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Abstract

Fortran D is a version of Fortran enhanced with data
decomposition specifications. Case studies illustrate
strengths and weaknesses of the prototype Fortran D com-
piler when compiling linear algebra codes and whole pro-
grams. Statement groups, execution conditions, inter-loop
communication optimizations, multi-reductions, and array
kills for replicated arrays are identified as new compilation
issues. On the Intel iPSC/860, the output of the proto-
type Fortran D compiler approaches the performance of
hand-optimized code for parallel computations, but needs
improvement for linear algebra and pipelined codes. The
Fortran D compiler outperforms the CM Fortran compiler
(2.1 beta) by a factor of four or more on the TMC CM-5
when not using vector units. Better analysis, run-time sup-
port, and flexibility are required for the prototype compiler
to be useful for a wider range of programs.

1 Introduction

Fortran D is an enhanced version of Fortran that allows
the user to specify how data may be partitioned onto pro-
cessors. It was inspired by the observation that modern
high-performance architectures demand that careful atten-
tion be paid to data placement by both the programmer
and compiler. Fortran D is designed to provide a simple
vet efficient machine-independent data-parallel program-
ming model, shifting the burden of optimizations to the
compiler. It has contributed to the development of High
Performance Fortran (HPF), an informal Fortran stan-
dard adopted by researchers and vendors for programming
massively-parallel processors [15].

The success of HPF hinges on the development of com-
pilers that can provide performance satisfactory to users.
The goal of our research is to identify important compila-
tion issues and explore possible solutions. Previous work
has described the design and implementation of a proto-
type Fortran D compiler for regular dense-matrix compu-
tations [13, 16, 17]. This paper describes our preliminary
experiences with that compiler. Its major contributions in-
clude 1) advanced compilation techniques needed for com-
plex loop nests, 2) empirical evaluation of the prototype
Fortran D compiler, and 3) identifying necessary improve-
ments for the compiler.

In the remainder of this paper, we briefly introduce the
Fortran D language and compiler, then use case studies to
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illustrate a number of compilation problems and their so-
lutions. We describe experiments comparing the compiler
against hand-optimized codes and the CM Fortran com-
piler. Results are evaluated and used to point out direc-
tions for future research. We conclude with a comparison
with related work.

2 Background
2.1 Fortran D Language and Compilation

In Fortran D, the DECOMPOSITION statement declares an
abstract problem or index domain. The ALIGN statement
maps each array element onto the decomposition. The DIs-
TRIBUTE statement groups elements of the decomposition
and aligned arrays, mapping them to a parallel machine.
Each dimension is distributed in a block, cyclic, or block-
cyclic manner; the symbol “:” marks dimensions that are
not distributed. Alignment and distribution statements
can be executed, permitting dynamic data decomposition.
Details of the language are presented elsewhere [10].

Given a data decomposition, the Fortran D compiler
automatically translates sequential programs into efficient
parallel programs. The two major steps in compiling for
MIMD distributed-memory machines are partitioning the
data and computation across processors, then introducing
communication for nonlocal accesses where needed. The
compiler partitions computation across processors using
the “owner computes” rule—where each processor only
computes values of data it owns [6, 12, 25]. It performs a
large number of communication and parallelism optimiza-
tions based on data dependence. Details of the compilation
process are presented elsewhere [13, 16, 17, 27].

2.2 Prototype Compiler

The prototype Fortran D compiler is implemented as a
source-to-source Fortran translator in the context of the
ParaScope parallel programming environment [9]. It uti-
lizes existing tools for performing dependence analysis, pro-
gram transformations, and interprocedural analysis. The
current implementation supports:

inter-dimensional alignments

1D BLOCK and CYCLIC distributions

loop interchange, fusion, distribution, strip-mining
message vectorization, coalescing, aggregation
vector message pipelining, unbuffered messages
broadcasts, collective communications

SUM, PROD, MIN, MAX, MINLOC, MAXLOC reductions

fine-grain and coarse-grain pipelining (granularity
specified by user via compile-time flag)

e relax “owner computes” rule for reductions, private
variables

e nonlocal storage in overlaps & buffers



loop bounds reduction, guard introduction

global < local index conversion

interprocedural reaching decompositions & overlaps
common blocks

I/O (performed by processor 0)

generation of calls to the Intel NX/2 and TMC

CMMD message-passing libraries

The prototype compiler accepts a subset of Fortran D.
Alignment offsets, multidimensional distributions, and dy-
namic data decomposition are not yet supported. For sim-
plicity, the prototype compiler requires that all array sizes,
loop bounds, and number of processors in the target ma-
chine be compile-time constants (though triangular loops
are supported). All subscripts must also be of the form ¢ or
1+ ¢, where ¢ i1s a compile-time constant and ¢ is a loop in-
dex variable. These restrictions are not due to limitations
of our compilation techniques, but reflect the immaturity
of the prototype compiler and our focus on exploring re-
search directions, especially compile-time optimizations.

3 Compilation Case Studies

Examples in previous work mostly dealt with individual
stencil computation kernels from iterative solvers for par-
tial differential equations (PDE). In this section, we illus-
trate the Fortran D compilation process for linear algebra
kernels and larger codes. We point out strengths and weak-
nesses of the prototype compiler using case studies of four
example programs and subroutines: SHALLOW, DISPER,
DGEFA, and ERLEBACHER. We find that the Fortran D

compiler needs to:
e Provide robust translation of global/local loop bounds
and index variables. Reindex accesses into temporary

buffers.

e Partition computation in complex non-uniform loop
bodies across processors, using statement groups to
guide loop bounds & index variable generation. Ap-
ply loop distribution and guard generation as needed.

o Compile loop nests containing execution conditions
that may affect the iteration space.

e Exploit pipeline parallelism, perform inter-loop com-
munication optimizations.

e Parallelize multidimensional reductions and multi-
reductions. Use array kill analysis to eliminate com-
munication for multi-reductions performed by repli-
cated array variables.

3.1 SHALLOW

We begin with SHALLOW, a 200 line benchmark weather
prediction program written by Paul Swarztrauber, Na-
tional Center for Atmospheric Research (NCAR). It is a
stencil computation that applies finite-difference methods
to solve shallow-water equations. SHALLOW is representa-
tive of a large class of existing supercomputer applications.
The computation is highly data-parallel and well-suited for
MIMD distributed-memory machines.

Figure 1 outlines the version of SHALLOW we used to
test the Fortran D compiler; it was modified to eliminate
I/O. Data can be partitioned quite simply by aligning
all 2D arrays identically, then distributing the second di-
mension block-wise, resulting in a block of columns being
assigned to each processor. The prototype Fortran D com-
piler was able to generate message-passing code fairly sim-
ply. The principal issues encountered during compilation
were boundary conditions, loop distribution, and inter-loop
communication optimizations.

