
������� � ���
	����������	�����������	����
� � �"!#�%$'&)('*,+�(-$.$�/0� �'�
	�����

13254�687:9<;>=@?A;<B�CADFEG93H�?�;JIK;GCADLHM?A;<N'B

O�PQ�RO�&TS�PQ$�U.U,(.(
� �#V (-$.$�U

W�XZY\[]XZ^`_ba�^dc`XZe]X>f�^hgjikalY�mnf�^5f�opopXZo@W�a�qFrtst[5f�[]upalY
c#uvg5X w#YxuzylXZ^]ejup[|{
}t~>����� a�st[jik�kf�upY � []^]X�XZ[
W#cdm�W��A� �F�T~
� alste][ja�Y@�x�#����� �l���

HPFF Meeting Notes - 1

HPFF Meeting Notes
March 9-10, 1992

Notes taken by Chuck Koelbel, with
input from J. Ramanujam

Executive Summary:
This was the first working meeting of the High Performance Fortran
Forum. As a first meeting, the most concrete results were procedural
decisions, most notably rules for future meetings and working groups
dedicated to specific language features. A list of goals was also
adopted (albeit less formally).

Rules for future meetings

Attendance at meetings is open to all interested parties.
Each organization (company, school, etc.) is limited to
two representatives, however, in order to keep the
meeting size manageable.

Every organization may have one voting representative.
The organization should name a single individual for
this task; if that person cannot attend, however,
another can cast votes instead.

To be eligible to vote, a representative must have
attended 2 of the last 3 meetings, counting the current
meeting. (That is, if you miss 2 consecutive meetings
you can't cast a vote.) Eligibility is decided based on
organization. This rule, of course, would not be applied
before the third meeting.

Future meetings will be 1.5 day gatherings. The first day
will start around 9:00 and work into the evening,
while the second day will end at about noon. In
general, meetings during cold months will be held in
Dallas, and meetings in hot months will be held in
Chicago.

HPFF Meeting Notes - 2

Working groups

Working groups were formed to discuss specific parts of High
Performance Fortran. These groups will meet between full meetings
to develop proposals for presentation at full meetings. The current
set of working groups is

1. Fortran 90 (i.e. How much of Fortran 90 will be
required by HPF?)
Convener - Mary Zosel

2. Computational Model of ALIGN/DISTRIBUTE
statements
Convener - Guy Steele

3. Subroutine interfaces & dynamic redistribution
Convener - Joel Williamson

4. FORALL, DOALL, and ON clause
Convener - Chuck Koelbel

5. I/O and odds & ends
No convener

It is expected that much of the technical discussion and work will
happen in the group meetings. The group meetings will be open to
any interested party; contact the convener for more information.

Goals

Language extensions and feature selection for Fortran supporting:
Data parallel programming (defined as single thread,

global name space, and loosely synchronous)
Top performance on MIMD and SIMD computers with

non-uniform memory access costs
But should not impede performance on other

machines
Code tuning for various architectures

Minimal deviation from other standards
Minimal direct conflicts with Fortran 77 and 90

If possible, no direct conflicts
Open interfaces to other languages & programming styles
Compiler availability possible in near term (1993) with

demonstrated performance on HPF test suite
Produce validation criteria
Provide input to future standards activities for Fortran

and C
Maximal simplicity
Involvement (input) of high performance computing

community

HPFF Meeting Notes - 3

Widely distributed language drafts
Present final proposal in November '92

Final draft in January '93
Leave an evolutionary path for research

Future Meeting Dates -

April 23-24 Dallas
June 8-9 Chicago
July 23-24 Washington, DC
September 10-11 Chicago (tentative)

Detailed meeting notes:

