
������� � ���
	����������	�����������	����
�! "����#%$�$'&%(*)+)�$,� �-�
	�����

.0/21�3547698;:=<>89?�@>ACBD60E�<�8GFH8D@>AIEJ<>89K-?

L�M!�NL�OQP�M!)�R+RS(-$
� TVU (*)+)�R

W�XZY\[]XZ^`_ba�^dc`XZe]X;f�^hgji"akY�lmf�^2f�nonoXZn=W�a�pCqsrs[2f�[]toakY
cVtug2XwvVYxtzykXZ^]ejto[|{
}s~;����� a�rs[ji"�"f�toY � []^]X�XZ[
WVcdl�W��>� �C�Q~
� akrse][ja�Y=�x�V����� �k���

HPFF Meeting Notes - 1

HPFF Meeting Notes

April 22, 1992
Dallas, TX - Bristol Suites Hotel
Notes taken by Chuck Koelbel

Executive Summary
This was the second meeting of the High Performance Fortran

Forum Working Group. The meeting was dominated by presentations
from the four subgroups. The most important results of these
presentations were

• High Performance Fortran will have only a Fortran 90
binding (i.e. not a Fortran 77 binding, as suggested
previously). The first reading of this proposal was
approved at this meeting, and if it passes on its second
reading at the next meeting it will be a permanent
part of the draft. To allow prompt implementation of
HPF, an “official subset” of Fortran 90 will be identified
which must be implemented to support HPF. Although
the bounds of this subset were not defined at this
meeting, it will include the entire non-character array
sublanguage.

• Data distribution in HPF will incorporate a three-level
mapping which combines features of Fortran D and
Vienna Fortran. In outline, data arrays are mapped to
conceptual entities called TEMPLATEs (previously
called DECOMPOSITION), which are in turn mapped to
processor grids. Processor grids are finally mapped
onto physical processors. Guy Steele is preparing a
comprehensive proposal of this system for
presentation at the next meeting. (The next meeting
will be the proposal's first reading, if it is passed
there.)

• It is now likely that more than one parallel indexing
construct (“parallel loops”) will be included in HPF, due
to the wide variety of useful semantics for such

HPFF Meeting Notes - 2

constructs. Proposals for these constructs are now
being circulated within the subgroup.

• Two new subgroups were formed: one for discussion of
new intrinsic functions, and one for discussion of
parallel I/O as part of HPF. Like the other subgroups,
these subgroups will have publicly-accessible mailing
lists kept at Rice University. Details of joining these
groups are in the detailed meeting notes.

In addition, discussion of documentation and distribution
requirements lead to proposals for making more HPFF materials
available to the public. Details of this are being worked out, but the
result should be the electronic availability of all HPFF working group
handouts and electronic discussions. In particular, most of the
materials handed out at this meeting are now available by
anonymous FTP from titan.cs.rice.edu in the HPFF directory. See the
README file there for the file names. In addition, an outline for the
HPFF language draft is under construction.

Dates and agendas for future HPFF meetings are as follows:
June 8-10 Data Distribution,

Entire Non-Character Array
Sublanguage

July 23-24 Storage Association,
Dynamic Redistribution

September 9-11 FORALL (and Similar) Constructs,
Local Subroutines,
Intrinsic Functions

October 21-23 Official Fortran 90 Subset,
Miscellaneous Features

December 2-4 Approval of Final Draft
All meetings will be in Dallas, except for the July 23-24 meeting in
Washington, DC (held in conjunction with ICS). The three-day
meetings start with one half-day for subgroup meetings, followed by
a day and a half for the full group meeting.

HPFF Documents
The following documents related to HPFF are available by

anonymous FTP from titan.cs.rice.edu in the public/HPFF directory.
Additions since the March meeting are marked with a plus sign (+).

announce.* - HPFF Announcement and Call For
Participation

database - HPFF address database

HPFF Meeting Notes - 3

+ handouts - Directory containing electronic copies of
handouts from HPFF meetings.
+ apr - Handouts from the April HPFF meeting

+ ALL - Concatenation of all other files in this
sub directory

+ Distribute - Data distribution proposal from
distribution subgroup

+ FORALL - Email traffic and proposals from
FORALL and local subroutine subgroup

+ Fortran90 - Storage association proposal from
Fortran 90 subgroup

+ Pointer - Discussion of distributing Fortran 90
pointers by Barry Keane

+ Subroutine - Email traffic and proposals from
subroutine interface subgroup

minutes - Directory containing minutes of past HPFF
meetings
jan-minutes - Summary of the first HPFF meeting,

January 27-28, Houston
jan-proposals - Point-by-point comparison of

language proposals at January meeting
mar-minutes - Summary of HPFF meeting, March 9-

10, Dallas
+ apr-minutes - Summary of HPFF meeting, April

23-24, Dallas
papers - Directory containing papers related to HPFF,

primarily from presentations at the first meeting.
convex.* - Slides for Convex presentation at January

HPFF meeting
fd.* - Fortran D language specification
fd-over.* - Fortran D project overview
fd-sc91.* - Fortran D compilation paper (presented

at Supercomputing '91)
hpf.ps - DEC HPF language specification from

January HPFF meeting
mpp.ps - Cray MPP Fortran language specification
tmc - Position paper by Guy Steele from January

HPFF meeting
vf.* - Vienna Fortran language specification

welcome - “Welcome to HPFF” message, including
instructions for using anonymous FTP and joining mail
lists.

HPFF Meeting Notes - 4

See the README file in the main directory for information on file
extensions and compressed files.

Public comment on any of the proposals is welcome. Please
address your remarks to the appropriate email list (see the
“welcome” file for a list of these groups).