{* Original Fortran D Program =}
PROGRAM SHALLOW
REAL u(n,n),v(n,n),p(n,n)
REAL unew(n,n) ,pnew(n,n),vnew(n,n)
REAL psi(n,n),pold(n,n),uold(n,n),vold(n,n)
REAL cu(n,n),cv(n,n),z(n,n),h(n,n)
DECOMPOSITION d(n,n)
ALIGN u,v,p,unew,pnew,vnew,psi WITH d
ALIGHN pold,uold,vold,cu,cv,z,h WITH d
DISTRIBUTE d(:,BLOCK)
{* initial values of the stream function & velocities *}
do j = 1,n-1
do i = 1,n-1
u(i+l,j) = —(psi(i+1,j+1)-psi(i+1,j))*dy
v(i,j*+1) = (psi(i+1,j+1)-psi(i,j+1))*dx
do k = 1,Time
{* periodic continuation x}

{* compute capital u, capital v, z, and h *}
do j = 1,n-1
do i =1,n-1
cu(i+1,j) = 0.5%(p(i+1,j)+p(i,j))*u(i+1,j)
cv(i,j+1) = 0.5%(p(i,j+1)+p(i,j))*v(i,j+1)
z(i+1,j+1) = (fsdx*(v(i+1,j+1)-v(i,j+1))-fsdy
* (u(i+l, j+1)-u(i+1,3))) / (p(i,j+p(i+1, )
+ p(i+1,j+1)+p(i,j+1))
h(i,j) = p(i,j)+.25%(u(i+1,j)*u(i+1,j)+uli,j)
* u(i,j+v(i, jH)*v(E, jHD)+v (i, j)*v(i, j))
{* periodic continuation x}

{* compute new values u, v, and p *}
do j = 1,n-1
do i =1,n-1
unew(i+1,j) = uold(i+1,j)+tdts8*(z(i+1,j+1)+z(i+1,3))
* (cv(i+l,j+D)+cv(i,j+1)+cv(d, jr+cv(i+l,j))
- tdtsdx*(h(i+1,j)-h(i,j))
vnew(i,j+1) = vold(i,j+1)-tdts8*(z(i+1,j+1)+z(i,j+1))
* (cu(i+l,j+1)+cu(i,j+1)+culi,jl+cu(i+1,j))
- tdtsdy*(h(i,j+1)-h(i,j))
prnew(i,j) = pold(i,j)-tdtsdx*(cu(i+l,j)-cu(i,j))
- tdtsdy*(cv(i,j+1)-cv(i,j))
end

Figure 1: SHALLOW: Weather Prediction Benchmark

3.1.1 Statement Groups

We begin by describing a useful construct called statement
groups. Realistic programs and linear algebra codes tend
to possess large diverse loop nests, with many imperfectly
nested statements and triangular/trapezoidal loops. These
complex loops increase the difficulty of partitioning the
computation and calculating appropriate local and global
loop indices and bounds. The Fortran D compiler uses
tteration sets to represent the set of loop iterations that
will be executed by each processor; they are calculated for
each statement using the owner computes rule during par-
titioning analysis. The partition is later instantiated by
modifying loop bounds to the union of all iteration sets
of statements in a loop, then inserting explicit guards for
statements that are executed only on a subset of those it-
erations.

To aid this process, we found it useful in the Fortran D
compiler to partition statements into statement groups dur-
ing partitioning analysis. Statements are put into the same
group for a given loop if their iteration sets for that loop
and enclosing loops are the same. We mark a loop as uni-
form if all its statements belong to the same statement
group. Uniform loop nests are desirable because they may
be partitioned by reducing loop bounds; explicit guards do
not need to be inserted in the loop. Calculating statement
groups can determine whether a loop nest is uniform and
guide code generation for non-uniform loops.

One use of statement groups is to guide guard genera-
tion. For instance, consider the example in Figure 2. As-



{* Fortran D Program *} {* Iteration Sets *}
DISTRIBUTE a(BLOCK)

doi=1,n [1:n]
S a(i) = ... [1:n/P]
Sa if (.. [1:n/P ]
Ss a(i) = ... [1:n/P ]
Sa a(i-1) = ... [2:(n/P)+1]
Ss t = ... [1:n]
enddo

Figure 2: Example: Statement Groups

sume that array a is distributed block-wise across P proces-
sors. During partitioning analysis, iteration sets are calcu-
lated for each statement. According to the owner computes
rule each processor executes the assignment at S; only on
the [1: n/P] iterations that assign to local data. The same
iteration set is assigned to S3; and then to S: since it en-
closes only S;. Because these three statements have the
same iteration set, they are placed in the same statement
group. S4 receives a slightly different iteration set, and Sy
is assigned all iterations. The ¢ loop is marked as nonuni-
form because it encloses statements with different iteration
setS, then is assigned the union of the iteration sets for S1—
Ss. During code generation, guards will be generated for
the first and second statement groups since they are not
executed by all processors on local loop iterations.

3.1.2 Boundary Conditions

SHALLOW contains many code fragments solving boundary
conditions for periodic continuations. As a result, the For-
tran D compiler needed to insert explicit guards for many
statement groups. These boundary conditions also require
the creation of several individual point-to-point messages
between boundary processors to transfer data required.
Putting statements into groups can reduce the number of
guards inserted, since all statements in a group share the
same guard.

3.1.3 Loop Distribution

Another application of statement groups is to guide loop
distribution, a program transformation that separates inde-
pendent statements inside a single loop into multiple loops
with identical headers. If the Fortran D compiler detects
a non-uniform loop nest, it attempts to distribute the loop
around each statement group, producing smaller uniform
loop nests. If loop distribution is prevented due to recur-
rences carried by the loop, the Fortran D compiler must
insert explicit guards for each statement group to ensure
they are executed only by the appropriate processor(s) on
each loop iteration.

Because of the programming style used in writing SHAL-
LOW, almost all loop nests were non-uniform, ¢.e., con-
tained statements with differing iteration sets. Fortu-
nately, none of the loops carried recurrences, so the For-
tran D compiler applies loop distribution to separate state-
ments, creating uniform loop nests. Loop bounds reduction
is then sufficient to partition the computation during code
generation, except for additional boundary conditions.

3.1.4

While loop distribution enables inexpensive partitioning of
the program computation, it has the disadvantage of creat-
ing a large number of loop nests. In many cases these loop
nests, along with loops representing boundary conditions,
required communication with neighboring processors. The
prototype Fortran D compiler applies message coalescing

Inter-loop Communication Optimizations

{* Original Fortran D Program =}
SUBROUTINE DISPER
LOGICAL 1sat(256)
DOUBLE PRECISION ddx(256,8,8),ddy(256,8,8)
DOUBLE PRECISION ddz(256,8,8),pmfr(256,8,8,4,5)
DOUBLE PRECISION gradx(256),grady(256),gradz(256)
DECOMPOSITION d(256)
ALIGN ddx(i,j,k),ddy(i,j,k),ddz(i,j,k) WITH d(i)
ALIGN 1sat(i,j,k,1),pmfr(i,j,k,1,m) WITH d(i)
ALIGN gradz,grady,gradz WITH d
DISTRIBUTE d(BLOCK)
{* compute dispersion terms *}
do j=2,4

do"i3 ='1,8

do i2 = 1,8

do i1 = 1,256

S, if ((i1 .NE. 1) .AND. (i1 .NE. 256)) then
Sy if (1lsat(i1l-1,i2,i3,j).AND.1lsat(i1+1,i2,i3,3)) then
Ss grady(il) = (pmfr(ii+1,i2,i3,j,k)
- pmfr(i1-1,i2,i3,j,k)) / (0.5%(ddy(i1+1,i2,i3)
+ ddy(i1-1,i2,i3)) + ddy(i1,i2,i3))
endif
endif
end o
Figure 3: DispER: Oil Reservoir Simulation

and aggregation only within a single loop nest. Its output
for SHALLOW thus missed many opportunities to combine
messages because the nonlocal references were located in
loop nests not enclosed by a common loop. By applying
message coalescing and aggregation manually across loop
nests, we were able to eliminate about half of all calls to
communication routines.

3.2 DISPER

DiISPER is a 1000 line subroutine for computing dispersion
terms. It is taken from UTcomp, a 33,000 line oil reservoir
simulator developed at the University of Texas at Austin.
Like SHALLOW, DISPER is a stencil computation that is
highly data-parallel and well-suited for the Fortran D com-
piler. Unfortunately, UTCOMP was originally written for a
Cray vector machine. Arrays were linearized to ensure long
vector lengths, then addressed through complex subscript
expressions and indirection arrays. This style of program-
ming, while efficient for vector machines, does not lend
itself to massively-parallel processors.

