Proof. We restrict our attention to the steps defined by the columns of AyBTY.
This is sufficient since the Hypotheses on Exploratory Moves ensure that a step s;
satisfying the simple decrease condition p;r > 0 must be returned if a trial step defined
by a column of A, Bl satisfies the simple decrease condition.

We first need some measure of the relative lengths of the steps defined by M} and
its negative —Mj. We begin by defining

k_ : i — : P = : J
"= min o} — | = min |lsi]| = min Al Bel
and
E* = max |z} — 24| = max ||si|| = max Ag||Bcl,
i=1,--,2n 1=1,-,2n J=1,n

where c}'c is restricted to be a column of M € M. (We assume that Py is partitioned as
in (3) so that the first 2n columns of P, contain the columns of [BI'y] = [BM) —BMy].)

Since |M| < 400, we can define 7 as

min;—; ..., || B|

" MeM max;_y....,, | Bl

where ¢’ is a column of M € M. Observe that 0 < 5 < 1. Then, for any 1 < 1,5 < 2n,

. . 1 | 1,
ok — el = Isill < B <~ < —lstll = ~flad — el

We define the contour C(zg) to be C(xo) = {x: f(x) = f(xo)}. Since z¢ € .,
Lemma 7.1 allows us to define N = min{k : x; # z0}. We then define d to be
d = dist (L(zn),C(z0)). Because L(xy) and C(xq) are compact and disjoint, we know
that d > 0. We now make the following claim:

CrAamm. Suppose k > N. If for somej =1,---,2n, H;L‘fc—ka < nd, then i, € L(zo)
foralli =1, ---,2n.

The proof of this claim is by straightforward application of the triangle inequality [20].

Let

a = min ||V f(z)].
By design, @ > 0. Since V[ is continuous on L(zg), Vf is uniformly continuous on
L(zo). Thus, there exists a constant r > 0, depending only on « and the ¢ from (14),
such that

IVf(z)— V(x| < %a whenever ||z — || <r (and z € L(xo)).
We define
(16) 8 =min{nd, r}.
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Now, assume k& > N and z;, € (.. Choose a trial point z}, i = 1,---,2n, that
satisfies both V f(xy)T (2% — ;) < 0 and

IV £ () (2] — 22)
IV el — el =

The definitions of ), and the pattern Py, together with Lemma 7.2, guarantee the
existence of at least one such xt.
The Mean Value Theorem tells us that f(zi) — f(x) = Vf(w)? (2}, — xx) for some

w € (zg,z}), whence

(17) Flay) = flan) = V(ai)T (2 — 2x) + (V(w) = V(zp) () — z5).

Consider the first term on the right-hand side of (17). Our choice of z} gives us

|V £ (@) (2 — 20)| > €IV (o)l — 2]l
Furthermore, since V f(z;)? (2} — x1) < 0, we have

(18) V(@) (@) — @) < =€V F(@e)lllzi = el

Now consider the second term on the right-hand side of (17). The Cauchy—Schwarz
inequality gives us

(19)  [(VFe) = V@) (el - o0)| < 19 5) = Vel — ol
Combine (18) and (19) to rewrite (17) as
(&) = Fa) < ~€19 Faolllek = oul + 19 ) = ¥ F o)l - o]
= (=EIV izl + IV (@) = V() Dlle), — @l

Since w € (zg,z}), once ||z8 — x| < &,

(20) Fai) = flan) < (ZEIVF )l + IVl 2k — 2l < 0.

Thus, when ||z}, — zx|| < &, f(z}) < f(x). The Hypotheses on Exploratory Moves
guarantee that if min{f(xzx +y),y € MBIy} < f(a), then f(ag + sx) < f(ag). Thus,
pr = f(xr) — f(zr + sx) > 0 and the algorithms for updating Ay (Algorithm 2) ensures
that Ak—i—l Z Ak

We invoke Lemma 3.1 to obtain

8" = ||z, — zill = llsill = CAx.

Thus, at any iteration & > N, if z; € Q. and Ay < ¢'/(,, then Apyy > Ag.
We close by noting that since iteration £ = N —1 is defined to be the first successful

5/
6 = min {AN_l, C_} 5

iteration, if we define



ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS 29

we are guaranteed that at any iteration k, if z; € Q. and 6 > Ay, then Apyy > Ay O

Proposition 7.4 guarantees that if Ay is small enough, a generalized pattern search
method will realize simple decrease because there exists at least one step among the 2n
steps defined by Ay BI'), that gives decrease as a function of the norm of the gradient at
the current iterate, as shown in (20); the Hypotheses on Exploratory Moves then ensure
that the exploratory moves algorithm must return a step that satisfies at least simple
decrease. However, there are no guarantees that the step returned by an exploratory
moves algorithm satisfies more than the simple decrease condition.

To tie the amount of actual decrease to the norm of the gradient, we must place
much stronger conditions on the generalized pattern search method, as discussed in
§3.3.2. Once we have done so, Corollary 7.5 follows more or less immediately from
Proposition 7.4.

COROLLARY 7.5. Suppose that L(xq) is compact and f is continuously differen-
tiable on L(xg). Suppose that the columns of the generating matriz are bounded in
norm and that the generalized pattern search method (Algorithm 1) enforces the Strong
Hypotheses on Exploratory Moves. Given € > 0, let

O ={x € L(xg) : dist(z, X,) > €}.

Suppose also that xg € Q.. Then there exist &' > 0 and o > 0, independent of k, such
that for all but finitely many k, if vy € Q. and Ay < &', then

f(ergn) < fae) = ol V(o) ll[skll < flz).

Proof. From Proposition 7.4, (20) says that for & > N = min{k : z; # o}
(Lemma 7.1 guarantees that N < +00), there exists at least one trial step si € A, BT
such that once ||st|| < &', where &' is as defined in (16), we have

f(@i) < flar) = SIVFEllllsill < f(es).
The Strong Hypotheses on the Exploratory Moves give us
Flar) < flaw) = SIV @)l llsill < Fze)-
Lemma 3.1 ensures that
flarr) < flax) = SCAV f(@e)] < fla).

Lemma 3.6, which holds only when the columns of the generating matrix are bounded
in norm, gives us

Flarn) < flan) = SOV Feolllsell < flan).

We define o = %Q@b* to complete the proof. 0O
We now prove Proposition 3.4.
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Proof. (Proposition 3.4.) By assumption, liminfy_ 4o ||V f(zk)|| # 0. Then we can
find Ny and € > 0 such that for all k£ > Ny, v € Q. = {& € L(xo) : dist(z, X,.) > €}.
Lemma 7.1 guarantees the existence of Ny = min{k : z; # xo}. Let N = max(Ny, Ny).

From Proposition 7.4 we are assured of 6 > 0 such that if Ay < 6, then the iteration
will be successful. Given Ay, there exists a constant p € Z, p > 0, such that §7Aq < 6.
Thus, for £ > N, P71 Aq < A4

Set Apg = 0min(0?Ag, Ay, -+, Ax_1). Then for all k, App < Ag. O
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ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS*
VIRGINIA TORCZONT'

Abstract. This paper gives a unifying, abstract generalization of pattern search methods for
solving nonlinear optimization problems. Pattern search methods are a class of direct search methods—
methods that neither require nor explicitly approximate derivatives. We use the abstract description
of pattern search methods to establish a global first-order stationary point convergence theory that
neither requires the directional derivative nor enforces a notion of sufficient decrease. We also discuss
the relationship between the convergence analysis for pattern search methods and the analysis for both
line search and model trust region globalization strategies; in particular, the fact that we can relax the
requirements on the acceptance of the step, at the expense of stronger conditions on the form of the
step, and still guarantee global convergence.

Key words. unconstrained optimization, convergence analysis, direct search methods, model
trust region methods, line search methods, globalization strategies, alternating directions, alternating
variable search, axial relaxation, local variation, coordinate search, response surface methodology,
evolutionary operation, pattern search, multidirectional search, downhill simplex search

AMS(MOS) subject classifications. 49D30, 65K05

1. Introduction. In this paper, we study methods that require neither the di-
rectional derivative nor an approximation to the directional derivative to solve the
unconstrained minimization problem

min f(z),
where f: R® — R. Such methods generally are referred to as direct search methods.

The purpose of this paper is to define and analyze a generalization of pattern search
methods, a particular subclass of direct search methods. We give a global first-order
stationary point convergence theory for pattern search methods, which, to our knowl-
edge, provides the first known convergence result for some of these methods, and the
first general convergence theory for all of them.

A unique feature of the convergence analysis we present is that we are able to
guarantee first-order stationary point convergence without an explicit representation of
the gradient or the directional derivative. In particular, we can prove convergence for
pattern search methods even though they do not explicitly enforce fraction of Cauchy
decrease, the Armijo—Goldstein—Wolfe conditions, or some other notion of sufficient
decrease, on their iterates. However, the global convergence analysis of these methods
also shows that they share several important features with both line search and model
trust region methods. We believe this to be somewhat subtle and unexpected.

* This research was sponsored by the Air Force Office of Scientific Research grant 89-0363, the United
States Air Force grant F49629-92-J-0203, and the Department of Energy grant DE-FG005-86ER25017.
This research was also supported in part by the Geophysical Parallel Computation Project under State
of Texas Contract #1059.

! Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77251~
1892.
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The important ideas for the convergence analysis for pattern search methods come
from the convergence analysis developed by Torczon [20] for the multidirectional search
algorithm of Dennis and Torczon [9, 19]. The main contribution of this paper is a concise
abstraction of the key ingredients necessary for a more general convergence theory.

