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Abstract

An increasing fraction of the applications targeted by
parallel computers makes heavy use of indirection ar-
rays for indexing data arrays. Such irregular access
patterns make it difficult for a compiler to generate
efficient parallel code. A limitation of existing tech-
niques addressing this problem is that they are only
applicable for a single level of indirection. However,
many codes using sparse data structures access their
data through multiple levels of indirection.

This paper presents a method for transforming pro-
grams using multiple levels of indirection into pro-
grams with at most one level of indirection, thereby
broadening the range of applications that a compiler
can parallelize efficiently. A central concept of our al-
gorithm is to perform program slicing on the subscript
expressions of the indirect array accesses. Such slices
peel off the levels of indirection, one by one, and cre-
ate opportunities for aggregated data prefetching in
between. A slice graph eliminates redundant prepro-
cessing and gives an ordering in which to compute the
slices. We present our work in the context of High Per-
formance Fortran, an implementation in a Fortran D
prototype compiler is in progress.

1 Introduction

In distributed memory machines, large data arrays are
frequently partitioned between local memories of pro-
cessors. We will refer to such partitioned data arrays
as distributed arrays. Recently there have been ma-
jor efforts in developing programming language and
compiler support for distributed memory machines.

*From the Proceedings of the Sizth Annual Workshop on
Languages and Compilers for Parallel Computing, Portland,
OR, August 1993.

tThis work was supported by ARPA under contract No.
NAG-1-1485 and by NSF under grant No. ASC 9213821. Ad-
ditional Support for von Hanxleden was provided by an IBM
graduate fellowship award.

{Institute for Advanced Computer Studies, Computer Sci-
ence Department, University of Maryland, College Park, MD
20742. E-mail: {rajalsaltz}@cs.umd.edu.

§ Center for Research on Parallel Computation, Rice Univer-
sity, Houston, TX 77251. E-mail: reinhard@rice.edu.

Reinhard von Hanxleden®

Based on initial projects like Fortran D [5, 10] and
Vienna Fortran [1, 17], the High Performance Fortran
Forum has proposed the first version of High Perfor-
mance Fortran (HPF) [4], which can be thought of
as Fortran 90 enhanced with data distribution anno-
tations. Long term storage of distributed array data
is assigned to specific memory locations in the dis-
tributed machine. HPF offers the promise of signif-
icantly easing the task of programming distributed
memory machines and making programs independent
of a single machine architecture. Current prototypes
of compilers for HPF-like languages produce Single
Program Multiple Data (SPMD) code with message
passing and/or runtime communication primitives.

Reducing communication costs is crucial in achiev-
ing good performance on applications [7, 9]. While
current systems like the Fortran D project [10] and
the Vienna Fortran Compilation system [1] have im-
plemented a number of optimizations for reducing
communication costs (like message blocking, collec-
tive communication, message coalescing and aggrega-
tion), these optimizations have been developed mostly
in the context of regular problems (i.e., for codes hav-
ing only regular data access patterns). Special effort
is required in developing compiler and runtime sup-
port for applications that do not have such regular
data access patterns.

In irregular problems, communication patterns de-
pend on data values not known at compile time, typ-
ically because of some indirection in the code. In-
direction patterns have to be preprocessed, and the
elements to be sent and received by each processor
must be precomputed in order to

e reduce the volume of communication,
e reduce the number of messages, and

e prefetch off processor data to hide communica-
tion latencies.

In earlier work, we have developed runtime support,
analysis techniques, and compiler prototypes designed
to handle loops where distributed arrays are accessed
through a single level of indirection [2, 6, 11, 15].
Compiler transformations can handle loops with indi-
rectly referenced distributed arrays by transforming



SUBROUTINE simple(x, y, col, m, n)

INTEGER i, m, n, col(m)
REAL x(n), y(n)
'HPF$ DISTRIBUTE(BLOCK) ::

col, x, y

'HPF$ EXECUTE (i) ON_HOME x(i)

K1 FORALLi=1,n

K2 x(i) = x(i) + y(col(i))
K3 ENDFORALL

K4 END

Figure 1: Kernel with single level of indirection.

the loops into two constructs called an inspector and
executor [12]. During program execution, the inspec-
tor examines the data references made by a proces-
sor and calculates what off-processor data need to be
fetched and where these data will be stored once they
are received. The executor loop then uses the infor-
mation from the inspector to implement the actual
computation.

