A Family of Numerical Schemes
for the Computation of Elastic
Waves

Alawn Sei

CRPC-TR93305
March 1993

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005



A Family of Numerical Schemes for the
Computation of Elastic Waves

Alain Sei *

(to appear in STAM Journal of Scientific Computing)

Abstract

A family of numerical schemes, based on finite difference operators is introduced for the
computation of elastic waves. We use a displacement-stress formulation of the model. After
deriving some stability results, we give an analysis of the computational cost. Imposing an
accuracy criterion on the phase velocity, we derive the numerical parameters. We also show
that an optimum order of approximation exists for a given precision.

Key Words. Elastic Wave Equation, Numerical Schemes, Stability, Computational Cost

AMS(MOS) subject classifications. 65M06, 65M12, 73D25

1 Introduction

High order finite-difference schemes for the acoustic wave equation, and the elastic wave equation
have gained interest for some time, because of the computational cost of the simulation of such
phenomena. Problems such as the inverse problem of seismology require also many of these simu-
lations. General discussions on the application of finite-differences in seismology can be found in
Alford et al [1], Kelly et al [2] and Dablain [3].

Recently different authors, Bayliss et al [4], Levander [5] for instance, have proposed schemes of
order two in time and four in space for the elastic wave equation. Our goal in this paper is to
see what could be gained, if anything, by using arbitrary accuracy in space in the finite difference
scheme.

We introduce and analyse, for that purpose, a family of finite-difference schemes for the elastic
wave equation. These schemes allow heterogeneous, possibly discontinuous elastic parameters.
After a presentation of the schemes in section 2, we show in section 3 that numerical stability
is assured for these kinds of elastic parameters, that is to say for any Poisson ratio and Young
modulus. In section 4 we turn to the plane wave analysis of the schemes. Then in section 5 we
derive rules to control the cumulative error due to dispersion, by providing curves for the choice of
the number of points per wavelength and the number of points per period. For a given accuracy
on the phase velocity, we show that there exists an optimal order of approximation in terms of
total arithmetical operations. Finally in section 6 we conclude and discuss some extension of the
work presented here.

We recall in a bidimensionnal medium, the equations linking the displacement vector lj(u, v) to
the parameters defining the medium, the density p and the Lame parameters A and pu. We have
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(cf [6]):

0%u 0 Ju Ov 0 ou Ov

Pa?—a—x(““ >a—“a—) —a—z<“ a?*a?) =0
(1.1)

6% 0 ou  Ov 0 Ou v

PW‘%(“<37+37))—37<Aaz + A+ 2 >az> =0

We can write this system as a first order system in the spatial coordinates, using the stress tensor
and Hooke’s law. This gives :

8%u orr* n oT*? - 0
P ot? Ox 0z o
(1.2)
8% or** n oT*? - 0
p3t2 Ox 0z -
with 5
v
=+ 2#)— +p
0z
Oou Ov
1.3 T%% = —
(13) —H <8z 31‘)
8 Ov
T = p—+ (A4 2u
Hay + O+ 25
A straightforward discretization of (1.2) of second order in space leads to :
TT _ gz xz xz
p@(z §) - Tz+2,J TZ—EJ _ T,J+2 T,J—— S
otz Az Az
(1.4)
p62 (i) T~ 15y The— Ty 0
ot? Az Az
We can see then that we need quantities like T+1 . and T“+1. A straightforward discretization
of T%% gives :
Te Yirsj+d — %itdi-5  Vitlj —Vij
i+35 H Az Az
(1.5)
. Uig1j — Ui j Vil i+l —Vi-Lj+1
A —
GLits H Az Az

Therefore we need values of u and v at points (¢ + %,j + %) that we do not compute. A simple
solution to this problem is to use a convex linear formula using u; ; and v; ; like :

1 <Ui+u i Uit “w)

ui+%7j+% = 2 9 9

This solution however is purely algorithmical and does not have a physical meaning. In addition,
it leads to more operations per point and per time step.