Detailed Meeting Notes

Attendees

Ralph Brickner (Los Alamos National Lab), Alok Choudhary
(Syracuse), Don Heller (Shell), Peter Highnam (Schlumberger),
Venkata Konda (nCUBE), Maureen Hoffert (Hewlett Packard), Ken
Kennedy (Rice), Chuck Koelbel (Rice), Bob Knighten (Intel), John
Levesque (Applied Parallel Research), Dave Loveman (DEC), Piyush
Mehrotra (ICASE), Andy Meltzer (Cray Research), Rex Page (Amoco),
David Presberg (Cornell), J. Ramanujam (Louisiana State), David Reese
(Alliant), P. Sadayappan (Ohio State), Rony Sawdayi (APR), Randy
Scarborough (IBM), Tin-Fook Ngai (HP), Rob Schreiber (RIACS), Vince
Schuster (Portland Group), Marc Snir (IBM), Guy Steele (Thinking
Machines), Richard Swift (MasPar), Clemens-August Thole (GMD),
Douglas Walls (Sun), Richard Schooler (HP), Rich Shapiro (United
Technologies), Joel Williamson (Convex), Min-You Wu (SUNY Buffalo),
Mary Zosel (Lawrence Livermore National Lab), Roland Zink
(University of Stuttgart)

Memorable self-introductions

Randy Scarborough: “From the now downsizing IBM”
David Loveman: “From the already downsized DEC”
John Levesque: “From the emerging APR”
(There was a long sequence of introductions in a similar vein, which I
didn't get copied down in time.)

Fortran 90 subgroup

Mary Zosel presented the Fortran 90 subgroup report. The major
points made on her slides are given below.

Fortran 90/77 “Approach”
• Identify issues in both standards.
• From work of all groups identify Fortran 90 features

which are relevant to solving HPF technical issues.
• Near the end of the process we will identify HPF to

include these features and make a specific list of

HPFF Meeting Notes - 5

Fortran 90 requirements and areas of Fortran 90/77
that are restricted.

• We are operating under the KISS (Keep It Simple,
Stupid) principle.

Directives
• We recommend directives to declare COMMON blocks

and variables to be distributable or sequential.
• We recommend some mechanism to apply a directive to

an entire standard program unit (for example, how to
interpret an ambiguous COMMON block).

• We observe some (controversial) usefulness for F90
trailing comments. For example,

REAL, DIMENSION (10,10) :: A, B !HPF
DISTRIBUTE(BLOCK,BLOCK)

• The evidence so far is that the user community wants
the Fortran 90 array language. We recommend the
entire (non-character) array language be included in
HPF, including WHERE, sections, interface, array-
valued functions.

• Discuss storage association later.
The discussion of the array sublanguage was supported by an

informal survey of user opinions, included as a handout. To
summarize that survey, when given a choice between the 3
alternatives

1. Bind HPF to F77 and Fortran 90 standards
2. Bind HPF to F77 and minimum other extensions (in

particular, no array sublanguage)
3. Bind HPF to a subset of Fortran 90, including the array

sublanguage
Mostly favored having the array syntax. Ralph Brickner presented a
more detailed survey of about 40 Los Alamos users. Some of the
results of that survey were

• Users were generally favorable toward data
parallelism.

• Several expressed the need for MIMD features (an
especially interesting result, given that these were
mainly CM-2 users).

• Portability of the same code from workstations to
massively parallel processors was favored by a margin
of 22 to 0.

• Full Fortran 90 was favored over Fortran 77 as the HPF
base language by a margin of 17 to 2 (with 3 not sure).

HPFF Meeting Notes - 6

• When asked about specific Fortran 90 features, users
favored keeping array syntax (12 votes for),
structured control flow (4 votes), dynamic memory
allocation (3), modules (2), and new intrinsics (2).
Users would omit modules (3 votes against) and
derived types (2). (The phrasing of the question made
it clear that adding or omitting features was based on
what users thought they could get, not what was
ultimately wanted.)

• The CM Fortran LAYOUT/ALIGN model was considered
adequate by 7 users, inadequate by 3.

• The CM Fortran ALIGN functionality was judged
adequate by 4 users and inadequate by 4 users.

• The CM Fortran :SERIAL, :NEWS, and :SEND functionality
was judged adequate by 5 users, inadequate by 2.

Much discussion followed on the topic of how HPF would treat
Fortran 90.

John Levesque started the discussion by stating that he was now
in favor of including array syntax. He noted that it was still
important that extensions can be converted back to Fortran 77.

David Presberg asked what the issues were in the Fortran 77/90
decision. After some discussion, there was some agreement that
certain features (such as dynamic memory allocation) were better
done directly in a modern language like Fortran 90 than by making
compromises and special cases in Fortran 77. Randy Scarborough said
that he saw problems of this type appearing in the F90 subgroup the
night before. His conclusion was that resolving those issues in Fortran
90 would keep HPF simpler. Mary Zosel mentioned that storage
association issues, which appear to be one of the main roadblocks to
HPF, occur in both dialects.

Rich Shapiro repeated the argument that having 2 bindings would
mean Fortran 77 was the only portable standard. Thus, requiring
array syntax gives a better portable standard. Joel Williamson
remarked that HPF will have much more than just array notation.

Marc Snir made the strong argument that HPFF cannot subset
Fortran 90; it must work with the entire language. Therefore, he
advocated a binding to all of Fortran 90. Ken Kennedy and Mary Zosel
clarified the proposal by saying that the subset approach would
mean defining “required” features, but a binding to the entire F90
standard would still be required. Clemens Thole and Dave Loveman
agreed strongly. In answer to a question, Mary said that the Fortran
90 subgroup recommended that F77 plus data distribution should not
be considered HPF.

HPFF Meeting Notes - 7

David Presberg played devils advocate by asking whether there
was a semantic problem with defining a language with data
distribution (and FORALL constructs) but no array operations.
Richard Swift and Mary Zosel quickly supplied examples of situations
involving passing arrays to subroutines. Defining distributions
consistently seems to require explicit array sections.