For some time we have been aware that the same style of argument used to prove
global convergence for the multidirectional search algorithm could be applied, individ-
ually, to such classical algorithms as coordinate search, with fixed step sizes, variants of
response surface methodology, first developed by Box and Wilson [4] and later popular-
ized by Box [2, 3], and the original pattern search algorithm of Hooke and Jeeves [10].
The challenge was to develop an abstraction that both allowed for a general conver-
gence theory and explained why such algorithms, often viewed as disparate direct search
methods, could be analyzed using the same techniques. The goal was to show that these
methods were special cases of a generalized pattern search method. The convergence
analysis we present will make it clear why these methods are as robust as their propo-
nents have long claimed, while clarifying some of the limitations that have long been
ascribed to these methods. In addition, now that the key ingredients these methods
share have been identified, it is possible to develop new pattern search methods for
which the analysis holds.

The abstraction we present should make the important elements of the global con-
vergence theory much clearer than those found in [20]. Furthermore, we hope that the
unexpected parallels with classical convergence analysis for both line search and model
trust region methods now will be more evident. This paper also includes a new analytic
argument for the proposition, found in [20], stating that if the sequence of iterates is
uniformly bounded away from the set of stationary points of the function, then the
multidirectional search algorithm can visit only a finite number of points. (This result
has also been extended to generalized pattern search methods.) In addition, we include
a correction to the specification for the scaling factors found in [20].

In the next section we will establish the notation and general specification of pattern
search methods. In §3, we will prove that if the function to be minimized is continuously
differentiable, then pattern search methods guarantee weak first-order stationary point
convergence. In §4 we will discuss the relationship between the convergence theory
for pattern search methods and the convergence theory for line search and model trust
region methods. In §5 we will show that the classical pattern search methods mentioned
above, as well as the newer multidirectional search algorithm of Dennis and Torczon,
conform to the general specification for pattern search methods. In §6, we give some
concluding remarks; §7 contains technical results needed for the proofs of §3.

Notation. We will denote by R, Q, Z, and N the sets of real, rational, integer,
and natural numbers, respectively.
All norms will be Euclidean vector norms or the associated operator norm. We also

define L(xzg) = {z : f(z) < f(x0)} and

(1) X. = {z: Vf(z) = 0}.
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2. The Generalized Pattern Search Method. We begin by introducing the
following abstraction of pattern search methods. We defer to §5 demonstrations that
the pattern search methods mentioned above fall comfortably within this abstraction.

2.1. The Pattern. To define a pattern we need two components, a basis matrix
and a generating matrix.

The basis matrix can be any nonsingular matrix B € R™*™,

The generating matrix is a matrix C € Z"*P, where p > 2n. We partition the
generating matrix into components

(2) Cp=[ My —M, Ly]=[T% L]

We require that My € M C Z™"*", where M is a finite set of nonsingular matrices, and
that Ly € Z"**=?") and contains at least one column, the column of zeros.

A pattern Py is then defined by the columns of the matrix P, = B(C};. Because
both B and C} have rank n, the columns of P span R". For convenience, we use the
partition of the generating matrix C}, given in (2) to partition Py as follows:

(3) P.=BCy=[BM, —BM,; BL;|=]Bl'y BL;].
Given A, € R, A}, > 0, we define a trial step s, to be any vector of the form
(4) st = ALBc,,

where ¢! denotes a column of Cy = [ct---cf]. Note that B¢}, determines the direction
of the step, while Ay serves as a step length parameter.

At iteration k, we define a trial point as any point of the form z! = z; + si, where
zj 1s the current iterate.

The Exploratory Moves. Pattern search methods proceed by conducting a se-
ries of exploratory moves about the current iterate before declaring a new iterate and
updating the associated information. These moves can be viewed as sampling the func-
tion about the current iterate z; in a well-defined deterministic fashion in search of a
new iterate xy11 = xx + s; with a lower function value. The individual pattern search
methods are distinguished, in part, by the manner in which these exploratory moves
are conducted. To allow the broadest possible choice of exploratory moves, and yet still
maintain the properties required to prove convergence for the pattern search methods,
we place two requirements on the exploratory moves associated with any particular
pattern search method. These requirements are given in the following Hypotheses on
Exploratory Moves. (Please note an abuse of notation that is nonetheless convenient.
Throughout this paper, it A is a matrix, then the notation y € A will mean the vector
y is contained in the set of columns of A.)

The choice of exploratory moves must ensure two things:
1. The direction of any step s accepted at iteration k is defined by the pattern P;
and its length is determined by A;. Note that s; may be contained in Ay B Ly
rather than in A, BI';.
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Hypotheses on Exploratory Moves.
1. s, € AP, = AL,BC, = Ay, [BFk BLk]
2. Emin{f(zx +v), y € ApBUy} < fag), then f(zr + sp) < f(ak).

2. If simple decrease on the function value at the current iterate can be found
among any of the 2n trial steps defined by Ay BTy, then the exploratory moves
must produce a step s that also gives simple decrease on the function value
at the current iterate. Note that f(xy + si) need not be less than or equal
to min{f(zr + v), v € ApBl1}; s, only need satisfy f(axp + sp) < f(ag) if
min{f(zr +vy), y € ApeBl'y} < f(ag).

These are the properties of the exploratory moves that enable us to prove weak first-
order stationary point convergence by requiring only simple decrease on f, while avoid-
ing the necessity of enforcing either a fraction of Cauchy decrease or the Armijo—
Goldstein-Wolfe conditions on the iterates. To obtain a stronger result we need to
place stronger hypotheses on the exploratory moves, as well as placing a boundedness
condition on the columns of the generating matrices. These extensions will be discussed

further in §3.3.2.

The Generalized Pattern Search Method. We now specify the generalized
pattern search method for unconstrained minimization.

Algorithm 1. The Generalized Pattern Search Method.
Let g € R™ and Ag > 0 be given.

For k=0,1,---,
a) Compute f(xy).
b) Determine a step s using an exploratory moves algorithm.

)
¢) Compute pp = f(xr) — f(xk + sk).
d) If pr > 0 then xpy1 = xp + 5. Otherwise xpy1 = 4.
e) Update C} and A,

To define a pattern search method, it is necessary to specify the basis matrix B,
the generating matrix C}, the result s, of the exploratory moves, and the algorithms
for updating Cj and Ay.

The Updates. The aim of the updating algorithm for Ay is to force py > 0. An
iteration with py > 0 is successful; otherwise, the iteration is unsuccessful. Again we
note that to accept a step we only require simple, as opposed to sufficient, decrease.

Algorithm 2. Updating Ay.
Given 7 € Q, let § = 7% and A\, € A = {r*1,.-- 7%} where 7 > 1 and
{wo,wy, -+, wr} CZ, L =|A| <400, wg <0, and w; >0,2=1,---, L.

a) If pr <0 then Agpq = 0A,.

b) If Pr > 0 then Ak-l—l = M\ AL,

The conditions on # and A ensure that 0 < 8 < 1 and A; > 1 for all \; € A. Thus,
if an iteration is successful it may be possible to increase the step length parameter Ay,



ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS )

but Ay is not allowed to decrease. Not surprisingly, this is crucial to the success of the
analysis. Also crucial to the analysis is the relationship (overlooked in [20]) between 6
and the elements of A.

The algorithm for updating Cj will depend on the pattern search method. For
theoretical purposes, it is sufficient to choose the columns of Cj so that they satisfy (2)
and the conditions we have placed on the matrices M, € M C Z"*" and L, € Zx(p=2n),

3. The Convergence Theory. Having set up the machinery to define pattern
search methods, we are now ready to analyze these methods. This analysis will produce
theorems of several types. The first, developed in §3.1, demonstrates an algebraic fact
about the nature of pattern search methods that requires no assumption on the function
f. This theorem is critical to the proof of the convergence results for it shows that
we only need require simple decrease in f to ensure global convergence. The second
theorem, developed in §3.2, describes the limiting behavior of the step length control
parameter Ay if we place only a very mild condition on the function f and exploit the
interaction of the simple decrease condition for the generalized pattern search method
with the algorithm for updating Aj. Finally, the third and fourth theorems, developed
in §3.3, give the results for first-order stationary point convergence. The first theorem
guarantees weak first-order stationary point convergence for any generalized pattern
search method that satisfies the specifications given in §2. This is significant since the
theorem applies to all the pattern search methods we will discuss in §5 without the need
to impose any modifications on the methods as originally stated. The second theorem is
equivalent to convergence results for line search and trust region globalization strategies.
We can guarantee first-order stationary point convergence, but to do so requires placing
stronger conditions on the specifications for generalized pattern search methods. These
stronger conditions are immediately satisfied by only one of the pattern search methods
we will present (that due to G. E. P. Box and Wilson [4]). We could certainly impose
these stronger conditions on the remaining pattern search methods presented in §5—
none of them are unreasonable to suggest or to enforce—but we would do so at the
expense of attractive algorithmic features found in the original methods.

3.1. The Algebraic Structure of the Iterates. The results found in this section
are purely algebraic facts about the nature of pattern search methods; they are also
independent of the function to be optimized. 1t is the algebraic structure of the iterates
that allows us to prove global convergence for pattern search methods without imposing
a notion of either sufficient or Cauchy decrease on the iterates.

We begin by showing in what sense Ay is a step length parameter.

LEMMA 3.1. There exists a constant (. > 0, independent of k, such that for any
trial step st # 0 produced by a generalized pattern search method (Algorithm 1) we have

[E=erive

Proof. From (4) we have s; = A,Bc,. The conditions we have placed on the
generating matrix Cy insure that ¢, € Z".