2 Presentation of the Numerical Scheme

Another solution is to compute u and v on two different grids (cf [7], and more recently [8]), shifted
of Az/2 and Az/2 from one another. Then we can replace (1.4) by
0*v L. 1 @Tlvj+l ij‘*'z _ T 1i+1 Tf_ﬁw

p@tz(l+2’j+§)_ Az Az
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Now we compute only T“ Furthermore with (1.5) we only need u on the points (7, j) and v on

i+3
the points (i + 5, i+ 5). In relation to these two grids we introduce the following functional spaces
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Figure 2.1: The Two Grids

Lg,o = ‘PELQ(R2 Z pij 1 [(i—1)Az,(i+1)Az]x (j—%)Az,(j+%)Az]('73aZ)
i,j=—oc0
“+co

LZ _ ) L2 R2 n — . . 1r; . . S ;

2o0= S PEIXRY) [ o= D @ipiist liae +1)anixaz(+1)az(@, 2)
i,j=—00

L2 = EL2(R2)/IZ T TP iyl : SRR (IZ)

0% 14 ¥ Pij+i -YHar,(i+)az]x[jaz,G+1)a]\
i,j=—00
+o0

Lio = peL*(R?) [ ¢= Z Pitl 1[mx,(z’+1)Az]x[(]’—%)Az,(H%)Az](l‘a2)
i,j=—00

where

=1 (x,2) €la,b] x[c,d]
La,5)x[e,a (%, 2)
=0 (2,2)¢[a,b] x[ed]

The symbol o’ refers to the integer grid (7, j), the symbol "+’ to the shifted grid (i + %, Jj+ %) We
set L2 with the usual scalar product defined by :

0,0
P, = (o= S fijses Ar e
i,j=-—00
We set analoguous scalar products on the spaces L? o Lg . and L?

These spaces and notations will be useful for the stablhty results. They help define precisely and
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concisely the different locations where we evaluate the displacement vector. Now we introduce the
differentiation operator by :

Ay o Ly, — LI
=~ B
u  — Aju(i+ Q,J = Z Az (Wit — tim141,4]
A2 is a finite difference approximation of order 2L in ((i + )AJ; JAZz) of the quantity a“, with

the coefficients (8;)i=1. 1 defined in appendix 1. The exponant refers to the departure set L2 _; the
subscript to the direction of differentiation. Similarly we define

007

A2 L2, — L2,

0,0

L
Bi
v — Afu(i,j+ 3 Z s (Wi j41 — Us j_141]

A; Lz * — Lg,*
=
v Aty ZA— it g+ T Vinik 4]

Ar L2 — Lfo

* ;
v Au(i+3,5) ZA[z+2,J+I+1_Ui+%,j—I+§]

We are now ready to introduce a semi-discrete scheme for the system of elasticity (1.1) as follows :

32
( P T Au (A 2 AZu+ AAT) £ A2 (u(AZu + A;;v») (i,4) =0

(2.1)

62 * * * * . .

< Pz + A (H(AZu+ AZv)) +1 A7 (AAZu+(A+2u)sz)) (i+3.5+3) =0
The way the numerical scheme is written, makes it easy to check consistency. Take the first
equation for instance. We know that u € Lg », therefore A2u € L? o and v € Lz ., therefore

Atv e L7, Thus it makes sense to add (A + Q,u)Aou and AA%*v (prov1ded that A and u belong to
L% ,). Now we can apply *A7 to (A + 2u)Agu + AA%v and we in fact obtain an element of L2

0,07

1s itself

that is a quantity aproximated on the grid (¢, 7). This is consistent with the fact that p
computed in (i, ).
To define the scheme we must have

8t2

AelLl, pe L, NL2. peLl, (L3,
that is we need the following quantities

Ait1/2,) Hit1/2j  Hij+1/2 Pij Pi+1/2,j+1/2

To define those quantities, we use an intermediate grid. On that grid we will suppose the different
parameters constant. Then we will affect the different values on (7,5), (i4+1/2,7), (i,5+1/2),
(14 1/2,j 4 1/2) according to this grid. We suppose given the space steps Az and Az, and the
initial grid of points (iAxz, jAz). Let d be a real positive, such that d < 1/2. We shift the initial
grid of (—d.Az) in the horizontal direction and (—d.Az) in the vertical direction.
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Figure 2.2: The original and shifted grids

Assuming A, p, p constant on each square of the shifted grid, we have the following simplifica-
tions :

/\i+1/27j = /\Z]j Pit1/2,5+1/2 = Pi,j Hit1/2,j = Hij+1/2 = Hij
This definition of the different quantities helps the implementarion of the scheme, avoids unneces-
sary computations and saves memory space.