Ken Kennedy then proposed a survey of alternative strategies. The
choices were given as

1. Identify Fortran 90 binding, but do not require the full
language in HPF implementations.

2. Identify Fortran 90 binding and require some F90
features (i.e. the subgroup's recommendation).

3. Bind to Fortran 90, no subsets allowed (immediately
termed “the Ada model” or “the flexible government
approach”).

4. Identify separate Fortran 77 and Fortran 90 bindings
5. Identify a Fortran 90 binding and an “official subset”

Rob Schreiber moved to adopt strategy 5, David Loveman seconding.
Guy Steele called for a straw poll first, the results of which were

1. 5 yes
2. 9 yes
3. 0 yes
4. 0 yes
5. 18 yes

Another straw vote was then held between strategies 2 and 5,
with strategy 5 winning 25 to 4. An official vote was taken to
adopt the “official subset” strategy, the results being

• Yes 24
• No 2

(The number of votes was lower because the one-vote per-company
rule was enforced.) The group then took a short break before the
data distribution discussion.

Before starting on the distribution discussion, Mary Zosel asked
for a straw poll on whether the official HPF subset should include
the entire non-character array sublanguage. The vote was 22 to 2 in
favor, and the Fortran 90 subgroup was directed to start developing
the official subset on this basis.

Data Distribution Subgroup

Guy Steele presented the results of the Data Distribution subgroup
meeting. The technical details of the proposal were contained in a
handout printed the night before after subgroup discussions. (The
group was suitably impressed by that quick turnaround!) Guy

HPFF Meeting Notes - 8

prefaced his remarks by saying that the proposal was a combination
of working group discussion and previous proposals and therefore
“shouldn't be construed as official”. In fact, some parts had not been
discussed at all.

The distribution model consists of several components:
• Data arrays are mapped to conceptual TEMPLATEs by

one of two operations: ALIGN (a static declaration) or
REALIGN (an executable statement).

• TEMPLATEs are mapped onto logical PROCESSOR
arrangements (which are assumed to be in one-to-one
correspondence with physical processors) by two
operations: DISTRIBUTE (static) and REDISTRIBUTE
(dynamic).

• It is expected that vendors will provide a “reasonable”
default mapping from logical PROCESSOR grids to
physical processors; furthermore, machine-dependent
mapping directives will doubtless be defined to allow
specialized topology-specific mappings. The
distribution group will not address this mapping at
this time, however.

TEMPLATE is the a new term equivalent to the Fortran D
DECOMPOSITION. The reasons for this change are given below. To
unify notation, these minutes will use TEMPLATE exclusively,
although most of the discussions actually called it DECOMPOSITION.

Every array is created with a default alignment to some
TEMPLATE, and every TEMPLATE has a default DISTRIBUTION to a
PROCESSOR grid. The exact nature (e.g. whether the default
distribution is BLOCK or CYCLIC) is implementation-dependent.
Explicit ALIGN and DISTRIBUTE operations modify these defaults.
Either the TEMPLATE or the PROCESSOR can be anonymous if no
manipulation of the name is required. In general, an array name can
be used wherever a TEMPLATE name can go, and in that context it
stands for the array's underlying TEMPLATE.

DISTRIBUTE and REDISTRIBUTE map from TEMPLATE elements to
PROCESSOR arrays. Two constructs are given to preserve the clear
distinction between Fortran declarations and executable statements.
To mark decompositions that may be redistributed, the
REDISTRIBUTABLE attribute is introduced by analogy to the Fortran
90 ALLOCATABLE attribute. Note that since it is the TEMPLATE that
is mapped, a REDISTRIBUTE operation always affects all arrays
aligned to a TEMPLATE. In particular, using an array in a
REDISTRIBUTE operation may affect many other arrays.

HPFF Meeting Notes - 9

ALIGN and REALIGN map data arrays to TEMPLATEs. As above,
this is to preserve the distinction between declarations and
statements. Also as above, the REALIGNABLE attribute is introduced
with the obvious meaning. Both the dummy-variable (Fortran D)
notation and the array section (Guy Steele's) notation are supported.
Aligning arrays with other arrays is syntactically possible, but as
stated above this is merely shorthand for using the underlying
TEMPLATE. To avoid various pathologies, if an array is aligned with
another array, the “target” array cannot be REALIGNABLE.

A key design decision was to treat most directives (including
ALIGN and DISTRIBUTE) as Fortran 90 attributes. This allows us to
combine directives in any order, for example

!HPF DISTRIBUTE(BLOCK,BKOCK) ONTO P, DIMENSION
(100,100),
& !HPF REDISTRIBUTABLE :: D, E, F

(This example assumes continuation comments (from the DEC HPF
proposal) for HPF and vendor-specific extensions.)

Predictably, there was a great deal of discussion of this model.
Several people asked, at various times and in various phrasings,

whether TEMPLATEs were really necessary. Perhaps the best
explanation for this level of abstraction was that it provided an easy
way to group related arrays that should always be aligned and
distributed identically. Given the syntactic rules in effect, it appeared
that explicit TEMPLATE declarations will be rare. (This had caused a
heated argument in the subgroup meeting the day before; the
response to this comment was “Read Piyush's book!” referring to a
future writing project. A similar rallying cry was heard for Clemens
Thole's book.) Others made the point that each array had a default
TEMPLATE, but nothing was said about the relation between
TEMPLATEs for separate arrays. This argued that relying on the
default to ensure alignment might be a very bad strategy. Another
point was that many of the arguments in favor and against the
TEMPLATE construct were based on principles rather than from
actual examples. While there was merit to this observation, there
was also no way to produce any real-world examples during the
HPFF meeting. Examples that might illuminate this debate would be
welcome.