Attendees

Ralph Brickner (Los Alamos National Laboratory), Alok Choudhary
(Syracuse University), Marina Chen (Yale University), Peter Highnam
(Schlumberger), Barry Keane (nCUBE), Ken Kennedy (Rice University),
Chuck Koelbel (Rice University), Bob Knighten (Intel Supercomputer
Systems Division), John Levesque (Applied Parallel Research), David
Loveman (DEC Massively Parallel Systems Group), Tom MacDonald
(Cray Research, Inc.), Piyush Mehrotra (ICASE), Andy Meltzer(Cray
Research, Inc.), Rex Page (Amoco Production Research), J. Ramanujam
(Louisiana State University), David Reese (Alliant Computer Systems
Corp.), P. Sadayappan (The Ohio State University), Rony Sawdayi
(Applied Parallel Research), Randy Scarborough (IBM Scientific
Center, Palo Alto), Rob Schreiber (Research Institute for Advanced
Computer Science), Vince Schuster (Portland Group), Henk Sips(ITI-
TNO), Marc Snir (IBM T. J. Watson Research Center), Guy
Steele(Thinking Machines Corporation), Swift Richard (MasPar
Computer Corporation), Clemens-August Thole (GMD), Douglas Walls
(Sun Microsystems), Joel Williamson (CONVEX Computer Corporation),
Mary Zosel (Lawrence Livermore National Laboratory)

Some memorable self-introductions

Bob Knighten - “Our customers tell us we are going to be
implementing HPF”
Rob Schreiber - “I'm the only applications user here”
Peter Highnam - “I'm also the only applications programmer here”

HPFF Meeting Notes - 4

Principles

The meeting started with a presentation by Chuck Koelbel
outlining issues in the areas of HPFF operating principles and
procedures. The following copies his slides; comments are given later.

Principles
[original slide by Ken Kennedy]

Maximum Compatibility
Minimum Requirements
Machine Independence
Consider near-term first
Leave an evolutionary path

Principles Questions (2 slides)
Implementation ease vs. Advanced features?
Existing practice vs. advanced features?
Hooks for future advanced features?
Portability vs. low-level tuning?
What about implementation efficiency?
What is the scope of HPFF?

What architectures?
SIMD? MIMD? Shared-memory? Distributed-

memory? Vector processors? RISC
processors? VLIW processors?

Caches?
Input/Output?

What problems?
Data-parallel, Embarrassingly parallel
Loosely synchronous
Regular? Irregular?

Standards Issues
Should HPFF be an ANSI standard? [NO]
Relationship to existing standards

Fortran 77?
Fortran 90?
X3H5 (formerly PCF)?
Vendor extensions?

Procedures
[original slide by Ken Kennedy]

One-year project
People committed to multiple meetings
One person per organization
Meeting costs

Materials fee for copying

HPFF Meeting Notes - 5

Meeting fee for actual attendees
Test suite built separately

Layered Support
1. Full Support

[Must have this to call yourself HPF]
2. Partial Support

[Not required, but reserved against other use;
upgrade to full support as they evolve]

3. Machine-dependent Support
[includes features primarily useful for one

machine, vendor extensions]
4. Hooks

[Reserved syntax for advanced features]
Discussion of Standards
Clemens Thole added the now-forming standards effort in

message-passing to the list of standards to consider; Ken Kennedy
compared message-passing to assembly language. Henk Sips brought
up the need for multi-paradigm support; Piyush Mehrotra pointed
out the need to be careful about this interface.

Discussion of Procedures:
Ken Kennedy outlined what went wrong with PCF

(organizationally).
An open process was seen as very important. Some conflict was

felt between having an open process and limiting meeting attendance
to a workable size. Remedies that were supported included: forming
working groups for language sub-parts, carrying on electronic
discussions, and wide distribution of documents.

Mary Zosel spoke strongly in favor of having widely distributed
minutes, explaining decisions taken. This would cut down on
rehashing dead points. Chuck promised to widely disseminate drafts
and minutes electronically. Alok Choudhary offered to disseminate
news via the NPAC newsletter. Ken suggested a workshop, tutorial, or
birds-of-a-feather session at Supercomputing '92. In summary, it
doesn't look like the draft will be hard to get.

After some discussion, it was decided that each company would
receive one vote. The company would have to name one person to be
its voting representative, thus minimizing turnover at meetings. Up
to 2 representatives of a company could attend each meeting
(including the voting delegate).

In order to vote, the representative must have attended 2 of the
previous 3 meetings, counting the current one (this rule would be
applied to companies, not individuals). This is the same as the ANSI
committee rules. This rule would be applied uniformly, starting with

HPFF Meeting Notes - 6

the third meeting; one consequence of this is that an attendee could
not vote at his/her first meeting.