An example for the class of kernels that can be han-
dled by the techniques developed so far is the irreg-
ular kernel in Figure 1. In this example, data arrays
col, z, and y are block distributed between processors.
The ¢-loop iterations are partitioned using the HPF-
directive ON_HOME, which in this case is equivalent
to the owner computes rule that assigns the computa-
tion of an assignment statement to the processor that
stores the left hand side reference. A single level of
indirection arises because the data array y is indexed
using the array col in statement K2.

While we can handle such simple indirection pat-
terns, many application codes have code segments and
loops with more complex access functions that go be-
yond the scope of current compiling techniques. In
many cases, a chain of distributed array indexing is
set up where values stored in one distributed array
are used to determine the indexing pattern of another
distributed array, which in turn determines the index-
ing pattern of a third distributed array. Such loops
with multiple levels of indirection are very common
and appear, for example, in unstructured and adap-
tive applications codes associated with particle meth-
ods, molecular dynamics, sparse linear solvers, and in
some unstructured mesh CFD solvers.

This paper develops techniques that can be used by
compilers to transform loops with array accesses in-
volving more than a single level of indirection into

SUBROUTINE CSR(x, y, col, ija, m, n)

INTEGER i, j, m, n, col(m), ija(n)

REAL x(n), y(n)
IHPF$DISTRIBUTE(BLOCK) :: col, ija, x, y

IHPFSEXECUTE (i) ON_HOME x(i)

R1 FORALLi=1,n
R2 x(i) = 0

R3 DO j = ija(i) + 1, ija(i + 1)
R4 x(i) = x(i) + y(col(j))
R5 ENDDO

R6 ENDFORALL

R7 END

Figure 2: CSR kernel — original version.

loops where array references are made through at
most one level of indirection. We present this transfor-
mation technique in the context of distributed mem-
ory machines and therefore often refer to prefetching
as “communication” or “message blocking.” However,
our method is likely to be useful on any architecture
where it is profitable to prefetch data between differ-
ent levels of a memory hierarchy.

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of our technique by trans-
forming an example code that shows two levels of in-
direction. Section 3 introduces some terminology that
used in Section 4, which gives a formal description of
our algorithms and illustrates how the transformation
shown in Section 2 was derived. Section 5 concludes
with a brief discussion and an overview of the status
of our implementation.

2 Example Transformation

This section illustrates the effect of applying our
transformation to the HPF subroutine CSR shown in
Figure 2. This code is based on a sparse matrix vec-
tor multiply kernel and uses the Compressed Sparse
Row format [13]. An n by n sparse matrix is multi-
plied by an n-element array x, the results are stored
in an n-element array y. The matrix values are all
assumed to be equal to zero or one. The columns as-
sociated with non-zero entries in row ¢ are specified by
col(j), where gja(i)+1 < j < ¢ja(i+1). For simplicity
all distributed arrays are distributed blockwise in this
example; our techniques apply equally well to other,
potentially irregular decompositions. The indexing of



y by array col causes a first level of indirection. The
dependence of the loop bounds of the inner j-loop
on the distributed array ¢je causes an additional level
of indirection. This double indirection becomes clear
when rewriting the computation as

(i) = > y(col(ija(i) + 1 : ija(i + 1)))

fori=1...n.

All references to the distributed array z are in-
dexed by the loop induction variable ;. The HPF
ON_HOME construct partitions the iteration space of
the FORALL loop such that iteration 7 is performed
on the processor that owns z(i), so there is no com-
munication required for referencing z. For the other
three arrays, ija, col, and y, data communication is
required. As already mentioned, keeping the total
number of these communication steps down is key to
high performance on a distributed memory machine.
Therefore, we want to perform only a small number
of aggregate prefetch operations, instead of commu-
nicating each reference individually. This requires a
significant amount of preprocessing to determine what
data need to be prefetched and in what order that has
to be done. We will transform the code so that the
compiler runtime support will have access to the sub-
scripts of all elements of ¢ja, col, and y that need to be
prefetched from other processors. This information
makes it possible to carry out the communications
optimizations described in Section 1; i.e., to reduce
the volume of communication, reduce the number of
messages and to prefetch off-processor data to hide
communication latencies.