A recommendation was made in the subgroup to rename
DECOMPOSITION (the original name for TEMPLATE). There was
general agreement that this was a non-optimal name, but no
agreement on what to change it to. A straw poll from the data

HPFF Meeting Notes - 10

distribution group produced the following suggested names and vote
counts (multiple votes were allowed):

DOMAIN: 10 votes in subgroup
LATTICE: 9
GRID: 5
SUPPORT: 4
MODEL: 3
LOGICAL*0: 0 (not a particularly serious suggestion)

After some discussion, a straw poll of the entire group was taken
(again, allowing multiple votes). The results were

DECOMPOSITION: 7
*DOMAIN: 22
*LATTICE: 16
*GRID: 9
SUPPORT: 3
MODEL: 1
*TEMPLATE: 25
FRAME: 1
FRAMEWORK: 3
LOGICAL*0: 0
NONE OF ABOVE: 15

A few other names were suggested (notably PEGBOARD), causing
Dave Loveman to remark that “LOGICAL*0 is looking better.” A final
poll was taken allowing only one vote per person, and only
considering the most popular choices above (marked with asterisks).
The results were

DOMAIN 6
LATTICE 3
GRID 1
TEMPLATE 21

Based on this, the decision was made to publish the minutes using
TEMPLATE, with the understanding that the name was still subject to
change.

The distribution subgroup had not discussed the treatment of
COMMON extensively. Their basic approach was to treat it as a 1-D
array whose elements are STORAGE UNITS (as defined in the Fortran
standards). A programmer could distribute it if and only if no object
in the COMMON block was explicitly ALIGNED. A much more detailed
proposal was presented in the afternoon by the Fortran 90 subgroup.

A significant email discussion had examined the definition of
BLOCK distribution when the array size N was not evenly divisible by
the number of processors P. The current definition (all processors
round up the block size) produces quite bad distributions when

HPFF Meeting Notes - 11

P<N<2P. Vienna Fortran uses an alternate definition that never leaves
processors idle, but that requires a conditional to evaluate subscripts.
Guy Steele proposed a new method that attempted to retain the
advantages of both definitions, and Joel Williamson questioned
whether the inverse of the mapping was efficiently computable. The
issue was left unresolved at this meeting.

Mary Zosel pointed out that Fortran 90 pointers can cause serious
data redistribution problems, and that the distribution and Fortran
90 groups needed to consider this carefully. Barry Keane produced a
write-up of some of the issues involved in this, and basically
suggested that pointers would have to be restricted in some way. On
that happy note, the group broke for lunch.

After lunch, Rob Schreiber asked if there were any actual
examples of the need for REALIGN and REDISTRIBUTE. Several
examples, including adaptive and irregular problems and changing
distributions based on problem size, were given by Piyush Mehrotra.
David Loveman recalled the bashing he took over omitting the
dynamic features from the DEC proposal at the first HPFF meeting.
Peter Highnam asked whether it was acceptable to force copying to a
correctly aligned and distributed array in order to simulate the
remapping. Some discussion ensued over whether the compiler could
avoid allocating new memory when performing redistribution. Ken
Kennedy suggested that HPF should allow programmer intent to be
expressed as clearly as possible.

Peter then raised the question of whether (and how often)
compilers could override the programmer distributions. Richard
Swift believed this could be common for static distributions, but
should be rare for dynamic ones. His argument was that if a user
inserted an expensive operation, that user was probably quite aware
of the consequences. Ken Kennedy stated that compilers should have
the latitude to ignore any distribution declarations or statements if
they could deduce a better way.

Ralph Schooler stated that the number of mapping levels needed
more rationale. In particular, he did not see the need for two types of
processor. Ken Kennedy agreed that there should be an aside in the
document covering this design decision.

Marc Snir stated that the document should indicate assumptions
about architecture. For example, there seems to be an implicit
assumption that nearest neighbor communication (in the logical
PROCESSOR array)is fast. Guy Steele promised to do so.

At this point there seemed to be general agreement on the broad
outlines of the distribution proposal. Ken Kennedy suggested that the
data distribution group be given directions to prepare a formal

HPFF Meeting Notes - 12

proposal to be approved at the next meeting. David Loveman asked if
approving a proposal meant it was set in stone, to which Ken replied,
“Yes.” There will be a final pass through the draft near the end of the
HPFF process to make corrections. Proposals which are approved
should stay fixed until that pass, unless irreconcilable conflicts with
other issues are found.

Subroutine Interfaces Subgroup

Joel Williamson presented the report of the Subroutine Interfaces
Group. The group's charter was to define the behavior of data
distributions on parameter arrays, the scope of data distribution
directives, and related problems. The report was by far the shortest
at this meeting.

Group 3 had met once and unanimously chosen Marina Chen as its
chair. (Unfortunately, Marina was unable to attend this meeting
because of an emergency.) They then agreed that they couldn't do
much, if anything, before the data distribution group finished its
work. Furthermore, it was not clear that the distribution group could
finish its work without doing most of the subroutine group's work.
Joel then opined that the subroutine interfaces group should be
absorbed into the data distribution group. There was general
agreement from the floor. Guy Steele said he would talk to Marina
Chen about the merge. (Subsequent to the meeting, the merge was
made official and the hpff-subroutine mailing list merged into hpff-
distribute.)

FORALL Subgroup

Chuck Koelbel presented the report from the FORALL group. This
group had not been as active as the data distribution group, but had
produced 3 proposals available as a handout.

• Guy Steele's “Local Sections” proposal (updated from
the first HPFF meeting).

• A taxonomy of FORALL variants by Chuck Koelbel.
• A concrete proposal for semantics of FORALL by Guy

Steele.
The presentation focused on Steele's FORALL proposal, as this had
been the main topic of the subgroup meeting the night before.

In summary, the proposal had three parts:
+ Single-statement FORALL

Only assignments are allowed in the FORALL body.
The left-hand sides computed in each instantiation

of the FORALL must be independent, and some

HPFF Meeting Notes - 13

necessary (though not sufficient) syntactic
conditions are imposed to guarantee this.

All right-hand sides are computed before any
stores are performed.

Expressions may not have side effects.
(Note: These are the semantics as defined in Fortran

8X and dropped from Fortran 90; they are also
the semantics used in CM Fortran.)

+ Block FORALL
Multiple assignments allowed in the FORALL body.
Equivalent to a series of single-statement FORALLs.
Conceptually, a synchronization and/or

communication phase after each statement
(Note: This is often referred to as SIMD semantics,

although it can be implemented on MIMD and
sequential machines.)