Meeting locations will be in Dallas during the cold months, in
Chicago in summer. This is based on airport accessibility. (Actual
planning later modified this rule, because of multiple conflicts on one
meeting.)

A procedural mechanism for rapidly converging to a straw man
document was discussed. Temporarily “freezing” parts of the
language from further discussion was the preferred method.

Discussion of Layering
There was a lively discussion here. However, this proposal lost

support as the meeting wore on. See the discussion of Fortran 90
below for the final status of support levels.

Goals

After a break, Ken Kennedy started discussion to define HPFF's
goals. The final list was

Language extensions and feature selection for Fortran
supporting data parallel programming (defined as
single thread, global name space, and loosely
synchronous)

Top performance on MIMD and SIMD computers with
non-uniform memory access costs
But should not impede performance on other

machines
Code tuning for various architectures

Minimal deviation from other standards
Minimal direct conflicts with Fortran 77 and 90

If possible, no direct conflicts
Open interfaces to other languages & programming styles
Compiler availability possible in near term (1993) with

demonstrated performance on HPF test suite
Produce validation criteria
Provide input to future standards activities for Fortran

and C
Maximal simplicity
Involvement (input) of high performance computing

community
Widely distributed language drafts

Present final proposal in November '92
Final draft in January '93

Leave an evolutionary path for research

HPFF Meeting Notes - 7

This was achieved after nearly 2 hours of discussion. Some of the
points made are given below.

David Loveman gave the first proposed goal: Create an industry-
wide standard language portable from workstations to massively
parallel supercomputers, able to express algorithms needed to
achieve high performance on specific such architectures.

Guy Steele defined the purpose of the HPFF extensions as a
language in which the programmer can express things that the
compiler can map onto machines with parallel CPUs, parallel
memory, or both. This is done by giving more information to
compiler

Ken Kennedy defined shared memory as all memory having the
same access time, as in the Tera machine, while shared name-space
means all memory can be accessed by the same mechanism possibly
with different access times, like essentially any other “shared
memory” machine. Henk Sips added the requirement that access cost
should be related to locality, and not simply be a random variable.

Several attendees stated the goal of allowing the programmer to
reprogram his or her application only once for multiple machines.

Marc Snir divided this into 2 goals: high performance on a
particular machine and good support for porting between platforms.
Mary Zosel replied that there is no magic bullet for giving high
performance everywhere.

Clemens Thole suggested HPF be not a new language, but rather
new extensions and support. Peter Highnam advocated directives
rather than new language features. David Loveman pointed out that
selecting unsupported Fortran 77 features (everybody's favorite
example: sequence association) could be equally important.

Rob Schreiber gave the above definition of data parallel. He asked
whether this was all there was in the world of parallelism, and
received a resounding “no”. It was agreed that HPF could not be all
things to all people, however. Snir later pointed out that external
interfaces could give a great deal of added capability.

Clemens Thole asked two questions: “Does HPF accept F77 and/or
F90?” and “Does F77 accept HPF (similar for F90)?” This led to the
minimal conflicts goal.

Clemens Thole stated that there were two types of programmers,
those who insisted on using a particular programming style and
those who would rewrite their codes. The group felt it was more
important to support the second group, if the support could be made
portable.

Marc Snir wanted to use “Don't stretch compiler technology” as a
goal, meaning that major new compiler research should not be

HPFF Meeting Notes - 8

needed for the basic level of support. This was greeted with a chorus
of “Oooooh”s from the audience. It was generally accepted that there
should be regard for the difficulty of feasible implementations,
however.

Barry Keane(?) suggested that we could demonstrate
implementation with application codes in the near term to
demonstrate feasibility. This suggested that Geoffrey Fox's test suite
would be a good idea. Other responses suggested a correctness suite
would also be needed.

Randy Scarborough made the point that a stable base for HPF is
needed, and layers of support weakens that. Therefore, this sort of
layering should not be a goal. Instead, HPFF should identify a single
factor beyond Fortran 77 and 90 to lay claim to.

The group broke for lunch after this discussion.