To explore whether UTcoMP can be written in a
machine-independent programming style using Fortran D
or HPF, researchers at Rice rewrote DISPER to have regu-
lar accesses and simple subscripts in multidimensional ar-
rays [20]. Figure 3 shows a fragment of the rewritten form
of DISPER. Its main arrays have differing sizes and dimen-
sionality, but have the same size in the first dimension. Ar-
rays were aligned along the first dimension and distributed
block-wise. The resulting code was was for the most part
compiled successfully by the prototype Fortran D compiler.

3.2.1

The major difficulty encountered by the Fortran D com-
piler was the existence of execution conditions caused by
explicit guards in the input code. There are two types
of execution conditions. Data-dependent execution con-
ditions, such as the guard at S> in Figure 3, were not
a problem. Message vectorization moves communication
caused by such guarded statements out of the enclosing
loops. Overcommunication may result if the statement is
not executed, but the resulting code is still much more ef-
ficient than sending individual messages after evaluating
each guard.

Execution Conditions



Execution conditions that reshape the iteration space,
on the other hand, pose a different problem. For instance,
the guard at Si1 in Figure 3 restricts the execution of state-
ment S3 on the first and last iteration of loop ¢1. It has
in effect changed the iteration set for the assignment Ss,
causing it to be executed on a subset of the iterations.
These guards are frequently used by programmers to iso-
late boundary conditions in a modular manner, avoiding
the need to peel off loop iterations.

Unlike data-dependent execution conditions, these ex-
ecution conditions always hold and can be detected at
compile-time. If they are not considered, the compiler will
generate communication for nonlocal accesses that never
occur. Future versions of the Fortran D compiler will need
to examine guard expressions. If its effects on the iteration
set can be determined at compile-time, the iteration set
of the guarded statements must be modified appropriately.
Because this functionality is not present in the prototype
Fortran D compiler, unnecessary guards and communica-
tion in the compiler output were corrected by hand.

3.3 DGEFA

DGEFA, written by Jack Dongarra et al. at Argonne Na-
tional Laboratory, is a key subroutine in LINPACK and the
principal computation kernel in the LINPACKD benchmark
program. DGEFA performs LU decomposition through
Gaussian elimination with partial pivoting. Its memory ac-
cess patterns are quite different from stencil computations,
and is representative of linear algebra computations. As
many linear algebra algorithms involve factoring matrices,
CYCLIC and BLOCK_CYCLIC data distributions are desirable
for maintaining good load balance. These distributions
and the prevalence of triangular loop nests pose additional
challenges to the Fortran D compiler.

Figure 4 shows the original program, Figure 5 shows
the output produced by the prototype Fortran D compiler.
For good load balance we choose a column-cyclic distribu-
tion, scattering array columns round-robin across proces-
sors. The Fortran D compiler then uses this data decompo-
sition to derive the computation partition. Two important
steps are generating proper loop bounds & indices and in-
dexing accesses into temporary messages buffers [27]. In
addition, we found using statement groups to guide guard
generation and identifying MAX /MAXLOC reductions to be
necessary.

3.3.1 Guard Generation

DGEFA also demonstrates how statement groups may be
used to guide guard generation. During compilation, the
Fortran D compiler partitions the statements of the loop
body into five statement groups. In Figure 4, the first
statement group (S1—S;) finds the pivot, and is executed
by one processor per iteration of the £ loop. The second
group is the statement Ss, an assignment to a replicated
array that is executed by all processors.

The third statement group (S¢—S7) calculates multipli-
ers. Analysis shows that like the first group, it is executed
by only one processor on each iteration of the k loop. The
fourth group (53759) calculates the remaining submatrix.
Iterations of the inner j loop are partitioned, but all pro-
cessors execute at least some iterations of 7 on each k loop
iteration (except for boundary conditions). The fifth and
final group (510) is another assignment to a replicated ar-
ray that is executed by all processors.

Because loop k contains a variety of iteration sets, it is
non-uniform. Its iterations are executed by all processors,
and explicit guards are introduced for the first and third

statement groups. Note that the third and fourth state-
ment groups contain assignments to ¢, a replicated scalar.
However, the Fortran D compiler determines that ¢is a pri-
vate variable with respect to the & loop. With additional
analysis, the compiler discovers that it does not need to
replicate the assignment on all processors [16].

3.3.2 MINLOC/MAXLOC Reductions

Putting statements S; through Si in the same statement
group requires detecting it as a reduction. The For-
tran D compiler recognizes reductions through simple pat-
tern matching. It finds the MAX/MAXLOC reduction in
DGEFA by detecting that the lhs of an assignment al at
statement S; is being compared against its rhs in an en-
closing IF statement. The level of the reduction is set to
the k loop, since it is the deepest loop enclosing uses of
al. The reduction is thus carried out by the ¢ loop, which
only examines a single column of a. Since array a has been
distributed by columns, the reduction may be computed lo-
cally by the processor owning the column. The Fortran D
compiler inserts a guard to ensure the reduction is per-
formed by the processor owning column k, then broadcasts
the result. This example also demonstrates how the com-
piler relaxes the owner computes rule for reductions and
private variables.

For MIN/MAX and MINLOC/MAXLOC reductions, the For-
tran D compiler must also search for initialization state-
ments for the lhs of assignment statements in the &k loop,
assigning them the same iteration set as the body of the
reduction. Statements S; and S are identified as initial-
ization statements for the MAX/MAXLOC reduction at Ss.
By putting them in the same statement group as the reduc-
tion, the Fortran D compiler avoids inserting an additional
broadcast to update the value of al at Ss.

3.4 ERLEBACHER

ERLEBACHER is a 13 procedure, 800 line benchmark pro-
gram written by Thomas Eidson at the Institute for Com-
puter Applications in Science and Engineering (ICASE).
It performs 3D tridiagonal solves using Alternating-
Direction-Implicit (ADI) integration. Like Jacobi iteration
and Successive-Over-Relaxation (SOR), ADI integration is
a technique frequently used to solve PDEs. However, it
performs vectorized tridiagonal solves in each dimension,
resulting in computation wavefronts across all three dimen-
sions of the data array.

FEach sweep in ERLEBACHER consists of a computation
phase followed by a forward and backward substitution
phase. Figures 6 and 7 illustrate the core computation and
substitution phases in the Z dimension. We chose to dis-
tribute the Z dimension of all 3D arrays blockwise; all 1D
and 2D arrays are replicated. Here we relate some issues
that arose during compilation of Erlebacher to a machine
with four processors, Py ... Ps.

3.4.1 Overlapping Communication

In ERLEBACHER, we discovered unexpected benefits for
vector message pipelining, an optimization that separates
matching send and recv statements to create opportuni-
ties for overlapping communication with computation [17].
Consider the computation in the 7Z dimension, shown in
Figure 6. The Fortran D compiler first distributes the
loops enclosing statements S1—Ss because they belong to
two distinct statement groups. Message vectorization then
extracts all communication outside of each loop nest.
Finally, the Fortran D compiler applies vector message
pipelining. It is particularly effective here because it moves



{* Original Fortran D Program =}
SUBROUTINE DGEFA(n,a,ipvt)
INTEGER n,ipvt(n),j,k,1
DOUBLE PRECISION aln,n),al,t
DISTRIBUTE a(:,CYCLIC)
do k =1, n-1
{* Find max element in a(km,k) *}
5& 1=k
Ss al = dabs(a(k, k))
doi=k+1,n
if (dabs(a(i, k)) .GT. al) then

S3 al = dabs(a(i, k))
54 1 =1
endif
enddo
Ss, ipvt(k) =
if (al .NE. O) then
Se if (1 .NE. k) then
t = a(l, k)
a(l, k) = a(k, k)
a(k, k) = t
endif

{* Compute multipliers in a(k+1:nk) *}
t = -1.0d0 / a(k, k)
do i =k+1, n

a(i, k) = a(i, k) * t

Sy enddo
{* Reduce remaining submatrix =}
Sg do j = k+l, n
t = a(l, j)
if (1 .NE. k) then
a(l, j) = a(k, j)
a(k, j) = t
endif
do i = k+1, n
a(i, j) = a(i, j) + t * a(i, k)
enddo
So enddo
endif
enddo
S10  ipvt(n) =
end

Figure 4: DGEFA: Gaussian Elimination with Pivoting

the send C3 and C; before the recv in the first two loop
nests. If C5 and C4 are left in their original positions before
Sy, the computation will be idle until two message trans-
fers complete, because the boundary processors Py and Ps
will need to first exchange messages before communicating
to the interior processors. The prototype thus saved the
cost of waiting for an entire message. More advanced anal-
ysis could determine that the statements S;-5; are simply
incarnations of statement Ss created to handle periodic
boundary conditions. We can perform the reverse of in-
dex set splitting and merge the loop bodies to simplify the
resulting code.