- Nested IF (that is, IF statements nested within a
FORALL)
Defined as a series of masked single-statement

FORALLs.
Values assigned in the THEN branch are available in

the ELSE branch.
(Note: This is the direct analog of the WHERE

semantics in Fortran 90.)
The subgroup recommended accepting the single-statement and

block FORALL semantics as stated. No recommendation was given on
the nested IF semantics. Single-statement FORALLs were very
noncontroversial, given their wide use in CM Fortran. The other
variants were not.

The SIMD semantics for block FORALLs was seen as useful for
many problems, although there were suggestions that a different
syntax would be preferable. In particular, many members were
uncomfortable with the notion of values flowing from one
instantiation of the FORALL body to another. For example, in

FORALL (I = 1:99)
A(I) = I
B(I) = A(I+1)

END FORALL

some members felt that element B(1) should receive the original
value held in A(2), rather than the new value assigned when I = 2.
The argument was also made that this semantics did not extend
naturally to other nested constructs, particularly DO loops within

HPFF Meeting Notes - 14

FORALLs. Still, the group was willing to live with this semantics,
although a majority claimed it was not sufficient alone.

The key pathological example of a nested IF statement was

FORALL (I = 1:100)
IF (PRIME(I)) THEN

A(I) = F(I)
ELSE

B(I) = A(I+1)
END IF

END FORALL

According to Guy Steele's semantics, B(1) is assigned the new value
of A(2) (that is, F(2)). Even some people comfortable with the SIMD
semantics for block FORALL were troubled by this. Guy later
retracted this semantics for the IF statement (as he put it, “I have
changed my mind as the result of repeated pounding to the top of my
cranium”). He did, however, advocate retaining these semantics for a
nested WHERE statement. This seemed less controversial, although
some committee members were surprised to discover that this was
the semantics of WHERE-ELSEWHERE.

The proposal did not have firm semantics for other statements
nested in a FORALL, such as nested DO or WHILE loops. The FORALL
group was encouraged to develop them.

In response to a question regarding why a more general FORALL
(or similar construct) was needed, Clemens Thole presented 3
examples from his research. All fell into Geoffrey Fox's “loosely
synchronous” category.

1. Finite Element Methods - setup of element matrices
An embarrassingly parallel problem consisting of

generating a fair-sized local matrix at each
domain point.

Lots of branches and subroutine calls, due to
different functionals for different types of
elements.

Needs interface blocks and array section passing for
effective “command” implementation. Others in
the room commented that it also needs
something akin to the INDEPENDENT directives.

2. Computational Fluid Dynamics - 3D-O-NET
Different code used for different sections of the

domain (boundaries, interior, etc.).
Needs functional parallelism, but each function is

data-parallel.

HPFF Meeting Notes - 15

3. Computational chemistry - ab initio codes
Evaluation of integrals for each pair of basic

functions.
For sets of functions, evaluate the integral if and

only if the contribution will be significant.
Different formulations for integrals depending on

local curvature and required accuracy of result.
Clemens claimed that executing these computations in SIMD mode
was possible, but at a high overhead. Others in the room disagreed to
various extents, saying that different formulations were needed for
SIMD. (Not all of the objectors were from Thinking Machines and
MasPar, it should be noted.) Clemens was encouraged to circulate a
requirements lists for supporting this type of application in a
language.

A problem of terminology was noted by Randy Scarborough, who
objected to the use of the term “parallel loops” to describe the
FORALL and similar constructs. His claim was that this name implied
sequentialization of control flow. That is, how can you have a loop
when the control threads are running in parallel. He raised a similar
objection to “iteration” to describe the instantiations of a FORALL
body. The point was well-taken, and I have tried to avoid those
terms in these minutes. However, the fact remains that there is no
really satisfactory term for these concepts. “Parallel indexing
construct” was suggested instead of “parallel loop,” but this seemed
too long; “parallel construct” did not draw a distinction between
FORALL and parallel sections as defined by Guy Steele. Suggestions
for a better terminology for these constructs would be welcomed.

In addition to the FORALL constructs, Guy Steele proposed a
compiler directive called INDEPENDENT which could be applied to
FORALLs and DO loops. In either case, the directive asserted that all
iterations were independent. In the DO case, the implication was that
the loop could be converted into a FORALL. In the FORALL case, this
implied that no synchronization or communication was needed
between statements. Statements could use values assigned by
(lexically) earlier statements in the same iteration, however. After
much confusion and a short coffee break, Guy Steele gave a
wonderful graphic presentation of the meaning of INDEPENDENT
which, unfortunately, is far too complex to reproduce here. In words,
the pictures showed the guaranteed ordering of operations for DO
and FORALL both with and without INDEPENDENT directives.

• DO without INDEPENDENT showed a loop header that
dominated all other operations, the operations within a
loop iteration linked in a linear chain, cross-links from

HPFF Meeting Notes - 16

the end of each iteration to the beginning of the next,
and a loop exit node dominated by all other
operations.

• FORALL without INDEPENDENT had the same loop
header and exit nodes, but now the second operation
in each iteration depended on the first operation in all
iterations., not just its predecessor in the same
iteration. (Of course, the third operation depended on
all second operations, and so forth.) Note that the
linear chains from the DO loop formed a subset of
these dependences.

• Both DO and FORALL with the INDEPENDENT assertion
showed the loop header dominating the linear chain
for each iteration, with no cross-links of any kind.

Once this was clear to everyone, there seemed to be general
agreement that this was an elegant solution to the directive problem.
The question then became whether HPF should consider this type of
annotation. Not surprisingly, no consensus was reached. It was
pointed out that vendors would provide these directives in any event
(although they would probably use different syntax). Ken Kennedy
remarked that there was interesting research to be done on what
form of directives would be most helpful to the compiler and most
understandable to the user.