Defining Features

Ken opened the session after lunch as a discussion of features that
should and should not go into High Performance Fortran. David
Loveman then presented a “straw person” proposal. His slides are
presented below (although the best slide - a sort of Venn diagram of
the Fortran standards - is too complex to reproduce here).

What is Fortran?
Old standards

F77
“Bad” stuff
“Non-politically correct” stuff
“Good” stuff

MIL-STD-1753
SPECTRAN and other de facto standards
Vendor-specific extensions

New standards
Fortran D

“important” stuff
“not-so-important” stuff

Parallel extensions and directives
Fortran D
Current compilers from vendors
Other good ideas

Language Components
[trust me, it's a great slide]

Outline of Major Language Areas
Orthogonal problems

Standard language

HPFF Meeting Notes - 9

statements, expressions
data types
I/O specifiers
intrinsics (especially Fortran 90 intrinsics)

Extensions
statements, expressions
data types
I/O specifiers
intrinsics (especially Fortran 90 intrinsics)
directives

Proposed Required Fortran 90 Features
F77 standard conformant except sequence &

storage association
MIL-STD-1753 conformance (DO WHILE, END DO, bit

operations, etc.)
Arithmetic array features

array sections, triplet notation, vector-valued
subscripts

array constructors
array arithmetic operations
WHERE and block WHERE
array-valued external functions
automatic arrays
allocatable arrays, allocate, deallocate
assumed-shape arrays

Control statements: CASE, DO forever, CYCLE, EXIT
Declarations

object oriented syntax
attribute specification statements

Procedure features
INTERFACE blocks
optional arguments
keyword parameter passage

Syntax improvements (long identifier names, etc.)
Proposed Non-required Fortran 90 features

sequence and storage association
assumed-size arrays
free form source input
CHARACTER arrays
recursion
Fortran 90 pointers
modules and USE statement
user derived types (RECORD)

HPFF Meeting Notes - 10

internal procedures
generic operators

As one might expect, there was a LOT of discussion on this. The
result of this was a list of issues for further discussion. These were
referred to the smaller working groups as mentioned below.

Fortran 77 vs. Fortran 90
Should we require some F90 extensions to F77 to

get this to work
What F90 features do we need?
What F77 features do we deprecate?
Boundary between “full” & “simple” distribution features?

static vs. dynamic
subroutine-oriented features
alignment
executable (conditional) distributions (i.e. unknown

at compile time)
decomposition / processor mapping style?
distribution query features
user distributions (invertability)

FORALL & ON clause & owner computes?
Are distributions directives or commands?
What are the defaults for distribution?
Should we extend Fortran I/O statements?
Should we have local blocks & subroutines?
Should we have control parallelism?

interface with PCF parallel sections
Local data?
Multi-statement FORALL?
Explicit processor control?
Should we define frills (e.g. extra intrinsics)?
Number of processors intrinsics & its friends and

enemies?
After creating this list, some straw polls were taken. Note that there
were many abstentions on some votes; these were taken as signs that
the topic was very unsettled. (All “requirements” were requirements
for the minimal level of HPF, assuming some multi-layer scheme
were adopted.)

Poll Results:
Should HPF require (some) array syntax? yes 22, no 5
Should HPF require dynamic storage allocation? yes 22,

no 3
Should HPF require interface blocks? yes 10, no 3
Should HPF require full Fortran 90? yes 0

HPFF Meeting Notes - 11

Two interesting comments came out of this series of
votes:
Randy Scarborough: HPFF should require all of

F90 or none of it, not just parts
Guy Steele (replying to Clemens Thole): Note:

This doesn't rule out Fortran 77 as a useful
subset of HPF!

Should HPF require executable (conditional)
distributions? yes 10, no 7

Should HPF require single statement FORALL? 22 yes, 0
no

Should HPF require some kind of multi-statement
FORALL? 17 yes, 2 no

Should HPF also require a parallel DO along lines of PCF
(i.e. no data sharing between iterations)? yes 3 no 10

Should HPF require control parallelism (parallel
sections)? yes 2 no 13

Should HPF require local subroutines? yes 6 no 6
Special note: Guy Steele voted “no”, saying local

sections were not portable to the CM-2
The issues were then divided into subsets. A working group will

examine each subset between regular HPFF meetings and form
recommendations. These will then be considered by the entire group
at the next two full meetings.