3.4.2 Multi-Reductions

Another problem faced by the Fortran D compiler was han-
dling reductions on replicated variables. A multidimen-
sional reduction performs a reduction on multiple dimen-
sions of an array. Finding the maximum value in a 3D
array would be a 3D MAX reduction over an n® data set.
We examine a special case of multidimensional reduction
that we call a multi-reduction, where the program performs
multiple reductions simultaneously. For instance, finding
the maximum value of each column in a 3D array would be
a 2D MAX multi-reduction composed of n? 1D MAX reduc-
tions. Unlike normal multidimensional reductions, multi-
reductions are directional in that they only transfer data
across certain dimensions. This property allows the com-
piler to determine when communication is necessary. It
also allows the problem to be partitioned in other dimen-
sions so that no communication is required.

{* Compiler Output for 4 Processors *}
SUBROUTINE DGEFA(n,a 1pvt)
INTEGER n, 1pvt(n)
DOUBLE PRECISION a(n n/4) al,t,dp$bufi(n)
do k =1, n-1
k$ = ((k - 1) / 4) + 1
{* Find max element in a(km k$) x}
if (my$p .EQ. MOD(k - 1, 4)) then
1=k

al = dabs(a(k, k$))
doi=k+1,n
if (dabs(a(i, k$)) .GT. al) then
al = dabs(a(i, k$))
1 =1
endif
enddo
broadcast 1, al
else
recv 1, al
endif
ipvt(k) =
if (al .NE. O) then
if (my$p .EQ. MOD(k - 1, 4)) then
if (1 .NE. k) then

= a(l, k$)
a(l Kk$) = a(k, k$)
a(k, k$) =

endif
{* Compute multipliers in a(k+1:nk$) =}
t = -1.0d0 / a(k, k$)
do i = k+1, n
a(i, k$) =

enddo

endif

{* Reduce remaining submatrix =}

if (my$p .EQ. MOD(k - 1, 4)) then
buffer a(k+1i:n, k$) into dp$bufl
broadcast dp$bufil(1l:n-k)

else
recv dp$bufil(1l:n-k)

endif

1b$1 = (k / 4) + 1

if (my$p .LT. MOD(k, 4)) 1b$1 = 1b$1+1

do j = 1b$1, n/4

a(i, k$) * t

t = a(l, j)
if (1 .NE. k) then
a(l, j) = a(k, j)
a(k, j) = t
endif
do i = k+1, n
a(i, j) = a(i, j) + t * dp$bufi(i-k)
enddo
enddo
endif
enddo
ipvt(n) =
end

Figure 5: DGEFA: Compiler Output

The Fortran D compiler handles multi-reductions as fol-
lows. If the direction of the multi-reduction crosses a parti-
tioned array dimension, then compilation proceeds as nor-
mal. The compiler produces code so that each processor
computes part of every reduction in the multi-reduction,
then inserts a global collective communication routine to
accumulate the results. ERLEBACHER performs 2D sum
multi-reductions along each dimension of a 3D array for
each of its three computation wavefronts. Consider state-
ment 57 in Figure 7, which performs a suM multi-reduction
in the Z dimension. Because this dimension is distributed,
the compiler partitions the computation based on f, the
distributed rhs, and inserts a call to global-sum to accu-
mulate the results.

3.4.3 Array Kills

If the multi-reduction does not cross any distributed di-
mensions, no information is transferred between proces-
sors. A processor can then evaluate some of the reductions



{* Original Fortran D Program =}
SUBROUTINE DZ3D6P

REAL uud(n,n,n),uu(n,n,n)
DECOMPOSITION dd(n,n.n)

ALIGHN uud, uu with dd
DISTRIBUTE dd(:,:,BLOCK)

S1 uud(i,j,1) = F(uu(i,j,3),uu(i,j,n-1))
So uud(i,j,2) = F(uu(i,j,4),uu(i,j,n))
S3 uud(i,j,n-1) = F(uu(i,j,1),uu(i,j,n-3))
Sy uud(i,j,n) = F(uu(i,j,2),uu(i,j,n-2))
do k = 3,n-2
do j =1,n
do i=1,n
Sk uud(i,j,k) = F(uu(i,j,k+2),uu(i,j,k-2))
end

{* Compiler Output for 4 Processors =}
SUBROUTINE DZ3D6P
REAL uud(n,n,n/4),uu(n,n,-1:(n/4)+2)
n$ = n/4
Cy if (my$p .EQ. 0) send uu(i:n,1:n,1:2) to P;
Cy if (my$p .EQ. 3) send uu(l:n,1:n,n$-1:n$) to Fy
Cz if (my$p .LT. 3) send uu(l:n,1:n,n$-1:n$) to my$p+1
Cy if (my$p .GT. O) send uwu(l:n,1:n,1:2) to my$p-1
if (my$p .EQ. O) then
recv uu(1:n,1:n,n$+1:n$+2) from P;

do j =1,n
do i=1,n
S1 uud(i,j,1) = F(C..)
Ss uud(i,j,2) = F(C.)
endif

if (my$p .EQ. 3) then
recv uu(1:n,1:n,-1:0) from P;
do j =1,n

Sa uud(i,j,n$) = F(...)
endif
if (my$p .GT. 0)
recv uu(l:n,1:n,n$+1:n$+2) from my$p+1
if (my$p .LT. 3)
recv wu(l:n,1:n,-1:0) from my$p-1
do k = 1b$,ub$

Sk uud(i,j,k) = F(C.)

end

Figure 6: ERLEBACHER: Computation in Z Dimension

comprising the multi-reduction using local data. Loop
bounds reduction is sufficient to partition the reduction; no
communication is needed. For instance, a multi-reduction
is performed in the Y dimension solution step of ER-
LEBACHER, shown in Figure 8. Because the Y dimension
of f is local, relaxing the owner computes rule allows each
processor to compute its reductions locally. Unfortunately
the multi-reduction is being computed for tot, a replicated
array. The compiler thus inserts a global concatenation
routine to collect values of tot from other processors.

This concatenation is the only communication inserted
in sweeps in the X and Y dimensions, and turns out to
be unnecessary. Array kill analysis would show that the
values of tot only reach uses in the next loop nest Sz, where
it is accessed only on iterations executed locally. In other
words, each processor only uses values of tot that itselfs
computes; values computed by other processors are not
needed. This information can be employed to eliminate
the unnecessary global concatenation. Array kill analysis
has not yet been implemented in the prototype compiler.