After a short break, Ken Kennedy took a series of straw polls to
give guidance to the FORALL group. Starting from the low-
controversy end of the scale, the results were

• Single-stmt FORALL: 30 in favor, 1 against
It was noted that this was the only language

extension (that is, actual new statement rather
than compiler directive) proposed so far.

• Block FORALL with SIMD semantics: 25 in favor, 1
against

• Nested IF: no vote taken after Guy retracted his
proposal

• INDEPENDENT for DO loops: 20 in favor, 7 against
• Marc Snir suggested postponing the vote on

INDEPENDENT for FORALL argument until we have a
deterministic parallel indexing construct. Richard Swift
suggested examples of all these constructs were
needed. Joel Williamson suggested the need for other
parallel loops, noting that there is currently no
provision for temporary scalars within FORALL. (It

HPFF Meeting Notes - 17

was at this point that Guy presented his graphic
representation of INDEPENDENT semantics).

• Despite the above objections, a poll was taken on
INDEPENDENT applied to FORALL: 21 in favor, 6
against.

• Should HPF consider having more than one parallel
FORALL-like construct? 21 yes, 1 no (However,
without a firm semantics for the construct the group
could not vote on how many constructs or what the
semantics should be.)

Suggested names for the FORALL alternative ranged from
FREEFORALL (Mary Zosel's suggestion for a completely asynchronous
construct) to the PCF DOALL. Some further discussion of compiler
directives was also started by Joel Williamson's description of a
directive as a pact between the user and the compiler:

• User: I certify that nothing's wrong with this code.
• Compiler: I won't check if something is wrong (i.e.

whether you are lying).
As Joel put it, “We aren't calling ourselves Right Answer Fortran,
we're High Performance Fortran!” The discussion quickly moved on to
the Fortran 90 group's proposal regarding storage association.

Storage Association

Richard Swift and Rob Schreiber led the discussion, which was
based on a technical handout. Rob made the bulk of the presentation.

The talk started with definitions of sequence and storage
association. To skip the technical details, these are the features of
standard Fortran that rely on mapping multi-dimensional arrays
onto a linear memory model using column-major ordering. Sequence
association occurs as a result of subroutine parameter passing (the
old trick of passing a 2-D array to a routine defined to take a 1-D
array, or vice versa). Storage association occurs as the result of
EQUIVALENCE statements or inconsistent declaration of COMMON
blocks in separate program units. (Readers not familiar with these
concepts are referred to the Fortran standards, or to any
introductory Fortran text.) Regardless of its source, association with a
linear memory model causes implementation difficulties for modern
architectures without a linear address space, such as distributed
memory machines. It also makes the meaning of data distribution
very difficult to define, for example in the case when part of a
distributed array is passed to a separately compiled subroutine. For
this reason, David Loveman's original proposal disallowed sequence
and storage association on distributed arrays.

HPFF Meeting Notes - 18

The goal of the Fortran 90 group was to allow programs to rely on
sequence and storage association, but limit distributability on
variables and COMMON treated in that way. To this end, memory
objects could be sequential or distributable; the basic rule is that
programs cannot explicitly DISTRIBUTE or ALIGN sequential objects.

A variable is sequential if
• It is of base type CHARACTER, or
• It is part of a Fortran 90 sequenced type, i.e. a record

field or assumed size, or
• It occurs in an EQUIVALENCE statement, or
• It is explicitly declared sequential, or
• It occurs in a sequential COMMON block (“guilt by

association”).
Otherwise, a variable is distributable and may be given ALIGN and
DISTRIBUTE attributes.

A COMMON block is distributable if
• It has no sequential component ,and
• All occurrences of the COMMON have the same number,

type, and shape of components in the same order, and
• It is not explicitly declared sequential.

Otherwise, the COMMON is distributable. Note that this does not
necessarily mean that the entire COMMON can be distributed as one
object; that is a matter for the distribution group to consider. The
conditions are sufficient, however, for the components of the
COMMON to be distributed individually.

Guy Steele noted that variables and COMMON blocks had different
terminology for essentially the same concept. In reference to Fortran
90 specifically, if %loc is used on any variable, then the variable is
sequential. Piyush Mehrotra asked if blank COMMON was always
sequential (specifically, in regards to some very frequent coding
tricks used on it); Richard Swift explained that “We're not trying to
preserve the semantics of non-standard-conforming programs.”

Guy Steele remarked “This is great stuff.” It appears to be
completely compatible with the results from the data distribution
group (except for a minor terminology change).

Rob Schreiber's presentation then moved on to describing rules
for using these new classes of variables.

1. Only distributable variables can be used in ALIGN and
DISTRIBUTE declarations. Note that this does not
conflict with distributing an entire COMMON block.

2. New restrictions must be placed on sequence
association. The illegal situations are

HPFF Meeting Notes - 19

A. Distributed array element associated with
sequential array dummy

B. Assumed-size array associated with a
distributable dummy

C. Sequential array element associated with a
distributable dummy

D. Distributed array element associated with a
distributable dummy

3. Some situations need clarification from the subroutine
interface group (now the data distribution group).
A. Sequential array associated with a distributable

dummy
B. Distributable array associated with a

distributable dummy
C. Distributable array associated with a sequential

array
Ken Kennedy was concerned that the model might be overly

restrictive. In particular, he argued that the compiler could handle
the grouping of COMMON variables. Vince Schuster replied that
compilers can extend HPF to allow safe cases, in particular COMMON
blocks that are part sequential, part distributed. Richard Swift
invoked the KISS principle; the language is simpler to explain this
way. Piyush Mehrotra noted that Vienna Fortran allows the kind of
thing Ken wanted. Richard Swift agreed that there were other
possible definitions; the issue is where to draw the line between
allowed features and illegal ones. Somebody avoided a long
discussion (Rob still hadn't presented the second two points above)
by noting that “It looks like we could discuss this for a few
minutes.”