The transformed version of subroutine CSR is
shown in Figure 3. For ease of presentation, we use
a variation of HPF that contains additional directives
BEGIN LOCAL and END LOCAL indicating lo-
cal variables. These variables do not reside in the
global name space inhabited by the other HPF vari-
ables, but instead they exist independently in the lo-
cal name space of each processor. In strict HPF, such
variables could be emulated by either adding another
dimension of size n$proc (the total number of pro-
cessors) and referencing this dimension with my$proc
(the id of each processor), or by manipulating them
only through so called extrinsic functions. Except for
these local variables, the whole code is presented in
global name space, and for simplicity it is here as-
sumed that all global to local address translations
will be handled by the HPF compiler. Note, however,
that this index translation in the presence of indirect
addressing and perhaps further complications like ir-
regular decompositions is a nontrivial task; the code
actually generated by our implementation assists in

this process.

In our example, the distributed array ija is dis-
tributed conformable to the array z. Since the refer-
ence ija(%) in statement R3 occurs in a FORALL loop
whose iteration space is aligned to the index space
of z, this reference does not generate any communi-
cation. It is also assumed that the back end com-
piler recognizes the use of induction variable 7 in this
reference and does not require any preprocessing for
performing the global to local name space conversion.

The references ja(i+1), col(j), and y(col(j)), how-
ever, may require preprocessing. In general, for a ref-
erence of the form arr(subgs), this preprocessing may
perform the following:

e It has to collect all values of subgs; 1n order to
prefetch the data referenced in arr(subgs;) en
bloc. Preprocessing may also reduce communica-
tion volume by recognizing duplicated references
n subgs;.

e It has to provide a mechanism to access the
prefetched data in the actual computation.

Here sub,s; stands for the Abstract Syntax Tree
(AST) index of the subscript. Note that while this
index is different for each reference in the program,
the value numbers of these references may be iden-
tical, even for subscripts that might textually look
different.

In the transformed code, the statements proceeding
the actual computation (in El...E12) perform this
preprocessing. Statements S8, S20, and S32 indicate
opportunities for aggregated prefetching of the data
required for references éja(i+1), col(j), and y(col(y)),
respectively. For our CSR kernel, we assume that
subscript reuse is relatively low. Therefore we per-
form the prefetching and indexing via temporary trace
arrays that store global indices and are themselves
indexed through counters that are incremented with
each reference. Alternative mechanisms are described
in Section 4.2.

The first prefetch statement, S8, brings in all ija(i+
1)’s referenced by statement R3 in the original code.
Statements T1...T5 and S1...S7 perform the prepro-
cessing necessary for S8. Since in our example we
are basing the prefetching mechanism on temporary
trace arrays that have to be allocated dynamically,
we first have to determine the size of the trace, i.e.,
the number of references. This size is computed into
v4 by statements T1...Th. Statement S1 then allo-
cates the local array viarr, which has been declared

ALLOCATABLE. Statements S2...S7T generate and



T1
T2
T3
T4
TS

S1
52
53
S4
S5
S6
S7
S8

T6
T7
T8
T9
T10
TI11
T12
T13
T14

SUBROUTINE CSR(x, y, col, ija, m, n)

INTEGER i, j, m, n, col(m), ija(n)
REAL x(n), y(n)
IHPF$ DISTRIBUTE(BLOCK) :: col, ija, x, y

'HPF$ BEGIN LOCAL
INTEGER v4, vb
INTEGER, ALLOCATABLE(:) ::