3.4.4 Exploiting Pipeline Parallelism

Because the computational wavefront traverses across pro-
cessors in the 7 dimension, the Fortran D compiler must
efficiently exploit pipeline parallelism [16]. In Figure 7,

{* Original Fortran D Program =}

SUBROUTINE TRIDVPK
REAL a(n),b(n),c(n),d(n),e(n),tot(n,n),f(n,n,n)
DISTRIBUTE £(:,:,BLOCK)
{* perform forward substitution =}

{* perform backward substitution *}

do k = 1,n
do j =1,n
doi=1,n
S1 tot(i,j) = tot(i,j)+d(k)*f(i,j,k)
do j =1,n
doi=1,n
Sy £(i,j,n) = (£(i,j,n)-tot(i,j))*b(n)
do j =1,n
doi=1,n
S £(i,j,n-1) = £(i,j,n-1)-e(n-1)*f(i,j,n)
do k = n-2,1,-1
do j =1,n
doi=1,n
Sy £(i,j,k) = £(i,j,k)-c(R)*f(i,j,k+1)-e(k)*f(i,j,n)
end

{* Compiler Output for 4 Processors =}
SUBROUTINE TRIDVPK
REAL a(n),b(n),c(n),d(n),e(n)
REAL tot(n,n),f(n,n,0:(n/4)+1) ,r$bufl(n)
{* perform forward substitution =}

{* perform backward substitution *}
n$ = n/4
off$0 = my$p * n$

tot(i,j) = tot(i,j)+d(k$)*£f(i,j,k)
global-sum tot(1:n,1:n)
if (my$p .EQ. 3) then

do j =1,n

do i =1,n

£(i,j,n$) = (£(i,j,n$)-tot(i,j))*b(n)
do j =1,n

doi=1,n
£(i,j,n$-1) = £(i,j,n$-1)-e(n-1)*£(i,j,n$)
buffer £(1:128, 1:128, n$) into rbuf$1l(n*n)
broadcast rbuf$1(1:n*n)
else
recv rbuf$1(1:n*n)
endif
do j =
do i$ 1,n,8
ifup = i$+7
if (my$p .LT. 3)
recv £(i$:i$up, j, n$+1) from my$p+1
do k = ub$,1,-1
k$ = k + off$0
do i = i$,i$+8
£(i,j,k) = £(i,j,k)-c(k$)*£(i,j,k+1)
- e(k$)*r$bufl(j*n+i-n)
if (my$p .GT. 0)
send £(i$:i$up, j, 1) to my$p-1
end

Figure 7: ERLEBACHER: Solution Phase in Z Dimension

,n

-

the compiler detects that the k loop enclosing statement
Sy 18 a cross-processor loop because it carries a true de-
pendence whose endpoints are on different processors. To
exploit coarse-grain pipeline parallelism, the compiler in-
terchanges the & loop inwards and strip-mines the enclosing
1 loop.

This example demonstrates two additional features of
the Fortran D compiler. First, note that moving the
k loop innermost would convert column-wise array ac-
cesses into row-wise accesses, resulting in poor data lo-
cality. To avoid these situations the prototype compiler
leaves the two innermost loops in the original order when
applying coarse-grain pipelining. Second, since the non-



{* Original Fortran D Program *}
SUBROUTINE TRIDVPJ

REAL a(n),b(n),c(n),d(n),e(n)
REAL tot(n,n),f(n,n,n)
DISTRIBUTE f(:,:,BLOCK)

do k = 1,n
do j =1,n
doi=1,n
Sh tot(i,k) = tot(i,k) + d(j)*£f(i,j,k)
do k = 1,n
doi=1,n
Sy f(i,n,k) = (£(i,n,k) - tot(i,k))*b(n)
end

{* Compiler Output for 4 Processors =}
SUBROUTINE TRIDVPK

REAL a(n),b(n),c(n),d(n),e(n)

REAL tot(n,n),f(n,n,0:(n/4)+1)

n$ = n/4

off$0 = my$p * n$

tot(i,k$) = tot(i,k$) + d(jr*£(4i,j,k)
global-concat tot(1:n,1:n)
do k = 1,n$
k$ = k + off$0
doi=1,n
f(i,n,k) = (£(i,n,k) - tot(i,k$))*b(n)
end

Figure 8: ERLEBACHER: Solution Phase in Y Dimension

local accesses caused by f(1,j,n) are communicated via a
vectorized broadcast, to properly access data in the 1D
buffer array the compiler must replace the reference with

r$bufi(j*n +i—n).

4 Empirical Evaluation of Compiler

To evaluate the status of the prototype Fortran D com-
piler, the output of the Fortran D compiler is compared
with hand-optimized programs on the Intel iPSC/860 and
the output of the CM Fortran compiler on the TMC CM-5.
Our goal is to validate our compilation approach and iden-
tify directions for future research. In many cases, problems
sizes were too large to be executed sequentially on one pro-
cessor. In these cases sequential execution times are esti-
mates, computed by projecting execution times for smaller
computations to the larger problem sizes. Empirical results
are presented in both tabular and graphical form.

4.1 Comparison with Hand-Optimized Code

We begin by comparing the output of the Fortran D com-
piler against hand-optimized code on the Intel iPSC/860
hypercube. Our iPSC timings were obtained on the 32
node Intel iPSC/860 at Rice University. It has 8 Meg of
memory per node and is running under Release 3.3.1 of
the Intel software. Each program was compiled under -O4
using Release 3.0 of if77, the iPSC/860 compiler. Timings
were made using dclock(), a microsecond timer.

Speedups for different problem and machine sizes are
graphically displayed in Figure 9, with speedups plotted
along the Y-axis and number of processors along the X-
axis. Solid and dashed lines correspond to speedups for
hand-optimized and Fortran D compiler-generated pro-
grams, respectively. Each line represents the speedup for
a given problem size.

4.1.1

The hand-optimized stencil kernels are taken from a previ-
ous study evaluating the effect of different communication
& parallelism optimizations on overall performance [17].

Results for Stencil Kernels

We selected a sum reduction (Livermore 3), two parallel
kernels (Livermore 18, Jacobi), and two pipelined kernels
(Livermore 23, SOR). As before, all arrays are double pre-
cision and distributed block-wise in one dimension.

We found that the code generated for the inner product
in Livermore 3 was identical to the hand-optimized version,
since the compiler recognized the sum reduction and used
the appropriate collective communication routine. For par-
allel kernels, the output of the Fortran D compiler was
within 50% of the best hand-optimized codes. The deficit
was mainly caused by the Fortran D compiler not exploit-
ing unbuffered messages in order to eliminate buffering and
overlap communication overhead with local computation
[5, 17].

The compiler-generated code actually outperformed the
hand-optimized pipelined codes, even though the two
message-passing Fortran 77 versions of the program were
nearly identical. We thus assume the differences to be due
to complications with the scalar 1860 node compiler in the
parameterized hand-optimized version. We also observed
superlinear speedups for some kernels, probably caused by
the increase in total cache size with multiple processors.

4.1.2 Results for SHALLOW

Table 1 contains timings for performing one time step of
SHALLOW. It presents speedups as well as the ratio of ex-
ecution times between hand-optimized and Fortran D ver-
sions of the program. We found the program to be ideal
for distributed-memory machines. Computation is entirely
data-parallel, with nearest-neighbor communication taking
place between phases of each time step. The compiler out-
put achieved excellent speedups (21-29), even for smaller
problems. To evaluate potential improvements, we per-
formed aggressive inter-loop message coalescing and aggre-
gation by hand, halving the total number of messages. The
hand-optimized versions of SHALLOW exhibited only slight
improvements (1-10%) over the compiler-generated code,
except when small problems were parallelized on many pro-
cessors (12-26%). Communication costs apparently only
contributed to a small percentage of total execution time,
reducing the impact and profitability of advanced commu-
nication optimizations.

4.1.3 Results for DISPER

Like SHALLOW, DISPER is a completely data-parallel com-
putation that requires only nearest-neighbor communica-
tions. Timings for DISPER in Table 2 show near-linear
speedups for the output of the Fortran D compiler, once er-
rors introduced by execution conditions were corrected by
hand. We also created a hand-optimized version of Dis-
PER by applying aggressive inter-loop message aggregation
and unbuffered messages. However, since communication
overhead is small, the hand-optimized version only yielded
minor improvements (1-3%) for the problem size tested.