6 VIRGINIA TORCZON

Let 0,(B) denote the smallest singular value of B. Then
st = Ael| Bl = Axow(B)llell = Aron(B).

The last inequality holds because at least one of the components of ¢! is a nonzero
integer, and hence ||ci|| > 1. O

From Lemma 3.1 we can see that the role of A; as a step length parameter is to
regulate backtracking and thus prevent excessively short steps.

THEOREM 3.2. Any iterate xy produced by a generalized pattern search method
(Algorithm 1) can be expressed in the following form:

N-1

TN =xo+ (ﬁ”Ba_TUB) AoB > z,

k=0

where
® g is the wnitial iterate,

Bla = 7, with a, € N and relatively prime, and 7 is as defined in the
algorithm for updating Ay (Algorithm 2),
e r;p and ryg depend on N,
o Aq s the initial choice for the step length control parameter,
o B is the basis matrixz, and
¢ 2, €Z2", k=0,--- N —1.

Proof. The generalized pattern search algorithm, as stated in Algorithm 1, guaran-
tees that any iterate xy is of the form
N-1

(5) TN = Zo+ Z Sk-

k=0

(We adopt the convention that s, = 0 if iteration k is unsuccessful.) We also know that
the step s, must come from the set of trial steps st, 7 = 1,---,p. The trial steps are of
the form st = ApBct.

Consider the step length parameter Ay. For any k& > 0, the update for Ay given in
Algorithm 2 guarantees that Ay is of the form

(6) A= 0NN N A,

where pi, € Z and p} > 0. (Recall that L = |A|.) We have also placed the following
restrictions on the form of 6 and A;: for a given 7 € Q, 7 > 1, and {wq, wy, -+, wr} C Z,

9:7—100’ wg < 0

and

We can thus rewrite (6) as:

(7) Ak — (Two)pg (Tw1 )p}ﬁ (Twz )pi . (TwL)pi' AO — TTkA(),
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where rp € Z. Let
8 rrg = min {r ryg = max {ry}.
(8) LB 0§k<N{ e} vB 0§k<N{ 3

Then from (5) and (7) we have

N-1 N-1
TN = T + Z ApBep = g + AgB Z Tk .
k=0 k=0

Since 7 is rational, we can express T as T = g, where a, 3 € N are relatively prime.

Then, using (8),

N-1
(9) TN =0+ (ﬁ”Ba_TUB) AoB Y z,

k=0
where z, € Z™. [

Theorem 3.2 synthesizes the requirements we have placed on the pattern, the defi-
nition of the trial steps, and the algorithm for updating Aj. Note that this means that
for a fixed N, all the iterates lie on a translated integer lattice generated by z¢ and the
columns of B"LBa™"VB AgB.

3.2. The Limiting Behavior of the Step Length Control Parameter. The
next theorem combines the strict algebraic structure of the iterates with the simple
decrease condition of the generalized pattern search algorithm, along with the algorithm
for updating Ag, to give us a useful fact about the limiting behavior of Aj.

THEOREM 3.3. Assume that L(xq) is compact. Then liminf,_ ;o Ar = 0.

Proof. The proof is by contradiction. Suppose 0 < Apg < Ay for all k. From (7)
we know that Ay can be written as A, = 7"#*Aq, where r; € Z.

The hypothesis that Apg < Ay for all £ means that the sequence {77*} is bounded
away from zero. Meanwhile, we also know that the sequence {Ay} is bounded above
because all the iterates x; must lie inside the set L(zg) and the latter set is compact;
Lemma 3.1 then guarantees an upper bound Ay g < +oco for {A,}. This, in turn, means
that the sequence {77#} is bounded above. Consequently, the sequence {77%} is a finite
set. Equivalently, the sequence {r.} is bounded above and below.

Let

(10) rLB = oglggiloo{rk} TUB = ogr??i(oo{rk}'

Then (9) now holds for the bounds given in (10), rather than (8), and we see that for
all k, z; lies in the translated integer lattice G generated by zy and the columns of
/BTLBQ_TUB AOB‘

The intersection of the compact set L(xq) with the translated integer lattice G is
finite. Thus, there must exist at least one point x. in the lattice for which z, = z, for
infinitely many k.

We now appeal to the simple decrease condition in the generalized pattern search
method (Algorithm 1, d), which guarantees that a lattice point cannot be revisited
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infinitely many times since we accept a new step s; if and only if f(xy) > f(xx + sk).
Thus there exists an N such that for all £ > N, z; = z., which implies that p; = 0.

We now appeal to the algorithm for updating A, (Algorithm 2, a) to see that
Ay — 0, thus leading to a contradiction. 0O

3.3. First-Order Stationary Point Convergence. Throughout the discussion
in this section, we assume that f is continuously differentiable on L(z¢); however, this
assumption can be weakened, as we shall discuss further in §4.

3.3.1. The General Result. To prove Theorem 3.5 we need Proposition 3.4. We
defer the proof of this proposition to §7 in part because we wish to discuss there several
other issues that are tangential to the proof of Theorem 3.5. It is also the case that
the proof of this result is similar in style to that given for the equivalent result found
in [20], though now restated more succinctly in terms of the machinery we developed
in §2.

PROPOSITION 3.4. Assume that L(xg) is compact, that f is continuously differ-
entiable on L(xo), and that liminfy_ o ||V f(zk)|| # 0. Then there exists a constant
Arg > 0 such that for all k, A, > App.

We emphasize that the existence of a lower bound Appg for Ay is guaranteed only under
the null hypothesis that liminf,_ o ||V f(2)| # 0.

THEOREM 3.5. Assume that L(xg) is compact and that f : R™ — R is continu-
ously differentiable on L(xzg). Then for the sequence of iterates {xy} produced by the
generalized pattern search method (Algorithm 1),

liminf [V f(zy)]| = 0.

Proof. The proof is by contradiction. Suppose that liminfy_ ;e ||V f(2r)|| # 0.
Then Proposition 3.4 tells us that there exists App > 0 such that Ay > Apg. But this
contradicts Theorem 3.3. 0O

3.3.2. The Stronger Result. We can strengthen the result given in Theorem 3.5
at the expense of wider applicability. To begin with, we must add three further restric-
tions: one on the pattern matrix, one on the hypotheses on the exploratory moves, and
one on the limiting behavior of the step length control parameter Ay.

First, we must ensure that the columns of the generating matrix C} are bounded
in norm, i.e., that there exists a constant C > 0 such that for all k&, C > ||ci||, for all
¢t =1,---,p. Given this bound, we can place an upper bound, in terms of Ay, on the
norm of any trial step s.

LEMMA 3.6. Given a constant C > 0 such that for all k, C > ||ci||, for all
t = 1,---,p, there exists a constant 1, > 0, independent of k, such that for any trial
step si. produced by a generalized pattern search method (Algorithm 1) we have

A > ulsil-
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Proof. From (4) we have st = ApBci. Then ||si| = Ag||Bck| < Al Bll||cy] <
ALC||B||. Set ¥, = m. 0

Note that the columns of M), € M are bounded by the assumption that |[M| < 4o0;
we use this fact in the proof of Proposition 7.4. The stronger boundedness condition
on the columns of Cy = [My —M} Lg| is needed to monitor the behavior of Ly.

Second, we must replace the original Hypotheses on Exploratory Moves with a
stronger version, as given below. Together, Lemma 3.6 and the Strong Hypotheses on

Strong Hypotheses on Exploratory Moves.
1. s, € AP, = A, BC, = A, [BFk BLk]
2. fmin{f(zr +v), y € ApBTy} < f(x), then
flar + sp) <min{f(axr +vy), y € AgBI:}.

Exploratory Moves allow us to tie decrease in f to the norm of the gradient when the
step sizes get small enough. This is the import of Corollary 7.5, which is given in §7.

Third, we require that limg_ . Ary = 0. We can use the algorithm for updating
Ay (Algorithm 2) to ensure that this condition holds. For instance, we can force Ay
to be nonincreasing by requiring w; = 0, ¢ = 1,---, L, which when taken together with
Theorem 3.3 guarantees that limy_ ;.o Ax = 0. All the algorithms we will consider
in §5, except the multidirectional search algorithm, enforce this condition by limiting
A = {1} = {r°}. However, it is not necessary to force the steps to be nonincreasing;
we need only require that in the limit the step length control parameter goes to zero,
which, in conjunction with Lemmas 3.1 and 3.6, has the effect of ultimately forcing the
steps to zero.

THEOREM 3.7. Assume that L(xg) is compact and that f : R* — R is continuously
differentiable on L(xo). In addition, assume that the columns of the generating matrix
are bounded in norm, that the generalized pattern search method (Algorithm 1) enforces
the Strong Hypotheses on Fzxploratory Moves, and that limg_ ., Ay = 0. Then for the
sequence of iterates {xy} produced by the generalized pattern search method,

lim ||V /()| = 0.

k—+o0

Proof. The proof is by contradiction. Suppose limsup,_ . [|[Vf(ze)| # 0. Let
e > 0 be such that there exists a subsequence ||V f(z.,,)|| > ¢. Since

liminf |V f(zg)]| =0,

k—4oc0

given any 0 < 7 < ¢, there exists an associated subsequence [; such that
IVf (@)l >0 for mi <k <L, ||V f(x)]l <n.