. vlarr, v2arr, v3arr

'HPF$ END LOCAL

C COUNTING SLICE D

C Count local iterations of outer loop
C to determine size of viarr.
v4 =10

'HPF$ EXECUTE (i) ON_HOME x(i)
FORALLi=1,n
vi=v4d + 1
ENDFORALL

C COLLECTING SLICE A
C Collect “i + 17 into viarr(1:v4).
ALLOCATE (vlarr, v4)
v4d =0
IHPF$ EXECUTE (i) ON_HOME x(i)
FORALLi=1,n
vi=v4 +1
viarr(vd) =i+ 1
ENDFORALL
C Prefetching ija(vlarr(1:v4)) goes here

COUNTING SLICE E
Count local iterations of inner loop to
determine size of v2arr and v3arr.
v4d =10
vhb =10
'HPF$ EXECUTE (i) ON_HOME x(i)
FORALLi=1,n

v =v4 +1

DO j = ija(i) + 1, ija(vlarr(v4))

vb=vh +1

ENDDO

ENDFORALL

[ONON®!

C COLLECTING SLICE B
C Collect <" into v2arr(1:v5).

S9 ALLOCATE (v2arr, v5)
S10 vd =0
Si11 vb =0

S12 'HPF$ EXECUTE (i) ON_HOME x(i)

S13 FORALLi=1,n

S14 v =v4 +1

S15 DO j = ija(i) + 1, ijja(vlarr(v4))

S16 vb=vd+1

S17 v2arr(vh) =]

S18 ENDDO

S19 ENDFORALL

S20 C Prefetching col(v2arr(1:v5)) goes here
C COLLECTING SLICE C
C Collect “col(j)” into v3arr(1:v5).

S21 ALLOCATE (v3arr, v5)

S22 vd =10

S23 vb=0

$24 'HPF$ EXECUTE (i) ON_HOME x(i)

S25 FORALLi=1,n

S26 vi=vd+1

527 DO j =ija(i) + 1, jja(vlarr(v4))

528 v3arr(vh) = col(v2arr(vh))

S29 vb=vh+1

S30 ENDDO

S31 ENDFORALL

S32 C Prefetching y(v3arr(1:v5)) goes here
C ACTUAL COMPUTATION

E1l v4d =0

E2 vda =10

E3 HPF$ EXECUTE (i) ON_HOME x(i)

E4 FORALLi=1,n

E5 x(i) = 0

E6 v =v4 +1

E7 DO j = jja(i) + 1, ijja(vlarr(v4))

E8 vb=vh+1

E9 x(i) = x(i) + y(v3arr(vh))

E10 ENDDO

E1l1 ENDFORALL

E12 END

Figure 3: CSR kernel — transformed version.




store the trace into vlarr. Finally, the prefetching
operation in S8 brings in all the non-local data and
stores them in the right locations of the array ¢ja.
This might require resizing the array #ja to store the
off-processor data. For the purpose of this example,
we assume that storing of the off-processor data in the
resized ¢ja array is such that they can be referenced
in global coordinates.

The next potential communication is generated
by the prefetching statement S20, which collects on
each processor the off-processor references to col(j)
in statement R4. Statements S10...519 collect the
trace of the values j indexing the array col into the
local array v2arr. Note that in the expression for the
upper bound of the j-loop, array #ja is no longer in-
dexed by (i+ 1) but by the trace vector vlarr gener-
ated in statements S4...S7. The statements T6...T14
in Figure 3 compute the size of the array v2arr into
the local scalar v5. The array v2arr, that like miarr
has been declared to ALLOCATABLE, is allocated in
statement S9.

The values of y that are required on each processor
at statement R4 are communicated in the prefetching
statement S32. The trace of the values that index y
is done in statements S22...531, it is stored in the
dynamic local array v3arr. Note that the number of
references to y(col(j)) is the same as the number of
references to col(j), therefore the size of v3arr is the
same as the size of v2arr. Hence we do not need any
additional code to find out the size of v3arr, instead
we can reuse the already computed local variable v5
that stores the size of v2arr. Note also that in state-
ment S28 the array col is referenced by the local ar-
ray v2arr which stores global indices, instead of being
referenced by j. After the execution of the statement
S32, all processors have the required values of y in
their local memories.