4.1.4 Results for DGEFA

Table 3 presents execution times and speedups for DGEFA,
Gaussian elimination with partial pivoting. Results indi-
cate that the Fortran D compiler output, shown in Figure 4,
provided limited speedups (3-6) on small problems. For
larger problems moderate speedups (11-16) were achieved.
Due to the large number of global broadcasts required to
communicate pivot values and multipliers, performance of
DGEFA actually degrades when solving small problems on
many processors.

To determine whether improved performance is attain-
able, we created a hand-optimized version of DGEFA based



Problem Fortran D Hand-Optimized | Hand
Size Proc| time |speedup| time | speedup |FortD
1 sequential time = 0.728
2 0.354 2.06 0.348 2.09 0.98
256 X 256 4 0.195 3.73 0.188 3.87 0.96

8 0.097 7.50 0.091 8.00 0.94
16 | 0.056 13.0 0.049 14.86 0.88
32 0.035 20.8 0.026 28.00 0.74
1 estimated sequential fime = 2.9

2 1.529 1.90 1.521 1.91 0.99

512 x 512 4 0.707 4.10 0.698 4.15 0.99
8 0.377 7.69 0.368 7.88 0.98
16 | 0.201 14.43 0.191 15.18 0.95
32 0.107 27.10 0.095 30.53 0.89
1 estimated sequential time = 11.6

1K x 1K 8 1.620 7.16 1.610 7.20 0.99
16 | 0.755 15.36 0.739 15.70 0.98
32 0.397 29.22 0.380 30.53 0.95

Table 1: iPSC/860 Timings for SHALLOW (in seconds)

Problem Fortran D Hand-Optimized | Hand
Size Proc| time |speedup| time | speedup |FortD

1 estimated sequential time = 89.0
256 X 8 4 9.971 3.91 10.22 3.81 1.03
X 8 X 4 8 5.040 7.74 4.979 7.83 0.99
16 2.440 15.98 2.414 16.16 0.99
32 1.284 30.37 1.240 31.45 0.97

Table 2: iPSC/860 Timings for DISPER (in seconds)

Problem Fortran D Hand-Optimized | Hand
Size Proc| time |speedup| time | speedup |FortD
1 sequential time = 2.151
2 1.051 2.05 1.108 1.94 1.05

256 X 256 4 0.744 2.89
8 0.670 3.21

0.683 3.15 0.92
0.551 3.90 0.82
16 0.695 3.09 0.644 3.34 0.93
32 0.782 2.75 0.758 2.84 0.97

1 sequential time = 17.53

2 7.988 2.19 7.879 2.22 0.99
512 x 512 4 4.786 3.66 4.322 4.06 0.90
8 3.373 5.20 2.601 6.74 0.77
16 2.908 6.03 2.259 7.76 0.78
32 2.916 6.01 2.619 6.69 0.90

1 estimated sequential time = 14

2 66.74 2.10 68.91 2.03 1.03
1K x 1K 4 36.29 3.86 35.61 3.93 0.98
8 21.83 6.41 18.93 7.40 0.87

16 15.32 9.14 10.97 12.76 0.72
32 12.96 10.80 9.654 14.50 0.74
1 estimated sequential time = 1120
2K x 2K 8 160.45 6.98 145.8 7.68 0.91
16 97.22 11.52 76.28 14.68 0.78
32 68.86 16.26 44.62 25.10 0.65
Table 3: iPSC/860 Timings for DGEFA (in seconds)
Problem Fortran D Hand-Optimized | Hand
Size Proc| time |speedup| time | speedup |FortD
1 sequential time = 1.577
2 0.858 1.84 0.805 1.96 0.94
64 X 64 4 0.721 2.19 0.586 2.69 0.81
X 64 8 0.657 2.40 0.448 3.52 0.68
16 0.539 2.93 0.311 5.07 0.53
32 0.613 2.57 0.315 5.00 0.51
1 estimated sequential time = 5.8
96 X 96 4 1.517 3.49 1.151 4.60 0.76
X 96 8 1.431 3.70 0.917 5.78 0.64
16 1.481 3.58 0.813 6.52 0.55
32 1.334 3.97 0.720 7.36 0.54
1 estimated sequential time = 12.6
128 x 128 8 2.738 4.60 1.905 6.61 0.70
X 128 16 2.705 4.65 1.584 7.95 0.58
32 2.533 4.97 1.347 9.35 0.53

Table 4: iPSC/860 Timings for ERLEBACHER (in seconds)

on optimizations described in the literature [11, 22]. First,
we combined the two messages broadcast on each iteration
of the outermost k loop. Instead of broadcasting the pivot
value immediately, we wait until multipliers are also com-
puted. The values can then be combined in one broadcast.
Overcommunication may result when a zero pivot is found,
since messages now include multipliers even if they are not
used. However, combining broadcasts is still profitable as
zero pivots rarely occur.

Second, we restructured the computation so that upon
receiving the pivot for the current iteration, the processor
Pr41 responsible for finding the pivot for the next itera-
tion does so immediately. Pyy1 performs row elimination
on just the first column of the remaining subarray, scans
that column to find a pivot and calculates multipliers. Pyy1
then broadcasts the pivot and multipliers to the other pro-
cessors before performing row elimination on the remain-
ing subarray. Since row eliminations make up most of the
computation in Gaussian elimination, each broadcast in
effect takes place one iteration ahead of the matching re-
ceive, hiding communication costs by overlapping message
latency with local computation.

The hand-optimized version of DGEFA showed little or
no improvement for small problems or when few processors
were employed. However, it increased performance by over
30% for large problems on many processors, yielding de-
cent speedups (14-25). The Fortran D compiler can thus
benefit from more aggressive optimization of linear algebra
routines. Experience also indicates that programmers can
achieve higher performance for linear algebra codes with
block versions of these algorithms. The Fortran D com-
piler will need to provide BLOCK_CYCLIC data distributions
to support these block algorithms.

4.1.5 Results for ERLEBACHER

As we have seen, ERLEBACHER requires global communi-
cation and contains computation wavefronts that sequen-
tialize parts of the computation. During compilation the
Fortran D compiler performs interprocedural reaching de-
composition and overlap analysis, then invokes local code
generation for each procedure. The compiler inserts global
communication for array suMm reductions, and also applies
coarse-grain pipelining. Timings for ERLEBACHER in Ta-
ble 4 show that the compiler-generated code is rather ineffi-
cient, with speedup peaking at 3—5 even for large programs.

To determine how much improvement is attainable, we
applied two optimizations by hand. First, we used inter-
procedural array kill analysis to eliminate unnecessary
global concatenation for local multi-reductions in the X
and Y sweeps. Second, we hand-tuned the granularity
of coarse-grain pipelining, selecting strip sizes of 16 and
24 rather than the default size of 8. These optimizations
vielded speedups of 5-9, improving performance by up to
50% over the Fortran D compiler-generated code.

4.1.6 Analysis of Results

By generating output for SHALLOW and DISPER that vir-
tually matched their hand-optimized versions, the For-
tran D compiler has demonstrated its effectiveness for par-
allel stencil computations, despite not producing the most
efficient communication. The compiler succeeds because
it does a sufficiently good job that communication costs
become a minor part of the overall execution time. In
particular, scalability is excellent because performance im-
proves as the problem size increases. Implementing addi-
tional optimizations is desirable for achieving good speedup
for small programs or many processors, but is not crucial.
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Figure 9: Speedups for Stencils & Programs (iPSC/860)

Instead, the focus should be on improving the flexibility
and robustness of the Fortran D compiler, as discussed in
Section 5.