1. Fortran 90
What are the minimal F90 features to require in

HPF?
Fortran 77 vs. Fortran 90
What F90 features do we need?
What F77 features do we deprecate?
Consider storage association in particular

2. Model of align/distribute
What is the general model HPF should use for

alignment, distribution, decompositions, and
processor mappings?

Boundary between “full” & “simple” distribution
features?
alignment
decomposition / processor mapping style?
user distributions (invertability)

FORALL & ON clause & owner computes?
Are distributions directives or commands?

HPFF Meeting Notes - 12

Consider storage association if needed for other
decisions.

3. Subroutine interfaces & dynamic redistribution
Boundary between “full” & “simple” distribution

features?
static vs. dynamic
subroutine-oriented features
executable (conditional) distributions (i.e.

unknown at compile time)
distribution query features

4. FORALL, DOALL, and ON clause
Should we have local blocks & subroutines?
Should we have control parallelism?

interface with PCF parallel sections
Local data?
Multi-statement FORALL?
Explicit processor control?
SCAN intrinsics

5. I/O and odds & ends
Peter Highnam opined that parallel I/O is not

needed, users can roll-their-own like they do
now

The initial membership of each group is given below. “Conveners” are
responsible for setting working group meeting times and places.
Chuck Koelbel will set up the appropriate email lists at Rice; people
can join as many lists as they want by sending him mail.

1. Fortran 90
Convener - Mary Zosel
Vince Schuster, John Levesque, Rex Page, David

Loveman, Barry Keane [results to be discussed
next meeting]

2. Model of align/distribute
Convener - Guy Steele
Chuck Koelbel, Marina Chen, Henk Sips, Alok

Choudhary, P. Sadayappan, J. Ramanujam, Doug
Walls, Andy Meltzer, Ralph Brickner, Peter
Highnam, Joel Williamson, David Reese, Richard
Swift, Piyush Mehrotra, David Loveman Tom
MacDonald [results to be discussed next meeting]

3. Subroutine interfaces & dynamic redistribution
Convener - Joel Williamson
Marina Chen, P. Sadayappan, Randy Scarborough,

Tom MacDonald, Mary Zosel, Rony ???, Rob

HPFF Meeting Notes - 13

Schreiber, David Reese, Richard Swift , Piyush
Mehrotra, David Loveman [results to be
discussed at second meeting]

4. FORALL, DOALL, and ON clause
Convener - Chuck Koelbel
Randy Scarborough, Alok Choudhary, Guy Steele,

Bob Knighten, Marc Snir, J. Ramanujam, Clemens
Thole, Tom MacDonald, John Levesque, Andy
Meltzer, Rob Schreiber, Rex Page, David Loveman
[results to be discussed at second meeting]

5. I/O and odds & ends
No convener
Barry Keane, Alok Choudhary, Bob Knighten, Marc

Snir, Peter Highnam, David Loveman
The last order of business before dinner was choosing the dates of

the next several meetings. After some discussions of conflicts, the
following were chosen:

April 23-24 Dallas
Suffice to say that the weeks of April 16-17 and

April 27-May 1 were full of conflicts for
attendees. The suggestion was made and agreed
that the Dallas meetings continue to be at the
Harvey Suites. Unfortunately, we later
discovered that the hotel could not accommodate
us on this date. Ann Redelfs is now searching for
another hotel.

June 8-9 Chicago (no hotel yet)
July 23-24 Washington, DC (no hotel yet, but possibly the

ICS '92 conference hotel)
The meeting site was chosen for convenience with

ICS '92, which several HPFF attendees will be at.
The rest of July is a minefield of potential
conflicts.

September 10-11 Chicago (tentative)
After dinner, the group met again to discuss what features of Fortran
90 would be required in HPF. To put it mildly, the discussion was
spirited. The first step was to list Fortran 90 features that should be
considered as required, based on the results of the earlier poll. The
set that finally emerged was

Dynamic Storage Allocation
Automatic arrays on subroutine boundaries
Full ALLOCATE/DEALLOCATE statements
Pointers

HPFF Meeting Notes - 14

Pointers to array sections
Interface Blocks
Array Language

Array section assignments
Array intrinsics
WHERE
Array section passing *
Assumed shape parameters *
Pointers to array sections *
Array-valued functions *
CHARACTER arrays

Features marked with an asterisk (*) are those that require dope
vectors for efficient implementation; they were considered
separately because of concern from some compiler implementors.