The actual loop computation is performed in state-
ments E1...E11. During this computation no commu-
nication is required because everything that is neces-
sary on each processor has already been fetched. To
summarize, the original code shown in Figure 2 has
been transformed into the code in Figure 3 that does
all the necessary data communication in phases af-
ter several preprocessing steps. Within the different
loops in the transformed code, all distributed arrays
are referenced by at most one level of indirection and
require no data communication.

3 Definitions

This section introduces some concepts that will be
used in the algorithms in Section 4.

A Slice 1s a tuple

§ = (Svn y Starget; Scode, Sident, Sdep_set[: Scnt_vn])

that contains a value number s,,, a designated pro-
gram target location ssqr4e¢, @ sequence of statements
Scode, an identifier s;gens, a dependence set sgep_set,
and optionally another value number s.p: yn. Slices
come in two flavors:

e A collecting slice stores the sequence of values
(trace) that will be assigned to a subscript dur-
ing the execution of the program in some data
structure identified by $;4en:. The type of the
data structure is determined by the degree of sub-
script reuse within the trace of the subscript, as
described in Section 4.2.

o Counting slices are created from the collecting
slices, they calculate the size of the subscript
trace that will be generated during the execution
of the collecting slice. Counting slices are needed
if the collecting slices have to know the sizes of
the traces they have to record, for example for
preallocating a data structure to store the trace.

Each of the slices has the following properties with
respect to the original program P:

o Inserting s.oqe at siarges in P is legal; 2.e., it does
not change the meaning of P. The s.,q4. 1s similar
to a dynamic backward executable slice [16].

o After executing s.oge, Sident Will have stored the
values of s,,,.

e If sis a collecting slice, then s,, will be the value
number of a subscript sq5; of a nonlocal array ref-
erence arr(subgst) in P, and sijgens will store the
sequence of all subscripts occurring during the
run of P. Note that the length of this sequence
depends on our point of view, which is given by
Starget- For example, if ;47401 is the statement of
the reference itself, then the sequence consists of
only a single subscript. If s;4r4¢¢ is the header of
a loop enclosing the reference, then the sequence
contains the subscripts for all iterations of the
loop.

o If we compute counting slices, then s.n;_y, Will be
the value number of the counter indexing s;gent
after execution of s..q. 1s finished; i.e., the value



of Sent_wn Will be the size of the subscript trace
computed in S;gent.

o If sis a counting slice, then there exists a collect-
ing slice ¢t for which sy, = tcni_on and Siarger =
tiargetr hold.  $jgen: Wwill store the size of the
subscript trace computed in t;4en:. SINCE Sigen:
corresponds to a single value, scn;_yn will be
the value number corresponding to the constant
“1.” Note: Siarget = tiarger because otherwise
we might count too many (for syqrge¢ preceding
tiarget) OF too few (for siarger succeeding tyarges)
subscripts.

o The s4cp_ser stored in each slice is a set of AST in-
dices of subscripts of references of that need run-
time processing. Only the references in s.qq. that
require runtime processing are considered when
the Sgep_ses is created.

A Slice Graph is a directed acyclic graph
G=(SE)

that consists of a set of slices S and a set of edges F.
For s,t € S, an edge ¢ = (s,t) € E establishes an
ordering between s and t. The presence of e implies
that ¢.,4. contains a direct or indirect reference to
Sident and therefore has to be executed after s.,q.. G
has to be acyclic to be a valid slice graph. Note that
the edges in the slice graph not only indicate a valid
ordering of the slices, but they also provide informa-
tion for later optimizations. For example, it might
be profitable to perform loop fusion across slices; the
existence of an edge between slice nodes, however, in-
dicates that these slices cannot be fused.

A Subscript Descriptor
sub = (subyn, subsarget)

for the subscript subg,s; of some distributed array ref-
erence consists of the value number of subgss, subyy,
and the location in P where a slice generated for sub
should be placed, subjorger. Our algorithm will gen-
erate a slice for each unique subscript descriptor cor-
responding to a distributed array reference requiring
runtime preprocessing. Identifying slices by subscript
descriptors is efficient in that it allows a slice to be
reused for several references, possibly of different data
arrays, as long as the subscripts have the same value
number. It is conservative in that it accounts for situ-
ations where different references might have the same
subscript value number but different constraints as
far as prefetch aggregation goes, which corresponds
to different target nodes.