Then, since Ay — 0, we can appeal to Corollary 7.5 to obtain for m; < k < [;, ¢
sufficiently large,

F(@r) = f(2rg) 2 o[V (o) lllskll = onllskll,



10 VIRGINIA TORCZON

where o > 0. Then the telescoping sum:

(Fm) = )+ (Famen) = fomn)) o (i) = f@)) 2 3 onlli]

k=m,;

gives us

f(@m,) — flay) > Eécl:mz onlsell = l|zm, — 1]

Since f(@m,) — f(z1,) — 0 as i — 400, ||&;m, — 21| — 0 as ¢ — +o00. Then, because V f
is uniformly continuous,

IV (@) — V()

| <,

for ¢ sufficiently large. However,

(11) IVI@m) Il < IV F(2m) = V()

|+ IV £(z)

| <21.

Since (11) must hold for any 7, 0 < 7 < ¢, we have a contradiction (e.g., try n = £). 0

The proof of Theorem 3.7 is almost identical to that of an equivalent result for trust
region methods that was first given by Thomas [18] and which is included, in a more
general form, in the survey by Moré [11].

One final note: the hypotheses of Theorem 3.7 suggest that in the absence of any
explicit higher-order information about the function to be minimized, it makes sense to
terminate a generalized pattern search algorithm when Ay is less than some reasonably
small tolerance. In fact, this is a common stopping condition for algorithms of this sort
and the one implemented for the multidirectional search algorithm [21].

4. Parallels with Line Search and Model Trust Region Theory. The global
convergence analysis we have just presented for pattern search methods shares similar-
ities with the global convergence analysis for both line search and model trust region
methods.

Parallels with the line search theory are perhaps most obvious and are discussed in
[20]. The outline for the convergence theory follows the outline for global convergence
theorems as detailed by Ortega and Rheinboldt [14] and reviewed in the survey by
Nocedal [13]: we consider iterations of the form 11 = xp + s where sp € ApFPy; the
columns of P determine the search directions and Ay serves as a step length parameter.
In §7.1 we show that pattern search methods are descent methods (as defined in either
[8] or [14]) by showing that if z) is not a stationary point of the function then the
generalized pattern search method guarantees decrease in the value of the objective
function in a finite number of iterations. We then provide, in §7.2, a measure of the
goodness of the search direction by showing that pattern search methods are gradient-
related methods (as defined in [14]). Finally, in Theorem 3.3 and Proposition 3.4, we
consider the length of the step.

Given these major components for the convergence analysis, the one that is most
unusual is that involving the step length control. For a standard line search iteration, the
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strategy for choosing the step relies on satistfying the Armijo—Goldstein—Wolfe conditions
for sufficient decrease: the step length Ay is chosen to satisfy

Flae + Arpr) < flag) + a1 AV f2) pr

V(x4 Arpr) o > 0oV () pr,

where p; is the search direction and the constants o7 and o, are chosen to satisty
0 < 01 < 03 < 1. The first condition prevents very small decreases in the function
values relative to the lengths of the steps taken. The second condition prevents steps
that are too small relative to the initial rate of decrease of f. The standard convergence
analysis then proceeds on the assumption that these conditions for sufficient decrease
have been satisfied.

The obvious difficulty that arises in any attempt to extend the notion of sufficient
decrease to an iteration of any direct search method is that enforcement of the Armijo—
Goldstein—Wolfe conditions requires the directional derivative—information that the
direct search methods do not otherwise require.t

The point of both Theorem 3.2 and Theorem 3.3 is that the Armijo—Goldstein—
Wolfe conditions need not be enforced to guarantee weak first-order stationary point
convergence. The reason is that pattern search methods place strict limitations on the
choice of both the search directions and the step lengths. The set of search directions is
limited to the columns of Py. The step length parameter Ay must be a multiple of Ay,
0, and A € A. These restrictions guarantee an underlying lattice structure as stated in
Theorem 3.2. Once again we stress that this lattice structure is a purely algebraic fact
about the nature of pattern search methods.

What does this algebraic structure mean for the convergence analysis? The answer
lies in the simple control mechanisms imposed by the Hypotheses on the Exploratory
Moves and the update algorithm for A, (Algorithm 2). The Hypotheses on the Ex-
ploratory Moves require that if simple decrease can be found for some one of the steps
defined by I'x, then the exploratory moves must return a step that gives simple decrease.
This step can be defined by any column of the generating matrix. If we are lucky and
guess right, we may only have to consider a single step at any given iteration; however,
in the worst case we may have to consider all 2n steps defined by I'y. The role of the
algorithm for updating Ay is to ensure that Ay is reduced only when the exploratory
moves algorithm fails to produce a step that gives simple decrease on the value of the
objective function.

The combination of these two mechanisms:

e Hypotheses on the Exploratory Moves

e Algorithm 2 for updating Ay
introduces backtracking into the generalized pattern search methods, which prevents
steps that are too short. This is the import of Lemma 3.1.

! The analysis in [22] enforces a notion of sufficient decrease by imposing on the methods an “error-
controlling sequence” that does not exist in the original algorithms. No suggestions are provided on
how to construct such a sequence in practice.
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The backtracking feature of the generalized pattern search methods is also critical
because it guarantees that descent will be realized if the current iterate is not a sta-
tionary point of the function. The matrix Iy guarantees that a descent direction exists,
even if we are not sure which of the 2n directions it may be. Thus we are assured
that the pattern search methods will produce descent once A becomes small enough.
However, the second of the Hypotheses on Exploratory Moves also prevents Aj from
becoming unnecessarily fine if decrease can be found for one of the trial steps defined
by AxT'x and thereby ensures that {z;} cannot bog down at points not included in X,.

The net effect of the algebraic structure of the pattern search methods, when com-
bined with the Hypothesis on the Exploratory Moves and the algorithm for updating
Ay, is to ensure that the pathologies which might otherwise occur were the Armijo—
Goldstein—Wolfe conditions to be ignored (see [8]) cannot happen. These simple, if
non-standard, mechanisms prevent the well-known pathologies that can arise if the
length of the steps is not monitored.

Parallels with the global convergence theory for model trust region methods are
perhaps less obvious. In fact, there is some temptation to call the pattern search
methods sample trust region methods. This arises from the observation that in the
basic version of each of the algorithms covered in §5, all possible steps can be seen to
lie on the boundary of a trust region in a weighted [, norm. We weight the norm by
using the inverse of the basis matrix B. (Recall that the basis matrix is required to be
nonsingular.) Thus, for all the pattern search methods (ignoring the acceleration steps
found in the Hooke and Jeeves algorithm and the multidirectional search algorithm,
which lie outside the trust region radius) all steps satisfy ||B7!s{|l.c = A. In essence,
Ay gives the radius of the region within which we trust our sampling to be effective.
It the sampling does not produce simple decrease, we reduce the radius of the trust
region.

It is worth comparing the global first-order stationary point convergence results for
trust region methods and generalized pattern search methods. Roughly speaking, the
result due to Powell [15] says that

lim inf ; =

im inf ||V f(zx) ]| = 0

assuming that V f is continuous and the Hessian (or its approximation) remains uni-
formly bounded. Thomas [18] assumes, in addition, that V f is uniformly continuous
to prove that

Jim [V ()] =0
Neither result requires L(xg) to be compact; instead, f must be bounded below. We have
shown comparable results for pattern search methods in Theorems 3.5 and 3.7 under
the hypothesis that L(z¢) is compact. The gap between Theorem 3.5 and Theorem 3.7
is due to the fact that while model trust regions link decrease in f to the norm of
the gradient, the generalized pattern search methods do not explicitly enforce such
a condition. Only when we place stronger conditions on the generating matrix, the
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Hypotheses on the Exploratory Moves, and the limiting behavior of A, which together
have the effect of implicitly linking decrease in f to the norm of the gradient, can we
obtain the stronger convergence result. Nonetheless, it is perhaps surprising that we
can prove any such convergence theorem for pattern search methods.

Having noted the unexpected similarities between pattern search methods and line
search and trust region methods, we now note one critical difference: the step control
mechanism for pattern search methods, however modest, is always active. Line search
and model trust region strategies are extensions to Newton or quasi-Newton methods
motivated by a need to ensure global convergence. These extensions are designed so
that the step length control mechanism introduced by the line search or model trust
region strategy “turns oftf” and the full Newton or quasi-Newton step is accepted once
the local quadratic model of the function is deemed reliable. Thus, the fast local
convergence properties of these algorithms are assured. However, at best the pattern
search methods are relying on implicit information about the gradient; they do not
construct local quadratic models of the function. The only natural notion of a full step
is that given by A;. As has long been recognized [16], this means that pattern search
methods do not enjoy fast local convergence properties. When using these methods one
trades speed of convergence for robustness and wider applicability.

One other point worth making is that pattern search methods are well-defined
even when the function to be minimized is not differentiable. It is trivial to extend
Theorem 3.5 to handle functions that are nondifferentiable; we need only modity the
set X.. This is reassuring in light of the fact that those who rely on these methods
typically only assume that the function is continuous. The modifications required are
discussed in further detail in [20]. The only qualification to be made is that the resulting
theorem is not a general result for the nonsmooth case; rather, it is an extension of the
result for the smooth case. Because the uniform continuity of the gradient over

Q. ={z € L(x) : dist(z, X,) > €}.

is necessary for the proof of Theorem 3.5, the definition of X, given in (1) must include
not only the stationary points of the function, but also the points where the function
is nondifferentiable and where the gradient exists but is not continuous.