In comparison, there is considerable room for improve-
ment when compiling communication-intensive codes such
as linear algebra and pipelined computations. Results for
DGEFA and ERLEBACHER show that the prototype For-
tran D compiler only attains limited speedups. Notice-
able performance gains can be achieved through advanced
communication optimizations; they are important because
communication is performed much more frequently than
in parallel stencil computations. The effect of these opti-
mizations on overall execution time increases in importance
as the problem size and number of processors increases. In
particular, the Fortran D compiler will need to use informa-
tion from training sets and static performance estimation
to select an efficient granularity for coarse-grain pipelining
[17].

To summarize, the Fortran D compiler performs exten-
sive analysis for stencil computations and is able to achieve
good speedups. More complex linear algebra and pipelined
computations require sophisticated optimizations that are
not fully incorporated into the prototype compiler, hence
we see only modest speedups.

4.2 Comparison with CM Fortran Compiler

We also evaluated the performance of the Fortran D com-
piler against a commercial compiler. We selected the CM
Fortran compiler, the most mature and widely used com-
piler for MIMD distributed-memory machines, and com-
pared it against the Fortran D compiler on the Thinking
Machines CM-5. Our CM-5 timings were obtained on the
32 node CM-5 at Syracuse University. It has Sun Sparc
processors running SunOS 4.1.2 and vector units running
CMOST 7.2 S2. When combined, the four vector units on

each node can outperform the Sparc by a factor of six or
more.

In our experiment, CM Fortran programs were com-
piled using cmf version 2.1 beta, with the -O and -vu flags.
They were timed using CM_timer_read_elapsed(). CM For-
tran programs were compared against message-passing For-
tran 77 programs using CMMD version 3.0 final, the CM
message-passing library. Fortran 77 node programs were
compiled using the Sun Fortran compiler f77, version 1.4,
with the -O flag. They were linked with c¢mmd version
3.0 beta. Fortran 77 node programs were timed using

CMMD_node_timer_elapsed().

4.2.1 Results for Kernels and Programs

The output of the Fortran D compiler was easily ported to
the CM-5 by replacing calls to Intel NX/2 message-passing
routines with equivalent calls to TMC CMMD message-
passing routines. We converted program kernels into CM
Fortran by hand for the CM Fortran compiler, inserting
the appropriate LAYOUT directives to achieve the same data
decomposition [27]. The inner product in Livermore 3 was
replaced by boTPrODUCT, a CM Fortran intrinsic. Jacobi,
Livermore 18, and SHALLOW can be transformed directly
into CM Fortran. Loop skew and interchange were applied
to SOR and Livermore 23 to expose parallelism in the form
of FORALL loops. A mask array indz is used to implement
Gaussian elimination.

The CM Fortran compiler can generate two versions of
output. The first uses CM-5 vector units, the second only
uses the Sparc node processor. Unfortunately, the current
TMC Fortran 77 compiler does not generate code to utilize
CM-5 vector units, and the node-level CMF compiler was
insufficiently robust to perform experiments. Fortran D
message-passing programs are thus forced to rely on the
Sparc processor. For the purpose of comparison, we pro-



Sequential | Fortran D CM Fortran
Execution | + CMMD CM Fortran Fortran D

Program Problem Size Sparc Sparc Sparc | Vector | Sparc | Vector
Livermore 3 64K 0.005 0.002 0.018 0.005 11.4 3.65
Inner 256 K 0.020 0.006 0.032 0.006 5.33 1.07
Product 1024 K 0.079 0.024 0.098 0.007 4.08 0.32
Jacobi 512 x 512 0.877 0.024 0.236 0.045 9.83 1.87
Iteration 1K x 1K 3.525 0.093 0.766 0.079 8.24 0.85
2K x 2K 14.14 0.362 2.834 0.159 7.83 0.44
Livermore 18 128 x 128 0.457 0.019 0.165 0.100 8.68 5.26
Ezxplicit 256 X 256 1.861 0.054 0.332 0.132 6.15 2.44
Hydrodynamics 512 x 512 7.554 0.199 0.994 0.163 4.99 0.82
256 X 256 1.297 0.029 0.409 0.185 14.1 6.38
SHALLOW 512 X 512 5.210 0.129 1.363 0.256 10.6 1.98
1K x 1K 20.88 0.520 6.159 0.408 11.8 0.78
Successive 512 x 512 0.376 0.053 17.04 7.559 321 143
Over 1K x 1K 1.519 0.126 116.1 27.39 921 217
Relaxation 2K x 2K 6.134 0.353 209.9 128.6 595 364
Livermore 23 256 X 256 0.389 0.035 2.897 2.516 82.7 71.9
Implicit 512 x 512 1.562 0.118 18.19 8.686 154 73.6
Hydrodynamics 1K x 1K 6.252 0.320 122.7 31.59 383 98.7
256 X 256 4.791 0.539 10.65 3.604 19.7 6.69
DGEFaA 512 x 512 40.61 2.680 104.8 56.50 39.1 21.1
1K x 1K 337.1 16.82 856.9 162.1 50.9 9.64
2K x 2K 6809 109.8 8449 1365 76.8 12.4

Table 5: CM-5 Timings for Kernels and Programs (in seconds, using 32 processors)

vide timings for CM Fortran programs using either Sparc or
vector units. Table 5 shows the elapsed times we measured
on the CM-5 for CM Fortran and Fortran D programs, as
well as the ratio of execution times between CM Fortran
and Fortran D code. Sequential execution times on a single
Sparc 2 workstation are provided for comparison.

We also graphically present the execution times mea-
sured on the CM-5. Figure 10 displays measured execution
speed. Execution times in seconds are plotted logarithmi-
cally along the Y-axis. The problem size is plotted log-
arithmically along the X-axis. Solid, dotted, and dashed
lines represent the CM Fortran using Sparc, CM Fortran
using vector units, and Fortran D using Sparc, respectively.
All parallel execution times are for 32 processors. Figure 11
displays the ratio of execution times of both versions of CM
Fortran code (sparc/vector) to Fortran D (sparc), plotting
ratios along the Y-axis.

Results indicate that when utilizing only Sparc proces-
sors, the CM Fortran compiler produces code that is sig-
nificantly slower than the corresponding message-passing
programs generated by the Fortran D compiler. The dif-
ference is pronounced for small data sizes. The CM Fortran
compiler fared best on data-parallel computations such as
Jacobi, Livermore 18, and SHALLOW (4-14 times slower).
It appears to handle pipelined computations and Gaus-
sian elimination poorly (204 times slower), even when ex-
pressed in a form that contains vector parallelism.

4.2.2 Analysis of Results

Direct comparisons are somewhat misleading, since the CM
Fortran compiler (2.1 beta) directly generates Sparc code
instead of using the Sparc Fortran 77 compiler. Additional
factors also affect performance, as evidenced by the fact
that for small to medium problems the Fortran D compiler
is actually faster than the CM Fortran compiler using vec-
tor units. First, the code generated by the CM Fortran
compiler uses virtual processes, causing extensive run-time
calculation of addresses and much unnecessary data move-
ment even for purely local computation. Second, it uti-
lizes a host-node model, where a host processor synchro-
nizes global computation on each node. In comparison,

the Fortran D compiler utilizes a hostless model, eliminat-
ing global host-to-node synchronization. Finally, few com-
munication optimizations are performed at compile-time.

We note that it is not completely fair to compare a re-
search tool like the Fortran D compiler against a commer-
cial product like the CM Fortran compiler. Because it is
a product, the CM Fortran compiler must be able to ac-
cept all legal programs and generate correct code. When
targeting distributed-memory machines, guaranteeing cor-
rectness for complex computations and data decomposi-
tions is quite difficult. In comparison, we were able to
concentrate on compile-time optimizations by limiting the
range of programs accepted by the Fortran D compiler.
The CM Fortran compiler is also handicapped because it
is designed to generate code that can be executed on any
number of processors, whereas the prototype Fortran D
compiler targets a fixed number of processors at compile-
time.