4 The Algorithm

This section gives a description of the algorithm to
do the transformation shown in Section 2. The algo-
rithm comes in two parts. The first part, described in
Section 4.1, analyses the program and generates the
slices and the slice graph. The second part, described
in Section 4.3, uses the slice graph to do the code
generation.

4.1 Slice Graph Construction

The procedure Generate slice_graph() shown in
Figure 4 is called with the program P and the set
of subscripts R of the references that need runtime
preprocessing, i.e., the irregular references. It returns
aslice graph consisting of a set of slices S and edges E.
This procedure first generates all the necessary slices
and then finds the edges between these slices.

The Foreach statement in A4...A8 computes a sub-
script descriptor (subyn, Subiarges) for each subscript
AST index sub,s;. We assume that P has an asso-
ciated value number table that maps AST indices to
value numbers. Lookup_val number() uses this ta-
ble to compute sub,, from sub,s;. Gen_target()
maps the AST index sub,s; to the target node
subsarger for the slice generated starting from that
AST index. The constraints on sub;a,g4e; are the fol-
lowing.

o In the Control Flow Graph (CFG), subsarget pre-
dominates the reference subgg;; t.e., it is guaran-
teed that subsa,ges Will be executed before subyg;
is used to reference its data array arr.

e There are no modifications of the data array arr
between subiorger and subgss.

o Any code inserted at sub;q,g4es is executed as in-
frequently as possible.

Gen_target() implements these constraints using a
Tarjan interval tree and array MOD information;
starting at the node corresponding to the reference,
it walks the interval tree upwards and backwards un-
til it reaches a modification of arr.

The next Foreach statement in A9...A13 iterates
through the subscript descriptors sub € U and gen-
erates for each subscript descriptor both the col-
lecting slice s and, if needed, the counting slice ¢.
Gen slice() takes a subscript descriptor sub =
(subyn, subsarger) and generates for location subyarges
the slice that computes the values corresponding to



Procedure Generate_slice_graph(P, R)

// P: Program to be transformed
/] R: AST indices of subscripts of references

// that need runtime preprocessing
Al S:=0 // Slices
A2 E:=10 /] Slice ordering edges
A3 U :=0 // Subscript descriptors

/] Compute subscript descriptors.
A4 Foreach sub,;; € R
A5 subyy, := Lookup_val number(subgs)
A6 subsarger = Gen_target(subas:)
AT U = U U{(subyn, subsarget)}
A8 Endforeach

/] Compute slices.
A9 Foreach sub € U
Al0 s := Gen_slice(sub)
A1l S:=Su{s}

/] The following steps are executed
/] iff counting slices are required.
01 t := Lookup_slice(S, (Sent_vn, Starget))
02 If t = () Then

03 t := Genuslice(Scnt_vn, Starget)
04 S:=SuU{t}

05 E:=FU{(ts)}

06 Endif

Al12  Endif

A13 Endforeach

/] Compute edges resulting from
// dependence sets of slices.
Al4 Foreach s € S
Alb Foreach subyg; € sdep_set

Al6 subyy, := Lookup_val number(subgs)
Al7 subyqrger = Lookup_target(subqs:)
Al8 t := Lookup_slice(S, (subyn, subiarget))
Al9 E:=EU{(ts)}

A20 Endforeach
A21 Endforeach

A22 Return (S, E)

Figure 4: Slice graph generation algorithm.

subyy. The slice generation function uses the pro-
gram’s CFG and the SSA (Static Single Assignment).
Roughly speaking, Gen_slice() follows the use-def and
control dependence chain starting in sub,,; until it
reaches subsgrges-

If we are interested in the size of the subscript trace
recorded in s (e.g., for allocating trace arrays), then
we compute in statements O1...06 a counting slice ¢
for each s. However, different collecting slices can
share a counting slice if they have the same counter
value number sub.,;_,, and target location subsarges.
Therefore, we first examine the set of already created
slices. Lookup _slice() takes as input a set of slices S
and a subscript descriptor sub and returns the slice
t € S corresponding to sub if there exists such an ¢;
otherwise, it returns (). If a counting slice has not
been created yet, a new counting slice ¢ is generated.
Since the counting slice ¢ must be executed before the
collecting slice s, a directed edge (2, s) is added to the
edge set E.