While this list was being built, a meta-discussion started (in fact,
it started several times). The basic topic of discussion was how
parallelism should be expressed in HPF. One group claimed that it
should be expressed by Fortran 90 vector operations, while the other
claimed that data distributions in conjunction with Fortran 77
statements sufficed. The debate was not definitively resolved.

Another meta discussion concerned the wisdom of choosing single
features from Fortran 90, but not the entire language. Randy
Scarborough and David Loveman argued that HPF should require all
of Fortran 90 or none of it, on the grounds that half-hearted support
of a standard was not acceptable. The danger of having large parts of
the HPF specification devoted to explaining “required” and “optional”
features was also mentioned. The argument against this point of view
was that including large parts of Fortran 90 would delay
implementation and acceptance of HPF. Ken Kennedy also stated that
every Fortran 90 feature that HPF required would delay acceptance
by some amount.

At this point several polls were taken to clarify the group's
positions on the various features.

Should HPF require things that require dope vectors? Yes
15, No 6

Should HPF require the array language (not including
pointers to arrays and array sections)? Yes 14, No 6

Would there be interest in HPF if it did not require
vectors? Yes 26, No 0

The apparent ambivalence of the last two votes led to much more
discussion. The first topic of discussion involved portability. Guy
Steele stated, to the general agreement of those present, that HPF's
impact would be greater if performance were portable across

HPFF Meeting Notes - 15

vendors as well as code. The question was raised of whether this
would be best accomplished by Fortran 90 array syntax or by
extracting parallelism from Fortran 77 constructs. Ken Kennedy said
both types of optimization would be selling points for compilers for
some time to come; the competitive advantage would go to the
vendors who could do both. Guy Steele accepted this, but called it a
disaster if the only path to portable performance was to avoid the
array language. John Levesque claimed that performance portability
would not be achieved in the short term anyway, since vendors will
divide into two groups based on their existing compiler technology
(i.e. Thinking Machines will champion array constructs, while Cray
will emphasize Fortran 77 optimization). Automatic vectorizers and
Fortran 90 to Fortran 77 translators were mentioned as a possible
solution, but Vince Schuster and others were dubious of their
efficiency.

The question was raised of how long a Fortran 90 requirement
would set vendors back in implementing HPF. Tom MacDonald of
Cray estimated 1 year (and was the only vendor to make such an
estimate), but also stated that Cray was committed to a Fortran 90
compiler in any case. David Loveman of DEC claimed that the delay
for requiring other vendors to implement parallelizing Fortran 77
compilers would be about the same. Bob Knighten of Intel stated that
their customers were very interested in arrays for the software
engineering benefits. Marina Chen suggested having standards based
on Fortran 77 and Fortran 90 and letting the market decide which
was preferable.

Ken Kennedy asked the users present which was better, two
languages or one nonportable language? All the users (Rob Schreiber,
Rex Page, and Peter Highnam) agreed that Fortran 90 was a
preferable language to work in, but differed on how long they would
wait for it. They all would love to have excellent optimization of DO
loops, since there is a lot of existing code. Mary Zosel stressed the
need for a minimal subset useful for portability.

Perhaps the final word came from Ken Kennedy. He said that,
regardless of what this committee decided to require from Fortran
90, vendors who didn't implement it all would advertise “HPFF
extensions” in their Fortran 77 compiler. Vince Schuster opined that
picking extensions to implement was a strategic marketing decision.

Before breaking into working groups, two final polls were taken.
Should HPF require automatic arrays and

ALLOCATE/DEALLOCATE statements? Yes 19, No 1
Should HPF require the above and pointers? Yes 6, No 8

HPFF Meeting Notes - 16

The next morning started with a short presentation by John
Levesque trying to swing opinion away from requiring Fortran 90 in
HPF.