Sadayappan noted a problem with the default condition: it
appeared that some Fortran 77 programs were illegal. Further
discussion did not entirely resolve the issue, but agreed that it
deserved further study. Guy Steele noted that this was like DEC
proposal, in that arrays were sequential unless otherwise noted.

At this point, the group broke for dinner at a local Japanese
restaurant. Discussion after dinner started with group
responsibilities, but then moved back to the COMMON proposal.

Andy Meltzer presented his (hastily prepared) proposal for
sequential and distributable COMMON blocks.

• Group 1's proposal has a problem: COMMON can only
have one distribution (and which distribution is
implementation defined).

HPFF Meeting Notes - 20

• But “sequential” (as used there) really means “Maintain
Sequence And Shape Association” (MSASA). Note: this
is not a syntax proposal!

• MSASA says that for correctness the compiler must
maintain association.

• New proposal: “distributable” is an assertion about what
a user wants his data layout to be (i.e. a hint to the
compiler, not a binding construct).

His main point was that MSASA and distribution shouldn't be
mutually exclusive. Furthermore, the language shouldn't mandate
how the machine accomplishes these tasks (e.g. what the
distribution is).

As with most proposals, this sparked a spirited discussion. The
traditional “but the compiler could mess up this way” argument was
dealt with by Joel Williamson's comment, “Users can do stupid
things like this now.”

Peter Highnam asked what the advantage of this proposal over
the previous one was, to which Andy replied that it gave users access
to more memory. This was hotly contested by Rob Schreiber and
Mary Zosel, who claimed he had misunderstood the proposal. (Andy
apparently assumed that shared COMMON would be replicated, which
was not the case.)

David Loveman asked if an array could be aligned with COMMON.
Andy answered yes, but admitted that he hadn't worked out the
details carefully yet. Guy Steele noted that this made COMMON
analogous to TEMPLATE, where the units of alignment were storage
units (as defined in Fortran standards). Randy Scarborough and David
Presberg contended that distributing storage units not a good idea,
since it could mess up the compiler on some architectures. Andy
replied that he hadn't considered those implications, but noted that
there was no problem on the Cray MPP.

Piyush Mehrotra asked whether going to Fortran 90 bypassed
these problems, and was shouted down by the group. Storage and
sequence association are present in F90 (in fact, according to David
Presberg even more attention is paid to it). Piyush responded with a
question: since we can see nonlinear memories coming, is it a good
idea to keep the linear memory model embedded in Fortran?

Richard Swift asked what the user value of distributing COMMON
in this way was. Clemens Thole replied that users need only recode
their programs once. The question then became what the advantage
over distributing the arrays within COMMON was, to which the reply
was avoiding the recoding of memory allocation (i.e. the kind of
dividing COMMON done in F77). David Loveman noted that there was

HPFF Meeting Notes - 21

no evidence that keeping this allocation strategy would improve
performance. Peter Highnam was concerned over additional vendor
effort for no gain, to which Andy Meltzer replied that there was no
extra effort, since the directives were not binding. Rich Shapiro
claimed that the real issue was whether the programmer can always
control distribution. Andy Meltzer noted that the user can't say
anything under the current proposal.

Ken Kennedy then unveiled his complaint about all the proposals.
A simple example showed a situation that he would like to allow, but
that was illegal under all current proposals.

COMMON /blk/ a(100), b(100), c(100), d(50), e(50)
REAL f(100)
EQUIVALENCE (d(1),f(1)), (f(51,e(1))
!HPF$ TEMPLATE, DISTRIBUTE dd(100)
!HPF$ ALIGN WITH dd:: a, b, c

Randy Scarborough noted that as soon as you allow EQUIVALENCE,
users can play games. (In particular, users can play games that
defeat compilers.) Ken replied that he was suggesting that programs
have grown over years. Variables were added to COMMON for various
reasons, and other modifications had happened. His goal was to not
force more rewriting than needed. Richard Swift again stated that
the hard question is drawing the line between user and compiler
responsibilities; his group had drawn it close to the user. Ken stated
that what was really needed was a way to align the “super-
variables” formed by EQUIVALENCE. Marc Snir stated that
correctness under these circumstances kills separate compilation,
to which Ken replied that we have to trust the users.

Rob Schreiber objected that the rules for these features were
getting complex. David Loveman became nervous because the linker
has to figure out all relations to do its job. Marc Snir believed the
proposals did allow separate compilation, although Guy Steele
thought more HPF stuff in MAIN was needed to ensure consistency.

At this point Richard Swift took a series of straw votes.
1. On the F90 group proposal (key points: good and bad

COMMONs, EQUIVALENCE kills distributability)- Are
you generally favorable? 14 yes, 1 no, 16 undecided

2. On the Andy Meltzer proposal (key points: distribute
sequential COMMON blocks as a whole)- Are you
generally favorable? 10 yes, 3 no, 15 undecided

3. On the Ken Kennedy proposal (key points: COMMON can
be partially sequential, partially distributable)- Are
you generally favorable? 11 yes, 3 no, 14 undecided

HPFF Meeting Notes - 22

4. Should CHARACTER arrays be distributable? 2 yes, 14
no, 11 undecided

Further investigation showed lots of swing voting between the three
COMMON proposals. Ken Kennedy said that the group needed to think
through this issue and discuss it again. Richard Swift though that
email could effectively be used to discuss the issue before the next
meeting, but asked what could change the undecided votes. Ken and
Mary Zosel replied that finding out tradeoffs for users would be a
good start. Ken further suggested going with the simplest proposal
(i.e. the original F90 group's) if there was still controversy.

The group then called it a night after a short discussion of the next
day's agenda.

Subgroups

(This section is out of chronological order, so that the COMMON
discussion above could be presented together.) A few responsibilities
for the subgroups were clarified.

1. Fortran 90 subgroup: Define the official subset and
interactions with F90.

2. Data Distribution subgroup: Prepare a final proposal of
distributions for the next meeting

3. Subroutine Interface subgroup: Absorbed into group 2
4. FORALL and Local Subroutines subgroup: Prepare

drafts of the FORALL and other parallel indexing
constructs.