The nested Foreach statements in Al4...A21 are
used to find the directed edges resulting from the de-
pendence sets in each slice. The outer Foreach iterates
through the slices s, the inner one loops through the
references sub,.; stored in the dependence set sgep_ses
of s. All the relevant information has already been
generated previously, therefore these loops only have
to consult tables to complete the set of edges.

The slice graph corresponding to the transforma-
tion example done in Section 2 is shown in Figure 5.
There are five nodes in the slice graph, out of which
nodes A, B, and C contain collecting slices, while
nodes D and E contain counting slices. Note that
the collecting slices B and C share the counting slice
E, which reflects that the number of references to
y(col(j)) is the same as the number of references to

col(j).

4.2 Trace Management Schemes

The discussion so far was mostly concerned with
where to precompute which subscript traces in what
order. Before actually generating code, however, we
have to decide what data structures to use for first
recording the traces to prefetch nonlocal data and
then accessing these prefetched data. The example
presented in Section 2 used temporary trace arrays
for performing both of these operations. It turns
out, however, that this is just one of several options,
and there are different tradeoffs involved depending
on the characteristics of the subscript traces. There-
fore, when generating the statements s;oq. of a slice
s, we do not include the code for manipulating these
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ENDDO
ENDFORALL B

IHPF$ EXECUTE (i) ON HOME x(i)

|
| l
|
‘ DOj =ija(i) + 1, ijai+1)
: v5=v5+1 |
‘ ENDDO !
! ENDFORALL E |
|

v4=0
v56=0

FORALLi=1,n
vd=v4+1
DOj =ija(i) + 1, ijai+1)
vb=v5+1
v3arr(v5) = col(j)
ENDDO
ENDFORALL C

IHPF$ EXECUTE (i) ON HOME x(i) -7

Figure 5: Example of a Slice Graph.

data structures; i.e., we do not include counter initial-
izations and increments or the assignments into trace
arrays. Instead, we include place holders for these op-
erations and delay the generation of these statements
until the slice instantiation phase during the final code
generation.

Let T be the size of the trace, i.e., the number
of times a subscript is evaluated with respect to the
target location of the slice. Let R be the number of
unique elements in 7', and let N be the global size
of the subscripted array, ¢.e., the number of different
subscripts possible. Note that R < N, R < T must
hold.

4.2.1 Case 1: Low subscript reuse

In this case, which is characterized by R = T, each
subscript typically appears at most once in the trace
produced by the slice. A possible example is the CSR
kernel described in Section 2. Here it is reasonable
to use a dynamically allocated array that is indexed
through a counter incremented with each reference.
This array can be used both for precomputing the
subscripts and for looking them up during the actual
computation. Since we have to store each subscript
individually, the space requirements are O(T). We
also usually have to generate counting slices to per-
form the dynamic allocation of the arrays. The time



per access, however, is only O(1).

4.2.2 Case 2: High subscript reuse

This case is characterized by R <« T, each subscript
typically appears several times in the trace produced
by the slice. An example of this is the pair list used
for the non-bonded force kernel in molecular dynam-
ics applications. Since each atom interacts with many
other atoms, it appears many times in the pair list.
Here some set representation, like a hash table, which
collects subscripts and stores each of them at most
once, would be an appropriate trace recording mech-
anism. Using a hash table to store off-processor data
values was first introduced in [8]. The space require-
ments are only O(R), and we also do not need any
counting slices. The time per access, however, will be
O(log(R)) for most common set representations.

As a subscripting mechanism in the actual com-
putation, we can use some dictionary representation,
like a hash table (of a different kind than the one used
for representing sets), that maps global indices to lo-
cal indices. This typically requires space O(N) and
O(log(N)) time per access.