His first slide showed vendors supporting Fortran 77 for parallel
computing by a margin of 14-2 over Fortran 90:

1. Vendors who don't really efficiently support Fortran
90 in a parallel or vector implementation
Cray Research (vector)
NEC (vector)
Convex (vector)
Cray Research (shared memory)
NEC (shared memory)
Convex (shared memory)
Sequent
Intel
Meiko
Networked Workstations (several)

2. Vendors who don't really support F77 in a parallel or
vector implementation
TMC
MasPar

This slide was roundly criticized from the floor. The main
disagreements were that the “Fortran 77” companies listed were, for
the most part, not doing the type of parallelization that HPF-77
would require. John then stated that his point was that many people
wanted Fortran 77 over Fortran 90, which also provoked
disagreement.

Levesque's next slide was titled “Why I don't like HPF on top of
F90”

Destroys important portability (Workstations, PCs)
F90 is difficult to optimize for

vector register assign
cache utilization

F77 DO is a good form for specifying a code block around
which one can
strip mine for vector registers
tile for effective cache utilization
organize pre- and post-loop message passing

Rex Page made the point that we should realize Fortran 90 is not
widely accepted. However, he stated one of his motives as forcing
vendors forward - i.e. from Fortran 77 to Fortran 90. David Loveman
urged the group to think about state of Fortran 90 compilers next
year, when HPF would be adopted. Ken Kennedy, while admitting

HPFF Meeting Notes - 17

that there were compiler challenges, repeated his argument that
vendors could use “HPF extensions” in their marketing descriptions.
The users could be expected to vote with their feet and wallets.

The last slide was a modestly complicated graphic entitled “Ease of
Efficient Compilation”, showing “Easy” and “Hard” implementations of
Fortran 77-based and Fortran 90-based compilers on various
machines. This was also somewhat controversial. To give a flavor of
the discussion, Ken stated that he had a research project to examine
all four of the connections John had drawn, including two that were
marked “Easy”.

As there was obviously still a great deal of controversy, Ken
Kennedy suggested putting off any decisions on Fortran 90 until the
next meeting. Before then, he asked that all vendors (and others with
access to many users) poll their customers on what they really want
in the way of Fortran 90 support. It is important to do the right thing
from their perspective, if HPF is to be successful.

Joel Williamson questioned why there was a debate on this topic
at all. His suggestion was that we simply define a set of directives
that could be applied to either Fortran dialect. Mary Zosel took this a
step further and suggested that HPFF define a model for data
distribution (and any other topics we wanted) and then describe
language bindings for both Fortran 77 and Fortran 90.

Ken Kennedy then tried to start a new discussion on “What can we
agree that we don't need in HPF?” Clemens Thole immediately
suggested Fortran storage association. He then asked where storage
association was actually needed, if HPF required Fortran 90 dynamic
memory allocation. The major use was thought to be passing array
sections without explicit syntax for the section in the caller. David
Loveman and Piyush Mehrotra went on record for requiring explicit
sections to be passed; somebody retorted that this would not be
popular with users. The Cray proposal for canonical distributions was
suggested as solving this, and some discussion followed. It quickly
became obvious that in many cases the Cray proposal also disallowed
storage association, but it did provide more compatibility than
Fortran D. Piyush Mehrotra stated that similar constructs were
available in Vienna Fortran. David Loveman noted that “middle
ground” like this is often difficult to describe, but users may want
some capability.

Among other Fortran 90 features Andy Meltzer suggested we
should have defined meanings for any (interacting) F90 constructs,
even if we don't require them in HPF. There was general agreement
on this principle. The discussion then turned to yet another Fortran
77 versus Fortran 90 debate. Many of the arguments had been heard

HPFF Meeting Notes - 18

before. In this discussion, however, there was stronger support than
previously for having two language bindings, one each for Fortran 77
and 90. It was decided to defer final action on this question until the
next meeting. The Fortran 90 group, until that decision was made,
was asked to isolate those aspects of F90 impacted by data
distributions.

Before adjourning, a final poll was taken.
Should HPF define distributions + two language bindings

(F77 & F90)? 15
Should HPF define a single language? 5
Abstained: 5

It was noted that this was much different from the poll results the
night before.