It was noted that new names for these constructs
would be welcomed; current candidates include DOALL
(from PCF), FREE FORALL, ENDALL, BEALL, and Y'ALL.
Some of these are not entirely serious proposals.

5. I/O and Miscellaneous Features subgroup: The group is
charged with examining what features for parallel I/O
are needed in HPFF.

This group was activated after being ignored since
the last meeting. Bob Knighten is acting as convener.
Initial members include Barry Keane, Alok Choudhary,
David Loveman, Marc Snir, Peter Highnam, and Rex
Page. The mail alias is hpff-io@rice.edu.

6. Intrinsics subgroup: This group was charged with
defining new intrinsics useful for parallel computation.

This is a new subgroup. Rob Schreiber will serve as
convener. Initial members are Rich Shapiro, Ralph
Brickner, P. Sadayappan, David Loveman, Guy Steele,

HPFF Meeting Notes - 23

Peter Highnam, and Rex Page. The email alias is hpff-
intrinsics@rice.edu.

Meeting Agendas

The first business item on Friday was planning future meetings.
The final schedule was

June 8-10 (note change from June 8-9) - Dallas, TX
Subgroups meet June 8 starting at 1:00. The main

group meeting will be June 9-10, all day and evening
on the ninth and ending at noon on the tenth.

Subjects to be voted on: data distribution proposal,
allowing the entire non-character array sublanguage in
the HPF subset. Also to be discussed (but voted on in
July): storage association and data redistribution.

July 23-24 - Washington, DC (in conjunction with ICS)
Subgroups meet on the morning of the twenty-

third. The main group will meet starting at 1:00 on the
twenty-third (probably through the evening) and on
the twenty-fourth ending at 5:00.

Subjects to be voted on: storage association and
COMMON block proposal, data redistribution. Also to
be discussed (voted on in September): FORALL, local
subroutines, and intrinsics.

September 9-11 - Dallas
Subgroups meet starting at 1:00 on the ninth,

working through the evening. Main group meets on
the tenth and eleventh, ending at noon on September
11.

Subjects to be voted on: FORALL and local
subroutine proposal, parallel intrinsics. Also to be
discussed (but voted on in October): Fortran 90 subset,
miscellaneous features.

October 21-23 - Dallas
Subgroups meet starting at 1:00 on the 21st,

working through the evening. Main group meets on
the 22nd and 23rd, ending at noon on October 23.

Subjects to be voted on: Fortran 90 subset,
miscellaneous features. Also, prepare a draft for
presentation at Supercomputing '92.

December 2-4 - Dallas
A meeting to finalize the draft, incorporating any

public feedback from Supercomputing '92 and other
sources. Assuming the schedule holds, this will

HPFF Meeting Notes - 24

produce the final, approved draft of High Performance
Fortran.

Draft Documents

Much discussion went into deciding how HPF drafts should be
presented. David Presberg saw the need for a documentation
subgroup or support staff. Ken Kennedy agreed that a strategy was
definitely needed, but no grant support was available at this time.
Marc Snir remarked on the need for a working draft at each stage of
the HPF process.

Guy Steele suggested settling on a format, and nominated LaTeX.
After some discussion of whether this was really portable, Chuck
Koelbel volunteered to write up a format that could be used portably.
This was to include sections, cross-references, figures, BNF for syntax,
italics, and an outline for the draft document. Guy promised to
provide samples for some of these features. In a leap of optimism, it
was hoped that this format could produce high-quality typeset
output as well as readable ASCII files.

In a related note, Chuck Koelbel agreed to make as many handouts
from the HPFF meetings available electronically as possible. These
will reside in the same anonymous FTP directory as the previous
HPFF material. A list of the documents available through this
mechanism is in a section below. In the future, we will request that
anyone making a handout for the HPFF meeting send him an
electronic version, preferably in plain ASCII or “vanilla” LaTeX. These
documents will be in addition to the normal posting of the HPFF
minutes to the net.

Parallel I/O

A short discussion of parallel I/O was started by Vince
Schuster's warning to be careful of it sneaking into the language
definition process. Rob Schreiber opined that Fortran already has
sufficient I/O (in fact, more I/O support than any language except
perhaps COBOL). Peter Highnam clarified a remark from the previous
meeting, saying that even if HPF only contained standard Fortran I/O,
users would take advantage of whatever high-performance I/O
extensions the vendors provided. Clemens Thole asked what Cray and
Thinking Machines were doing on I/O. Andy Meltzer answered that the
Cray MPP proposal has much more parallelism, including parallel I/O,
but HPF doesn't need it due to the different model.

Clemens Thole believed that the standardization group for
message-passing (scheduled to meet after the SHPCC conference in

HPFF Meeting Notes - 25

Williamsburg) would attack this problem. He believed that HPFF
should accept their results. Ken Kennedy, one of the organizers of
that meeting, was less sanguine. He viewed that group as
“standardizing assembly language” and thought they would limit
themselves to message interfaces.

Mary Zosel returned to the subject of I/O after the group explored
a few unrelated tangents. Her basic observation was that Fortran 90
has no asynchronous I/O, which will presumably be quite important
in parallel machines. The question was, does HPF need to address
this? David Presberg suggested that a subroutine interface
specification might solve this problem, while Rich Shapiro claimed
that vendor extensions will creep into standards in any case. Rich
suggested that HPFF limit its scope due to time constraints. Marc Snir
spoke in favor of standardizing foreign interfaces. Robert Babb
agreed that only interfaces should be given for such “dark corners” of
the language. The I/O subgroup took all these points under
advisement.

Public Comment

Ken Kennedy encouraged the HPFF committee to give briefings to
any interested groups. A key to the success of HPF is feedback from
the users. David Presberg emphasized that people are interested in
this, and HPFF should encourage this interest. Widely available
documents were one way to do this, public presentations another.
There seemed to be general agreement on this point, and several
members expressed interest in doing such presentations.