5. The Particular Pattern Search Methods. In §2 we stated the conditions
an algorithm must satisfy to be a pattern search method. We now illustrate these
conditions by considering the following specific algorithms:

e coordinate search with fixed step lengths,

e searches based on two-level factorial designs (see [4] and [5]),

e the original pattern search method of Hooke and Jeeves [10], and

e the multidirectional search algorithm of Dennis and Torczon ([9] and [19]).
We will show that these algorithms satisfy the conditions that define pattern search
methods and thus are special cases of the generalized pattern search method presented
as Algorithm 1. Then we can appeal to Theorem 3.5 to claim weak first-order stationary
point convergence for these methods.
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There are undoubtedly other algorithms for which the abstraction and accompany-
ing analysis holds—including various modifications to the algorithms presented—but we
shall confine our investigation to these, the best known of the pattern search methods,
to illustrate the power of our abstract approach to pattern search methods.

5.1. Coordinate Search with Fixed Step Lengths. The method of coordinate
search is the simplest and most obvious of all the pattern search methods. Davidon de-
scribes it concisely in the opening of his belated preface to Argonne National Laboratory
Research and Development Report 5990 [7]:

Enrico Fermi and Nicholas Metropolis used one of the first digital com-
puters, the Los Alamos Maniac, to determine which values of certain
theoretical parameters (phase shifts) best fit experimental data (scat-
tering cross sections). They varied one theoretical parameter at a time
by steps of the same magnitude, and when no such increase or decrease
in any one parameter further improved the fit to the experimental data,
they halved the step size and repeated the process until the steps were
deemed sufficiently small. Their simple procedure was slow but sure....

This simple search method enjoys many names, among them alternating directions,
alternating variable search, axial relazation, and local variation. We shall refer to it as
coordinate search.

Perhaps less obvious is that coordinate search is a pattern search method. To see
this, we begin by considering all possible outcomes for a single iteration of coordinate
search when n = 2, as shown in Fig. 1. We mark the current iterate z;. The z’s
denote trial points considered during the course of the iteration. The next iterate xj14
is marked. Solid circles indicate successful intermediate steps taken during the course
of the iteration while open circles indicate points at which the function was evaluated
but that did not produce further decrease in the value of the objective function. Thus,
in the first scenario shown a step from zj to x} resulted in a decrease in the objective
function, so the step from z} to x4, was tried and led to a further decrease in the
objective function value. The iteration was then terminated with a new point zjyq
that satisfies the simple decrease condition f(xr41) < f(xr). In the worst case, the last
scenario shown, 2n trial points were evaluated (z}, z}, 23, and xi‘) without producing
decrease in the function value at the current iterate x;. In this case, vry; = x; and the
step size must be reduced for the next iteration.

We now show this algorithm is an instance of a generalized pattern search method.

5.1.1. The Matrices. Coordinate search is usually defined so that the basis ma-
trix is the identity matrix; i.e., B = I. However, knowledge of the problem may lead
to a different choice for the basis matrix. It may make sense to search using a different
coordinate system. For instance, if the variables are known to differ by several orders
of magnitude, this can be taken into account in the choice of the basis matrix (though,
as we will see in §7.2, this may have a significant effect on the behavior of the method).

The generating matrix for coordinate search is fixed across all iterations of the
method. The generating matrix C = C contains in its columns all possible combina-
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Fi1G. 1. All possible subsets of the steps for coordinate search in R2.

tions of {—1,0,1}. Thus, C has p = 3" columns. In particular, the columns of C will
contain both [ and —1, as well as a column of zeros. We define M = I; L consists of the
remaining 3" — 2n columns of C'. Since C is fixed across all iterations of the method,
there is no need for an update algorithm.

For n = 2 we have

O 1 0 -1 0 1 1 -1 -1 0
N 0o 1 0 -1 1 -1 -1 1 0
Thus, when n = 2, all possible trial points defined by the pattern P = BC', for a given

step length Ag, can be seen in Fig. 2. Note that the pattern includes all the possible
trial points enumerated in Fig. 1.

5.1.2. The Exploratory Moves. The exploratory moves for coordinate search
are given in Algorithm 3, where the e;’s denote the unit coordinate vectors.

The exploratory moves are executed sequentially in the sense that the selection of
the next trial step is based on the success or failure of the previous trial step. Thus,
while there are 3" possible trial steps, we may compute as few as n trial steps, but we
compute no more than 2n at any given iteration, as we saw in Fig. 1.
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Ay

Lk

Fi1G. 2. The pattern for coordinate search in R? with a given step length Ay.

Algorithm 3. Exploratory Moves Algorithm for Coordinate Search.
Given g, Ak, f(x), and B, set s, =0, pr = 0, and min = f(xy).
For:=1,---,n do
a) st = s, + ApBe; and 2z, = x5 + st. Compute f(z}).
b) If f(zi) < min then p, = f(xx) — f(zL), min = f(zi), and s; = s..
Otherwise,
i) st = s, — ApBe; and zt = z;, + si.. Compute f(z}).
i) If f(z}) < min then py = f(zx) — f(a}), min = f(z}), and s, = si.
Return.

From the perspective of the theory, there are two conditions that need to be met
by the exploratory moves algorithm. First, as Figs. 1 and 2 illustrate, all possible trial
steps are contained in AyP.

The second condition on the exploratory moves is the more interesting; coordinate
search demonstrates the laxity of this second hypothesis. For instance, in the first
scenario shown in Fig. 1, decrease in the objective function was realized for the first

Si = Ak] (é) 5
so the second trial step

1 1 0

was tried, and accepted. It is certainly possible that greater decrease in the value of

trial step

the objective function might have been realized for the trial step

S;C = Ak] (?) 5

which is defined by a column in the matrix M (the step s} is defined by a column in the
matrix L), but s, is not tried when simple decrease is realized by the step si. However,
in the worst case, as seen in Fig. 1, the algorithm for coordinate search ensures that all
2n steps defined by Ay BI' = Ay B[M —M| = A, B[I —1] are tried before returning the
step sy = 0. In other words, the exploratory moves given in Algorithm 3 will examine
all 2n steps defined by Ay BI' unless a step satisfying f(zx + sx) < f(xx) is found.
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5.1.3. Updating the Step Length. The update for A is exactly as given in
Algorithm 2. As noted by Davidon, the usual practice is to continue with steps of the
same magnitude until no further decrease in the objective function is realized, at which
point the step size is halved. This corresponds to setting § = 1/2 and A = {1}. Thus,
T =2, wy=—1, and wy; = 0.

This suffices to verify that coordinate search with fixed step length is a pattern
search method. Theorem 3.5 thus holds. The exploratory moves algorithm for coordi-
nate search would need to be modified to satisty the Strong Hypotheses on Exploratory
Moves for the conditions of Theorem 3.7 to be met, though this is a straightforward
modification.

5.2. Response Surface Methodology. In 1951, Box and Wilson [4] introduced
the notion of “response surface methodology” as a way to investigate an objective func-
tion by performing function evaluations at the vertices of some geometric configuration
in the space of independent variables. This paper prepared the way for the development
of direct search methods, in general, and what we now call pattern search methods, in
particular.

In its earliest forms, response surface methodology was based on two-level factorial
designs: evaluate the function at the vertices of a hypercube centered about the current
iterate. (In fact, Box refers to this as one of a variety of “pattern of variants” [3].) If
simple decrease in the value of the objective function is observed at one of the vertices,
it becomes the new iterate. Otherwise, the lengths of the edges in the hypercube are
halved and the process is repeated. Further discussions of the basic approach can be

found in [5] and [17].

5.2.1. The Matrices. As with coordinate search, the usual choice for the basis
matrix is B = [, though, as with coordinate search, other choices may be made to
reflect information known about the problem to be solved.

The generating matrix for response surface methodology is fixed across all iterations
of the method. The generating matrix Cy = C contains in its columns all possible
combinations of {—1,1}; to this we append a column of zeros. Thus C has p = 2" + 1
columns.

We take M to be any linearly independent subset of n columns of C'; — M necessarily
will be contained in C'. Once again, L is fixed and consists of the remaining (2" 4 1) —2n
columns of C.

Since the generating matrix is fixed, there is no need for an algorithm to update C'.

5.2.2. The Exploratory Moves. The exploratory moves given in Algorithm 4
are simultaneous in the sense that every possible trial step s € A P = A,BC is
computed at each iteration. It is then the case that every trial step si is contained in
A, P. The second observation of note is that since

sk = arg min{f(z} + s})},
sieALP
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then, if min{f(xx + vy),y € AxBI'} < f(xg), we have f(xr + sx) < f(xk), regardless
of our choice of M (and thus, by extension, our choice of I'). Furthermore, we are
guaranteed that the Strong Hypotheses on Exploratory Moves are satisfied.

Algorithm 4. Exploratory Moves Algorithm for Response Surface Methodology.
Given g, Ay, f(zg), B, and C = [c¢'---cP], set s, =0, pr = 0, and min = f(xy).
For:=1,---,2" do

a) st = AyBc' and zi = x), + si. Compute f(z}).

b) If f(zi) < min then p, = f(xx) — f(zi), min = f(zl), and s; = s..
Return.

5.2.3. Updating the Step Length. The algorithm for updating Ay is exactly
as given in Algorithm 2, with 6 usually set to 1/2 and A = {1}.

Since we have shown that response surface methodology satisfies all the necessary
requirements, we can therefore conclude that it, too, is a pattern search method, so
Theorem 3.5 holds. The algorithm, as stated above, also satisfies the conditions of

Theorem 3.7.