Nonetheless, our experiments prove that severe perfor-
mance penalties result if important compile-time decisions
are postponed until run-time. Because the CM Fortran
compiler for the CM-5 is relatively new (though it is the
most mature commercial compiler available), its perfor-
mance 1s sure to improve. We hope that our experiences
with the prototype Fortran D compiler will aid the develop-
ment of future CM Fortran and HPF compilers. However,
we believe that scientists will need to be patient, since ef-
fective HPF compilers will take time.

5 Compiler Improvements

Our preliminary experiences show that the prototype For-
tran D compiler has achieved considerable success in gener-
ating efficient code for stencil computations, but needs to
improve its optimization of linear algebra and pipelined
codes. We find, however, that the compiler must be-
come much more flexible before it can become a successful
machine-independent programming model.

In the course of conducting our study, we were unable
to apply the Fortran D compiler to a large number of stan-
dard benchmark programs, despite the fact they contained
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dense-matrix computations that should have been accept-
able to the compiler. Even programs that were written
in a “clean” data-parallel manner required fairly exten-
sive rewriting to eliminate programming artifacts that the
prototype proved unable to handle. The causes for this
inflexibility can be categorized as follows.

5.1 Improved Analysis

The lack of symbolic analysis in the prototype Fortran D
compiler proved to be a major stumbling block. Unlike
parallelizing compilers for shared-memory machines, sim-
ply providing precise dependence information was insuffi-
cient for the Fortran D compiler. The compiler performs
deep analysis that requires knowledge of all subscript ex-
pressions and loop bounds in the program. For real pro-
grams, constant propagation, forward expression folding,
and auxiliary induction variable substitution all need to
be performed before the Fortran D compiler can proceed.

The prototype compiler is also inhibited by missing
pieces in interprocedural analysis. It does not understand
formal parameters that represent subarrays in the calling
procedure or multiple entry points. Both symbolic and
interprocedural analysis need to be completed and inte-
grated with the prototype compiler before many existing
programs can be considered.

5.2 Run-time Support

Another problem with the Fortran D compiler is that it re-
lies almost completely on compile-time analysis. The only
run-time support it requires are simple routines for packing
and unpacking non-contiguous array elements into contigu-
ous message buffers. The compiler attempts to calculate
at compile-time all information, including ownership, par-
titioning, and communication.

While this approach is necessary for advanced optimiza-
tions and generating efficient code, it limits the Fortran D
compiler. Real programs, frequently contain components
such as indirect references that cannot be easily analyzed
at compile-time. In these cases the Fortran D compiler was
forced to abort, despite being able to compile the impor-
tant kernel computations in the program.

What the Fortran D compiler needs are methods of uti-
lizing run-time support, trading performance for greater
flexibility in non-critical regions of the program. The com-
piler can either apply run-time resolution or demand more
support from the run-time library to calculate ownership,
partitioning, and communication at run-time. Since in
most cases the code affected is executed infrequently, the
expense of run-time methods should not significantly im-
pact overall execution time.

5.3 Additional Features

A major part of the problem lies with the immaturity of the
Fortran D compiler itself. There are a number of dense-
matrix computations that it is not able to analyze and
compile efficiently. For instance, the prototype compiler
does not currently handle non-unit loop steps or subscript
coefficients. It is thus unable to compile Red-Black SOR
or multigrid computations, both of which possess constant
step sizes greater than one.

Computations such as Fast Fourier Transform (FFT),
linear recurrences, finite-element, n-body problems, and
banded tridiagonal solvers all possess regular but special-
ized data access patterns that the Fortran D compiler needs
to recognize and efficiently support. In addition, run-time
support for irregular and sparse computations must also
be added. Only when these obstacles are overcome can

the Fortran D compiler serve as a credible general-purpose
programming model.

5.4 Rewriting Dusty Decks

Finally, the Fortran D compiler cannot compile a num-
ber of “dusty deck” Fortran programs that were originally
written for sequential or vector machines. These programs
contain programming constructs that the compiler does not
understand such as linearized arrays, loops formed by back-
ward GOTO statements, and storing and using constants in
arrays. Dusty deck programs have proven to be very chal-
lenging for even shared-memory vectorizing and paralleliz-
ing compilers. Because of the deep analysis required, they
are even more difficult for distributed-memory compilers.

It is not a goal of the Fortran D compiler to be able to
automatically parallelize these programs for distributed-
memory machines. Requiring users to program in For-
tran 90 can help prevent such poor programming practices,
and is the approach taken by High Performance Fortran.
However, as shown by the performance of the CM Fortran
compiler, Fortran 90 syntax does not eliminate the need
for advanced compile-time analysis and optimization.

6 Related Work

The Fortran D compiler is a second-generation distributed-
memory compiler that incorporates and extends features
from previous compilation systems [6, 12, 19, 21, 25]. Com-
pared with other contemporary systems [2, 3, 7, 8, 18, 24],
The Fortran D compiler is less flexible but performs deeper
compile-time analysis, many more advanced optimizations,
requires fewer language extensions, and relies on less run-
time support.

Few researchers have published experimental results for
large programs. Pingali & Rogers apply message vectoriza-
tion, message pipelining, and reduction recognition in ID
NOUVEAU to parallelize SIMPLE [25]. Koelbel & Mehrotra
are able to parallelize ADI integration in KALI by implic-
itly applying dynamic data decomposition between com-
putation phases [19]. Olander & Schnabel show that DiNO
programs can be significantly improved through iteration
reordering and pipelining [23].

Bromley et al. develop optimizations in CM Fortran
compiler for stencils on the CM-2 [4]. By inserting calls
to hand-coded microcode routines that apply wunroll-and-
jam, they avoid unnecessary intra-processor data motion,
insert communication only for nonlocal data, and improve
register usage. The resulting compiler achieves significant
improvements in execution speed for a finite-difference seis-
mic model. Hatcher et al. demonstrate that DATAPARAL-
LEL C can achieve speedups for large scientific applications
on MIMD architectures [14].

Burns et al. developed techniques for guiding the use
of unbuffered messages on the Alliant CAMPUS/800 us-
ing data dependence information [5]. They show that un-
buffered messages improve overall performance for a collec-
tion of hand-parallelized scientific programs. Their studies
validate the effectiveness of selected compiler optimizations
for complete programs.

Riihl performed studies on a variety of parallel architec-
tures, demonstrating excellent speedups for the OXYGEN
compiler [26]. Amarasinghe & Lam use precise data-flow
information for arrays from last-write-treesin SUIF to avoid
over-communication [1]. They report speedups for Gaus-
sian elimination without pivoting.



7 Conclusions

An efficient, portable, data-parallel programming model
is required to make large-scale parallel machines useful for
scientific programmers. We believe that Fortran D provides
such a model for distributed-memory machines.

This paper describes compiler techniques developed in
response to problems posed by linear algebra computa-
tions, large subroutines, and whole programs. The per-
formance of the prototype Fortran D compiler is evaluated
against hand-optimized programs on the Intel iPSC/860.
Results show reasonable performance is obtained for stencil
computations, though much room for improvement exists
for communication-intensive codes such as linear algebra
and pipelined computations. The prototype significantly
outperforms the CM Fortran compiler on the CM-5.

Our experiences show that the prototype Fortran D com-
piler requires symbolic analysis, greater flexibility, and im-
proved optimization of pipelined and linear algebra codes.
We believe the Fortran D compilation approach will be
competitive with hand-optimized programs for many data-
parallel computations in the near future. However, addi-
tional effort is required before the compiler will be as ef-
fective for partially parallel computations requiring large
amounts of communication.
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