3 Stability Results

We now turn to the study of the numerical stability of the scheme (2.1). We are going to proceed
by the energy method (cf [10], [11]), in analogy with the continuous energy given by :

E = E.+E
Ou Ov
E, = l/ (—2+—2)d;1:dz
2 Rzp (at) (at)

ou v\’ ou  Ov\? ou\? av\?
- 1 -4 22 e - hhd )
Ep = 2/32/\<3r+3z) +'u<3z+3a:) +’u<8x) +'u(8z) dudz

In an infinite medium without source we have : %€ = (, that is conservation of energy. The totally

i
discretised equation is given by :

LN+l 9.on n—1
u; 2uw +u;

pij—2 INE + {TAZ(A + 20 AZu™ + AAT™)
+ TAZ(p(AZu" + Av")}(4,5) = 0
(3.1)
il ggn gl
i+15+3 t+35,7+3 t+5,J+3 * 0, M *n
pi+%,j+% ! Atgj : + {tAx(lu(Azu +A:cv ))
+ TAT(AAZU + A+ 20) AT} (P4 5,5+ 3) =0

ot
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By a discrete integration in time of the two equations of (3.1) with :

n n+1/2 n+1/2
E +1/2 _ o / +Ep /

En+1/2 _ l pun+1 —un un+1 —un N pvn+1 — vn+1 —
‘ 2 At T At v At At »

At2 AAC un-}—l —un N A ,Un+1 — " un+1 —u? Un+1 — "
4 N At ),

¢ At

n+1 n

At

n+l _ ., n n+l _ ., n n+l _ ,n n+l _ ,n
N <2#A;u u A;u u) +<2ijv vt el v) }}

+ <uAZ :

At ' At At T At

En+1/2 ,un+1 + u” vn+1 + o™ Ao un+1 + u” Un+1 + o™
P
*0

A*
T 2 Z 2 ) xT 2 + Z 2

un+1 + u™ Un+1 + e un+1 + u” vn+1 + o™
_ A A
+ </‘t z 9 Ky 9 )4tz 9 + T 9 )O*

un+1 + un un-}-l + un Un+1 + Un Un+1 _ Un
2uAL A? AL Al
+ < lu ’ 2 ’ ’ 2 )*o + < ’u ? ’ ? 2 )*o}

we have conservation of the discrete energy, that is :

En+1/2 _ En—l/Z
At

The stability of the scheme will be proven if the potential energy Eg+1/2 and the kinetic energy
E?+1/2

n+1/2
c

are positive. Since Eg+1/2 is obviously positive, we need to find out under what conditions
is positive. The problem can be reformaluted as : Yu € L2, Vv € L2, with

I = (AAZu+ AALv, A2u+ ALv)eo + (pAJu + pAj v, AJu+ ALv) s
+(2pAlu, Alu)wo + (2uASv, AL0)wo

under what condition do we have :

At?

TI < (pu, w)oo + (pU,0)ux

We can bound [ as follows :
I < 2[(AAZu, A2u)wo + (AATY, AZ0)wo + (AU, AU) i
F(pAL v, ALv)ox + (ALY, A2U)o + (2pAL 0, A0)40]
I < 2[((AM4 p)A2u, AZu)wo + (AU, ASU) s
F((A 4+ 1) A%, AZv)wo + (HAZY, A70)o0x]

We set

Il = ((A + N)A; U, A;u)*o + (,UA;]U, Agu)o*
I, = ((A + ﬂ)A:v, Aj,‘v)*o + (/,LA;’U, A;U)o*
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and we are now going to majorate I; and I5. Lemma 1 proved in appendix 3, shows that

2
4
Vu € LZO I < (Ax2 AZZ (Zlﬁl ) pu u)

L
A+ w)igi—1y2; A+ p)icip1/2,5
¢ = [ZW;” maXZlﬁl o /2, + 2;” /2,j
b i ij
Hij+1-1/2 Hij—141/2
+ +
2pi,; 2pi,j ]

Using lemma 2, proved in appendix 3, we derive the following estimate for I

4
wer st s (S1) oo

L
A+ )i i+ (At p)iviy2 i
G = Dolan maXZIﬁI BRI 2

2pit1/2,5+1/2 2pi41/2,541/2

Hitlj+1/2 Hi—1j+1/2
+
2pi41)2,5+1/2  2Pit1/2,5+1/2

We can now state the stability result in the following proposition.