5.3. Hooke and Jeeves’ Pattern Search Algorithm. In addition to introduc-
ing the general notion of a “direct search” method, Hooke and Jeeves introduced the
pattern search method—a specific kind of search strategy—in their 1961 paper [10]. The
pattern search of Hooke and Jeeves is essentially a variant of coordinate search that
incorporates a pattern step in an attempt to accelerate the progress of the algorithm by
exploiting information gained from the search during previous successful iterations.

The Hooke and Jeeves pattern search algorithm is opportunistic. If the previous
iteration was successful (i.e., px—1 > 0), then the current iteration begins by conducting
coordinate search about a speculative iterate xy + (x5 — xx—1), rather than about the
current iterate xy. This is the pattern step. The idea is to investigate whether further
progress is possible in the general direction xy —x,_1 (since, if x # xj_1, then xp — a1
is clearly a promising direction).

To make this a little clearer, we consider the example shown in Fig. 3. Given

T+ (25 — 2p_1)

Tk

Tk-1

F1a. 3. The pattern step in R?, given x, # x5_1, k > 0.

zr—1 and zj (we assume, for now, that & > 0 and that x; # x_1), the pattern search
algorithm takes the step xy — x;_1 from xj. The function is evaluated at this trial step
and it is accepted, temporarily, even if f(xr + (xx — x4-1)) > f(xx). The Hooke and
Jeeves pattern search algorithm then proceeds to conduct coordinate search about the
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temporary iterate xy + () — xx_1). Thus, in R?, the exploratory moves are exactly as
shown in Fig. 1, but with xy + (2 — 24—1) substituted for x.

If coordinate search about the temporary iterate ay + (x5 — x—1) is successful, then
the point returned by coordinate search about the temporary iterate is accepted as the
new iterate xpyq. If not, ie., f((zr + (2x — xk—1)) + sx) > f(xr), then the pattern
step is deemed unsuccessful, and the method reduces to coordinate search about xy.
For the two dimensional case, then, the exploratory moves would simply resort to the
possibilities shown in Fig. 1.

If the previous iteration was not successful, so vy = xx_1 and (xy — x4—1) = 0, then
the iteration is limited to coordinate search about x;. In this instance, though, the
updating algorithm for A, will have reduced the size of the step (i.e., Ay = 0A,_1).
The algorithm does not execute the pattern step when k& = 0.

To express the pattern search algorithm within the framework we have developed,
we use all the machinery required for coordinate search. Once again, the basis matrix
is usually defined to be B = I. We append to the generating matrix another set of 3"
columns to capture the effect of the pattern step and we change the exploratory moves
algorithm, as detailed below.

5.3.1. The Generating Matrix. Recall that the generating matrix for coordi-
nate search consists of all possible combinations of {—1,0,1} and is never changed.
For the Hooke and Jeeves pattern search method, we allow the generating matrix to
change from iteration to iteration to capture the effect of the pattern step. We append
another set of 3" columns, consisting of all possible combinations of {—1,0,1}, to the
initial generating matrix for coordinate search. Thus Cj has p = 2 - 3" columns. The
additional 3" columns allow us to express the effect of the pattern step with respect to
xy, rather than with respect to the temporary iterate xy + (xx — x4—1), which is how
the Hooke and Jeeves pattern search method usually is described. The matrix M is
unchanged; M = I. Now, however, L, € Z"*?=2%) is allowed to vary, though only in
the 3" columns associated with the pattern step. For n = 2,

1 0-1 01 1I-1-10

. B 1 0-1 01 1—-1-1 0
(12) Co= 061 0-11-1-1 10 01 0-1 1-1-1 1 0"

For notational convenience, we require that the last column of Cy, which we denote
as ¢(, be the column of zeros. In both the algorithm for updating C) (Algorithm 5)
and the algorithm for the exploratory moves (Algorithm 6), we use the column ¢ to
measure the accumulation of a sequence of successful pattern steps. This can be seen,

in (13), for our example from Fig. 3. In this example, we have the generating matrix

1

_ [ 10-1 01 1-1-110 2 0
(13)  Ch= 1 2 1

0
01 0-1 1-1-1 10 1

1 1 2 20
2 02 00

The pattern step (z — xj_1) is represented by the vector (1 1)7, seen in the last column
of Cy. Note that the only difference between the columns of Cy given in (12) and the
columns of C}, given in (13) is that (1 1)T has been added to the last 3% columns of .
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The algorithm for updating the generating matrix updates the last 3" columns
of Cy; the first 3" columns remain unchanged, as in coordinate search. The purpose
of the updating algorithm is to incorporate the result of the search at the current
iteration into the pattern for the next iteration. This is done using Algorithm 5. Note
the distinguished role of ¢f, the last column of Cj, which represents the pattern step

(.fL’k — .fL’k_l).

Algorithm 5. Updating C}.
For: =3"+1,---,2-3" do

g1 = G+ (1/Ar)sk — ¢
Return.

Since (1/Af)sy is necessarily a column of Ci, and Cy € Z"*?  an argument by
induction shows that the update algorithm for C} ensures that the columns of Cj
always consist of integers.

5.3.2. The Exploratory Moves. In Algorithm 6, the e;’s denote the unit coor-
dinate vectors and ¢/ denotes the last column of C,. We set p_; = 0 so that py_q is
defined when k = 0.

A useful example for working through the logic of the algorithm can be found in
[1], though the presentation and notation differ somewhat from that given here.

Algorithm 6. Exploratory Moves Algorithm for Hooke and Jeeves.
Given i, Ak, f(xr), B, and py_1, set pr, = pr—1 and min = f(xy).
If pr > 0 then set s, = ApBce), pr = f(ar) — f(ar + sk), and min = f(xr + si).
For:=1,---,n do
a) st = sy + ApBe; and zt, = x;, + si. Compute f(z%).
b) If f(2%) < min then p, = f(zx) — f(2L), min = f(zl), and s; = st.
Otherwise,
i) st = sy — AgBe; and zi = z + s;. Compute f(zi).
ii) If f(2%) < min then p, = f(zx) — f(zl), min = f(zl), and s; = s..
If pr <0 then set s, =0, pr =0, and min = f(xy).
For:=1,---,n do
a) st = sy + ApBe; and z% = z), + si. Compute f(z%).
b) If f(2%) < min then p, = f(zx) — f(2L), min = f(zl), and s; = s..
Otherwise,
i) st =s, — AgBe; and z}, = z + si. Compute f(z}).
i) If f(2%) < min then p, = f(zx) — f(zl), min = f(zl), and s; = s..
Return.

All possible steps are contained in Ay Py since C} contains columns that represent
the “pattern steps” tried at the beginning of the iteration. And, once again, the ex-
ploratory moves given in Algorithm 6 will examine all 2n steps defined by Ay BI' unless
a step satisfying f(xx + sx) < f(xx) is found.
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Since we have shown that the pattern search algorithm of Hooke and Jeeves satisfies
all the necessary requirements, we can therefore conclude that it, too, is a special case
of the generalized pattern search method and Theorem 3.5 holds.

5.4. Multidirectional Search. The multidirectional search algorithm was intro-
duced by Dennis and Torczon in 1989 [19] as a first step towards a general purpose
optimization algorithm with promising properties for parallel computation. While sub-
sequent work led to a class of algorithms, based on the multidirectional search algorithm,
that allows for more flexible computation ([9] and [21]) one of the unanticipated results
of the original research was a weak first-order stationary point convergence theorem for
the multidirectional search algorithm [20].

The multidirectional search algorithm is a simplex-based algorithm. The pattern of
points can be expressed as a simplex (i.e., n + 1 points, or vertices) based at the current
iterate; as such, multidirectional search owes much in its conception to its predecessors,
the simplex design algorithm of Spendley, Hext, and Himsworth [16] and the simplex
algorithm of Nelder and Mead [12]. However, multidirectional search is a different
algorithm—particularly from a theoretical standpoint. Convergence for the Spendley,
Hext and Himsworth algorithm can be shown only with some modification of the original
algorithm, and then only under the additional assumption that the function f is convex.
There are numerical examples to demonstrate that the Nelder-Mead simplex algorithm
may fail to converge to a stationary point of the function because the uniform linear
independence property (discussed in §7.2), which plays a key role in the convergence
analysis, cannot be guaranteed to hold [19].

The multidirectional search algorithm is described in detail in both [9] and [20].
The formulation given here is different and, in fact, introduces some redundancy that
can be eliminated when actually implementing the algorithm. However, the way of
expressing the algorithm that we will use here allows us to make clear the similarities
between this and other pattern search methods.

5.4.1. The Matrices. It is most natural to express multidirectional search in
terms of multiple basis matrices By and a fized generating matrix C', which is at odds
with our definition for generalized pattern search methods. As we shall see, however,
it is possible to convert the more natural specification to one that conforms to our
requirements for a pattern search method.

The multidirectional search algorithm centers around a family of basis matrices
B that consists of all matrices representing the edges adjacent to each vertex in a
nondegenerate n-dimensional simplex that the user is allowed to specify. Since the
ordering of the columns is not unique, and typically not preserved in the implementation
of the method, we consider all possible representations of the columns of the matrices
associated with the edges adjacent to the (n + 1) vertices of the simplex. We then add
the negatives of these (n + 1)! basis matrices to account for the effect of the reflection
step allowed by the multidirectional search algorithm. Thus the cardinality of the set
Bis |B|=2(n+ 1)

Fortunately, there is no need to actually construct and “store” this unwieldy number
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of basis matrices to initialize the method. We can update the basis matrix after each
iteration k by reconstructing the new basis matrix Biii, given the outcome of the
exploratory moves, from the trial points zt, s = 1,---,n, considered during the course
of the exploratory moves. This procedure is given in Algorithm 8. The scalar scale
is chosen during the course of the exploratory moves (see Algorithm 7) to ensure that
Biy1 € B by factoring out any change in the size of the simplex introduced by a change
in Ag. This has the further effect of preserving the role of Ay as a step length parameter.