An alternative subscripting mechanism is a “Global
shuffle,” where — roughly speaking — everything is
translated to local coordinates, including the sub-
scripting arrays themselves. The space requirements
would be at most O(N), depending on how many data
a processor needs locally and whether things can be
shuffled in place or not. The time per access would

be O(1).

4.3 Code generation

The code generation algorithm is shown in Figure 6.
The procedure Gen_code() takes as input the orig-
inal program P and the slice graph consisting of
slices S and their ordering E. Gen_code() tra-
verses the program and changes the subscripts of all
the references that required runtime preprocessing.
The function Instantiate program() takes the pro-
gram P and the set of slices S and replaces in P sub-
scripts on which preprocessing has been performed
with accesses of data structures defined in the prepro-
cessing phase. This program instantiation depends
on what type of data structure was used to store the
trace of subscripts in the collecting slices, as discussed
in Section 4.2.

Topological sort() performs a topological sort of
the slice graph so that the partial order given by
the directed edges in E is maintained during generat-

Procedure Gen_code(P, S, E)

C1 Instantiate_program(P, S)

C2 Topological sort(S, E)

C3 Foreach s € S

C4  Instantiate_slice(s, S)

Ch Insert_code(P, Scode, Starget)
C6 Endforeach

C7 Return P

Figure 6: Code generation algorithm.

ing code for the slices in S. The Foreach statement
in C3...C6 iterates through the slices S. Instanti-
ate_slice() is similar to Instantiate_program(), but
instead of a program P it takes a slice s. However,
it not only replaces subscript references, but it also
adds the code mentioned in Section 4.2 for collecting
the subscript that s is slicing on. Therefore this in-
stantiation, like the program instantiation, depends
on the type of data structure that was used to store
the subscript traces of the references that affect the
computation in this slice. After s has been instanti-
ated, Insert_code() inserts s.o4. into the program at
the target location s;4rges. The transformed program
is returned to the calling procedure.

In the CSR example in Section 2, we assume that
the subscript traces are stored in dynamically allo-
catable arrays. The instantiation routines will add
the code for maintaining and referencing these arrays
to the slices of the graph presented in Figure 5. A
topological sort on the graph yields the node order
to be D, A, E, B, and C; this is the same order in
which the slices appear in the transformed code in
Figure 4. For each of the slices, the subscripts of the
references requiring runtime preprocessing present in
the slice are changed to the local array that stores a
trace of the subscript. At runtime the trace must al-
ready have been generated because there must exists
an edge from the node where the trace was created to
the node where it is being used. The slice is next sub-
stituted in the program before the slice target node.
Note that the topological sort order is unique; this in-
dicates, for example, that there is no loop fusion pos-
sible in the example. Note also that the transformed
code in Figure 3 would be equally valid without hav-
ing the subscripts of the references ¢ja(i + 1), col(y),
and y(col(j)) replaced with references to trace arrays.
However, this replacement makes the subsequent task
of translating global indices to local indices simpler;



instead of having to modify user declared variables
and subscript arrays, it is sufficient to translate the
trace arrays.

5 Conclusions

The scheme that we presented in this paper can be
used by a compiler to generate parallel code for ir-
regular problems. In previous work we had pre-
sented a dataflow framework that determines the right
placement of communication routines such that max-
imum reuse of off-processor data is possible [6]. This
dataflow analysis in combination with the transfor-
mation presented in this paper will allow to generate
efficient parallel code for any problem where irregular
data access patterns exist. We have also carried out
extensive research on the design of runtime support
to support the communication requirements associ-
ated with indirectly accessed distributed arrays. One
of the key optimizations is to reduce the communica-
tion volume associated with a prefetch by recognizing
duplicated data references [14, 3]. While this pa-
per did not focus on these runtime support issues, we
have implicitly assumed the existence of such runtime
support.

We are implementing the algorithm presented in
Section 4 in the Fortran D compiler being developed
at Rice University. At present we handle loops with a
single level of indirection. We have also implemented
a program slicer to be used to generate the slice graph.
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