Algorithm 8. Updating Bj.
Given By, scale, best, and zt for t = 0,---,n, denote By = [bi], 1 =1,---,n.
If pr. > 0 then
For¢=0,---,(best — 1) do
bith = scale * (z} — J:EeSt).

For ¢ = (best + 1),---,n do

b};_H = scale * (”c}C — :cEeSt).
Otherwise
For:=1,---,n do
by = by
Return.

Given this use of a family of basis matrices to help define the multidirectional search
algorithm, the generating matrix is then the fixed matrix ¢ = [I —1 —pul 0]. Thus,
C' contains p = 3n 4+ 1 columns, with M = [I. To ensure that C' € Z"*?, we require
p € Z. Furthermore, to ensure that the role of Ay as a step length parameter is not lost
with the introduction of the expansion step represented by —ul, we require p € A. The
algorithm is defined so that A = {7** 7“2} with g = 7*2. This requires the further
restriction that 7 € N. Again, this is not an onerous restriction. Multidirectional search
usually is specified so that 7 = 2, wy = 1, and thus p = 2.

Now, to bring this notation into conformity with our definition for a generalized
pattern search method, observe that we can represent all possible basis matrices B, € B
in terms of a single reference matrix B € B so that

B,=BB, v=1,---,|B|.

A convenient feature of using the edges of a simplex to form the set of basis matrices
is that the matrices B, consist only of elements from the set {—1,0,1}. The matrices
B, are necessarily nonsingular because of the nondegeneracy of the simplex. We use B
to represent the set of matrices B, and observe that since B is a finite set, the set B is
also finite.

We then observe that

Po=BC=B,[I -1 —pul 0]=B[B, —B, —uB, 0] = BC.

Thus we can define the pattern in terms of the single reference matrix B and the
redefined generating matrix

Ck: [Bk —Bk _Nék 0],
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with M, = Bk and M = B. Since ped Lye Z7* (1) and the column of zeros has
been added explicitly.

5.4.2. The Exploratory Moves. The exploratory moves for the multidirectional
search method are given in Algorithm T7; the e;’s denote the unit coordinate vectors.
We use the notion of By € B for consistency with the update algorithm given in
Algorithm 6, but we could just as easily substitute BB, for By, in the algorithm given
below.

Algorithm 7. Exploratory Moves Algorithm for Multidirectional Search.
Given g, Ak, f(xr), Bi, and g = 72 € N, set s =0, pr =0, min = f(xy),
M =1, scale = 1/Ag, best = 0, and ) = xy.
For:=1,---,n do
a) si = ApBye; and zi = z + s;. Compute f(zi).
b) If f(2%) < min then p, = f(zx) — (%), min = f(2l), s, = si, and best = 1.
It pr. <0 then
For:=1,---,n do
a) st = —ApBge; and 2t = x), + si. Compute f(z}).
b) If f(2i) < min then p, = f(zg) — f(al), min = f(zl), sp = s}, and best = 1.
If pr > 0 then set scale = 1/uAy.
For:=1,---,n do
a) st = —puAyBye; and i = x5 + 5. Compute f(zi).
b) If f(2t) < min then p, = f(zx) — f(2), min = f(), sp = si, best =1,
and A\ = p.
Return.

Clearly, sp € ApPy. Since the exploratory moves algorithm will consider all steps
of the form ApBT'y, unless simple decrease is found after examining only the steps
defined by Ay BMj, this guarantees we satisfy the condition that if min{f(xr +y),y €
AkBFk} < f(:l?k), then f(.fl?k + Sk) < f(:Ek)

5.4.3. Updating the Step Length. The algorithm for updating Ay is that given
in Algorithm 2. In this case, while § usually is set to 1/2 so that 7 = 2, wg = —1, and
wy = 0, we also include an expansion factor pg = 72, where w, usually equals one. Thus
A = {1, pu}, where p is usually 2. The choice of Ay € A is made during the execution of
the exploratory moves.

Since we have shown that the multidirectional search algorithm satisfies all the
necessary requirements, we conclude that it is also a pattern search method and thus
Theorem 3.5 applies. Note that since we allow g > 1, which is a useful algorithmic
feature, we cannot guarantee that limy_ ., Ax = 0 and so Theorem 3.7 does not auto-
matically apply.

6. Conclusions. We have presented a framework in which one can analyze pat-
tern search methods. This framework abstracts and quantifies the similarities of the
classical pattern search methods and enables us to prove weak first-order stationary
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point convergence for this class of algorithms. We also specify the conditions under
which first-order stationary point convergence can be shown to hold.

These convergence results are perhaps surprising, given the simplicity of pattern
search methods, but derive from the algebraic rigidity imposed on the iterates produced
by pattern search methods. This is gratifying, since while this rigidity originally was
introduced as a heuristic for directing the local search, it turns out to be the key to
proving convergence as well. This analysis also highlights just how weak the conditions
on the acceptance of the step can be and yet still allow a global convergence analysis,
an observation that may prove useful in the analysis of other classes of optimization
methods.

7. Appendix. We deferred the proof of Proposition 3.4 for several reasons. First,
many of the results in this section are generalizations of similar results to be found
in [20]. The abstraction in §2 leads to more succinct proofs. Second, the proof of
Proposition 3.4 is closely related to that of several other results presented in this section
and requires us to introduce several additional notions before tackling its proof.

We return to our definition of the pattern as P, = BC} to show that the pattern
contains at least one direction of descent whenever V f(xzy) # 0.

Recall that we require the columns of C' to contain both M, and —Mj. Thus, P;
can be partitioned as follows:

P.=BCy=B[M, =My Ly]=B[T} L]

We now elaborate on these requirements. Since M} is an n X n nonsingular matrix,
and B is nonsingular, we are guaranteed that BM; forms a basis for R*. Thus at any
iteration k, if V f(z;) # 0 we are guaranteed that Bcl, will be a direction of descent for
at least one column ¢, contained in the block I'.

7.1. Descent Methods. Of course, the existence of a trial step in a descent di-
rection is not sufficient to guarantee that decrease in the value of the objective function
will be realized. To guarantee that a pattern search method is a descent method, we
need to guarantee that in a finite number of iterations the method will produce a posi-
tive step size Ay that achieves decrease on the objective function at the current iterate.
We now show that this is the case.

LEMMA 7.1. Suppose that f is continuously differentiable on L(xo). If V f(xy) # 0,
then there exists p € Z, p > 0, such that pgyp, > 0 (i.e., the (k + p)* iteration is
successful ).

Proof. A key hypothesis placed on the exploratory moves is that if descent can be
found for some one of the trial steps defined by ApBI'y, then the exploratory moves
will return a step that produces descent.

Because BCy has rank n, if V f(z;) # 0, then there exists at least one trial direction
di. = Bcl, where ¢, € 'y, such that V f(x,)?d: # 0. But, since —c. € I'y, without loss
of generality, V f(z;)Td:, < 0. Thus, there exists an hj > 0 such that for 0 < h < hy,
flan + hdy) < fla).

It at iteration k, Ay > hg, then the iteration may be unsuccessful; that is, pr =
flzr) — flzr + sk) < 0. When the iteration is unsuccessful, the generalized pattern
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search method sets xx41 = z; and the updating algorithm sets Ay = AL, Since 6§
is strictly less than one, there exists p € Z, p > 0, such that §?A; < hy. Thus we are
guaranteed descent, i.e., a successful iteration, in at most p iterations. 0O

7.2. Uniform Linear Independence. The pattern P, guarantees the existence
of at least one direction of descent whenever V f(z;) # 0. We now want to guarantee
the existence of a bound on the angle between the direction of descent contained in
BT}, and the negative gradient at x; (whenever Vf(z)) # 0). We will show, in fact,
that this bound is uniform across all iterations of the pattern search algorithm. To do
so, we use the notion of uniform linear independence [14].

LEMMA 7.2. For a pattern search algorithm, there exists a constant ¢ > 0 such
that for all k > 0 and z # 0,

(14) maX{W—_M,izl,---,p}Zf.

|2[[[l} — 4]

Proof. To demonstrate the existence of &, we first consider the simplest possible
case, B=1and C = [M —M 0] = [I —I 0], and use this to derive a bound for any
choice of B and C}, that satisfies the conditions we have imposed.

LEMMA 7.3. Suppose ||y||=1. Let

jcos 0(y)| = ax {Io"e1}.

where the e;’s are the unil coordinate vectors.

If B=1and C =11 —1I 0], then

min |cos (y)| =

1
yeR1D \/—ﬁ

Proof We have [y7e;| = lysl, where y = (ya,- - y)7. Since Yy [ysl? = 1, we
are guaranteed that |y;| > 1/y/n for some j, so |yle;| > 1/\/n for some j. Thus

cos 0(y)] > 1/y/m.

Now note that cos f(y) attains this lower bound for any y = aje;+azea+- - -+ ane,,
where a; = £1/4/n. 0O

Thus, if the pattern search is restricted to the coordinate directions defined by
P =1[I -10],¢=1/y/n gives the lower bound on the absolute value of the cosine of
the angle between the gradient and a guaranteed direction of descent. We now use the
bound for this particular case to derive a bound for the general case.

Assume a general basis matrix B and a general matrix My € M, where [M| < 4o0.
We adopt the notation BMj, = [y}.-- - y7]. Then for any = # 0 we have the following:

, T
‘xTyi‘ ‘wTBMkej‘ ‘((BMk)Tf) €;
lzlllyill Nzl BMyesll ||| BMye;|

|cos 8] =
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If we set w = (BMy)Tz, so that z = (BM},)~Tw, we have

jwle;| jwle;|

>
I(BMy)~Fwl|| BMie;|| — [|(BMy)=*[[wl|[| BMk[]e]

|cos 0] =

_ 1 ( |'wTej| ) _ 1 ( |wTej| )
[ (BM)=|[|| BM|| \ |lwll]e;]] [ (BM) =l BMi|| \ lwllle;]]
1 1

>
- IQ(BMk) \/57
where k(BM}) is the condition number of the matrix BM}. Thus, we have

1
|cos | > ————= > 0.

*(BM.)v/n

To ensure a bound ¢ that is independent of the choice of any particular matrix
M € M, we simply observe that the set M is required to be finite. Thus, £ is taken to
be

X = i)

The bound given in (15) points to two features that explain much about the behav-
ior of pattern search methods. Since we never explicitly calculate—or approximate—the
gradient, we are dependent on the fact that in the worst case at least one of our search
directions is not orthogonal to the gradient; ¢ gives us a bound on how far away we
can be. Thus, as either the condition number of the product BM) increases, or the
dimension of the problem increases, our bound on the angle between the search direc-
tion and the gradient deteriorates. This suggests two things. First, we should be very
careful in our choice of B and M for any particular pattern search method. Second, we
should not be surprised that these methods become less effective as the dimension of
the problem increases.

Nevertheless, even though pattern search methods neither require nor explicitly
approximate the gradient of the function, the uniform linear independence condition
demonstrates that the pattern search methods are, in fact, gradient-related methods, as
defined by Ortega and Rheinboldt [14], which is one reason why we can establish global
first-order stationary point convergence.

7.3. The Descent Condition. Having introduced the notion of uniform linear
independence with the bound ¢, we are now ready to show that pattern search methods
reduce Ay only when necessary to find descent. This enables us to prove Proposition 3.4.

PROPOSITION 7.4. Suppose that L(xg) is compact and f is continuously differen-
tiable on L(xg). Given € > 0, let

O ={z € L(xg) : dist(z, X,) > €}.
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Suppose also that g € Q.. Then there exists 6 > 0, independent of k, such that
if v, € Q. and Ay < 6, then the kth iteration of a generalized pattern search method
(Algorithm 1) will be successful (i.e., pr = f(ag)— f(xr+sk) > 0) and thus Appq > Ay

Proof. We restrict our attention to the steps defined by the columns of AyBTY.
This is sufficient since the Hypotheses on Exploratory Moves ensure that a step s;
satisfying the simple decrease condition pr > 0 must be returned if a trial step defined
by a column of A, BI'; satisfies the simple decrease condition.

We first need some measure of the relative lengths of the steps defined by M} and
its negative —Mj. We begin by defining

ef = min |l —axl| = min [lsi]| = min Ail|Be
and
E* = max sz — k|| =  max HSM = max Ak”BCiHv
1=1,---,2n 1=1,--,2n J=1,n

where c}'c is restricted to be a column of M € M. (We assume that Py is partitioned as
in (3) so that the first 2n columns of P, contain the columns of [BI'y] = [BM) —BMy].)

Since |M| < 400, we can define 7 as

min;—; ..., || B|

"7 MeM max;_y....,, | Bl

where ¢/ is a column of M € M. Observe that 0 < 5 < 1. Then, for any 1 < 1,5 < 2n,

. . 1 | 1,
ok — el = Isill < B* <~ < —lstll = ~flad — el

We define the contour C(zg) to be C(xo) = {x: f(x) = f(xo)}. Since z9 € .,
Lemma 7.1 allows us to define N = min{k : x; # z9}. We then define d to be
d = dist (L(zn),C(z0)). Because L(xy) and C(xq) are compact and disjoint, we know
that d > 0. We now make the following claim:

CrAamm. Suppose k > N. If for somej =1,---,2n, ||;L‘§C—ka < nd, then i, € L(zo)
foralli =1, ---,2n.

The proof of this claim is by straightforward application of the triangle inequality [20].

Let

a = min ||V f(z)].
By design, @ > 0. Since V[ is continuous on L(zg), Vf is uniformly continuous on
L(zo). Thus, there exists a constant r > 0, depending only on « and the ¢ from (14),
such that

IVf(z)— V(x| < %a whenever ||z — || <r (and z € L(xo)).
We define
(16) 8 =min{nd, r}.
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Now, assume k& > N and z;, € (.. Choose a trial point z}, i = 1,---,2n, that
satisfies both V f(xy)? (2% — ) < 0 and

IV £ (n) (2] — 22)
IV Feollet — el =

The definitions of ), and the pattern Py, together with Lemma 7.2, guarantee the
existence of at least one such zt.
The Mean Value Theorem tells us that f(zi) — f(z) = Vf(w)? (2}, — xx) for some

w € (zg,z}), whence

(17) Flah) = flan) = V(ar)T (2 — 2x) + (V(w) = V(zp) () — z5).

Consider the first term on the right-hand side of (17). Our choice of z! gives us

|V £ (@) (2 = 20)| > €NV (@)l — 2l
Furthermore, since V f(z;)? (2} — x1) < 0, we have

(18) V(i) (@) — ax) < =€V F(@e)lllz) = el

Now consider the second term on the right-hand side of (17). The Cauchy—Schwarz
inequality gives us

(19)  [(VH) = V@) (el - )| < 19 5) = VAol — ol
Combine (18) and (19) to rewrite (17) as
(&) = Fo) < ~€I9 Faolllek = oxl + 19 ) = ¥ F o)l - o]
= (=EIV @)l + V(@) = V() D), — |-

Since w € (zg, %), once ||z8 — x| < &,

(20) Fai) = flan) < (ZEIVF )l + IVl 2k — 2l < 0.

Thus, when ||z}, — zx|| < &, f(z}) < f(x). The Hypotheses on Exploratory Moves
guarantee that if min{f(xzx +y),y € ApBUy} < f(a), then f(ag + sk) < f(ag). Thus,
pr = f(xr) — fzr + sk) > 0 and the algorithms for updating Ay (Algorithm 2) ensures
that Ak—i—l Z Ak

We invoke Lemma 3.1 to obtain

8" = ||z, — zill = llsill = CAx.

Thus, at any iteration & > N, if z; € Q. and Ay < ¢'/(,, then Apyq > Ag.
We close by noting that since iteration k£ = N —1 is defined to be the first successful

5/
6 = min {AN_l, C_} 5

iteration, if we define
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we are guaranteed that at any iteration k, if z; € Q. and 6 > Ay, then Apyy > Ay O

Proposition 7.4 guarantees that if Ay is small enough, a generalized pattern search
method will realize simple decrease because there exists at least one step among the 2n
steps defined by A BI'), that gives decrease as a function of the norm of the gradient at
the current iterate, as shown in (20); the Hypotheses on Exploratory Moves then ensure
that the exploratory moves algorithm must return a step that satisfies at least simple
decrease. However, there are no guarantees that the step returned by an exploratory
moves algorithm satisfies more than the simple decrease condition.

To tie the amount of actual decrease to the norm of the gradient, we must place
much stronger conditions on the generalized pattern search method, as discussed in
§3.3.2. Once we have done so, Corollary 7.5 follows more or less immediately from
Proposition 7.4.

COROLLARY 7.5. Suppose that L(xq) is compact and f is continuously differen-
tiable on L(xg). Suppose that the columns of the generating matriz are bounded in
norm and that the generalized pattern search method (Algorithm 1) enforces the Strong
Hypotheses on Exploratory Moves. Given € > 0, let

O ={x € L(xg) : dist(z, X)) > €}.

Suppose also that xg € Q.. Then there exist &' > 0 and o > 0, independent of k, such
that for all but finitely many k, if vy € Q. and Ay < &', then

f(ergn) < fae) = o[ V(o) ll[skll < fz).

Proof. From Proposition 7.4, (20) says that for & > N = min{k : zx # o}
(Lemma 7.1 guarantees that N < +00), there exists at least one trial step si € A, BT
such that once ||st|| < &', where &' is as defined in (16), we have

f(@i) < flar) = SIVF@llllsill < f(es).
The Strong Hypotheses on the Exploratory Moves give us
Flar) < flae) = SIV @ llsill < ).
Lemma 3.1 ensures that
flaer) < flan) = SCAV f(@p)]| < flae)

Lemma 3.6, which holds only when the columns of the generating matrix are bounded
in norm, gives us

Flarn) < flan) = SOV Feolllsell < flan).

We define o = %Q@b* to complete the proof. 0O
We now prove Proposition 3.4.
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Proof. (Proposition 3.4.) By assumption, liminf,_ 4o ||V f(zk)|| # 0. Then we can
find Ny and € > 0 such that for all £ > Ny, v € Q. = {& € L(xo) : dist(z, X.) > €}.
Lemma 7.1 guarantees the existence of Ny = min{k : z; # xo}. Let N = max(Ny, Ny).

From Proposition 7.4 we are assured of 6 > 0 such that if Ay < 6, then the iteration
will be successful. Given Ay, there exists a constant p € Z, p > 0, such that §7Aq < 6.
Thus, for £ > N, P71 Aq < Ay

Set Apg = 0min(0?Ag, Ay, -+, Ax_1). Then for all k, App < Ag. O
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