Proposition 3.1 A sufficient stability condition for the numerical scheme (3.1) is given by :

-1
1 1 V2 (&

Aty —+— < —

¢ A$2+Az2 - 2 (;lﬁll)

C = max(er,ca)

(3.2)

When Az = Az = h we can derive a better stability condition given by :
Proposition 3.2 A sufficient stability condition for the numerical scheme (3.1) with Ax = Az =

h s giwen by :
-1
C.At V2 [ &
b N S E
h T2 (1—1 lﬁl|)

C = max(eg,ca)

(3.3)

We can write a more conventional stability condition involving the maximum P-wave velocity in
the medium, by writing ¢; and c» differently. For instance for ¢z :

L L
3 (A4 1)igr 2 j+1 (A + 1)ig1 2,j—1
=0 1a0™" n;a;x(Zw PRI P
=1 ’ =1

2pi41/2,5+1/2 2piy1/2,5+41/2

Hitlj+1/2 Hi-1j41/2 )
_|_
2pi41)2,5+1/2  2Pit1/2,j+41/2
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L L
- At p)ig1/2,541  Pit1/2,5+1 M w)ig1y2 -1
) I R T vryreyrh e rvias
=1 > =1 Pit1/2,5+1 Pi+1/2,5+1/2 Pit1/2,5-1

Pi+1/2,5-1 +Hi+l,j+1/2 Pi+lj+1/2 +/~‘i—l,j+1/2 Pi—1j+1/2 )
20i41/2,j4+1/2  Pitlj+1/2 2Pit1/2,5+1/2  Pi-1j+1/2 2Pi41/2,j41/2

Cg S [(/\+1u)

I
0001+ [—]oc.0
Jeo 01 [p] 2

(A +2p)

cés[p

Joo- max(6y, 62)

with

61 2 2
= Pi+1/2,j+1/2 Pit1/2,j+1/2

L L
— Pi41/2,5+1 Pit1/2,5-1
D10 (Zw [0l LIHl/2] )
=1
B

max
2,7
< Pit+1 Pi-1
_ i+1j+1/2 i—1,j4+1/2
5y = [Z|ﬁl” 1n}3‘x(2| i+1,54+1/ + i—1,j+1/ )
=1 ’

= 2pi41/25+1/2  2Pit1/2,j41/2

|flec = maxf;

For ¢; we have

A+
@ o< (AT A
p
A42
;7 < [M]O@.max(ég,&l)
p
with
= = Pivi—1/2,5 | Pi—141/2f
(S — 61 —1maX Bl 11— )J 4 1—I+ )J
= (S s
= = Pij+i-1/2  Pij—i+1/2
62 = [D_ 1617 max |8 | = 4 =
; i ; 2pij 2pij
whence
(A +2u)

C = max(ci,e2) < | Joo max(éy, 6a, 63, 64)

P

With Cp mae = [KH%)]OO and § = max(é1, 62, é3,84) we can then state the following result :

Corollary 1 A sufficient stability condition for the numerical scheme (3.1) with Aw = Az = h is
given by :

-1
Cp maz At V2 =
(3.4) % S 7 (6 ?:1 |ﬁl|)
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With no variation in density, p = C?® we have 6 = 1. The parameter § measures the “roughness”
in density of the medium. The more heterogeneous the medium, the bigger é and therefore the
smaller the stability condition (CFL number).

In homogeneous medium, we have ¢p ez = H%, and the stability condition is

A+ 2u At V2 (& -
(3.5) ,/7.7 < 7(;%)

For a scheme of order 4 in space, that is with L = 2, we have in homogeneous media the following
stability condition :

(3.6)

A fourth order accurate sheme was derived differently by Bayliss et al (c¢f [4]). In homogeneous
medium they obtained

(3.7)

A priori the second scheme is the most appealing since it allows bigger time steps. But as we shall
see the CFL number is a limit, and dispersion control implies to choose C.At/h much lower than
the CFL number. We are now going to study dispersion effects in the next section.

4 Plane Wave Analysis

We turn to the Fourier analysis of the scheme (cf [9]). We will derive the dispersion relation and
by the Von Neumann criterion (cf [10]) we will get a necessary and sufficient stability condition.
In homogeneous media the numerical scheme (3.1) can be written

un+1 — 2u. + ur.l._l
gt 2 AZAL + XA AT
+ plASAU™ + pt A2 AR =0
(4.1)
n+1 n n—1
vy =207, v
+3.0+3 it3.d+3 i+3.0+3 * g0, n * A%,
d A d + prARAU™ + pt AR Atv
+ ATATAZU 4 (A 4 2p)t AT AT =0

We assume that U = d exp i(wt — k.Z) is a solution of (4.1), where k = (ky, ko) is the wave vector,
w is the pulsation, and d = (dy, d2) the vector giving the direction of movement (cf [12]). This
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gives the following relations :

2 2
L wAt A2 | a+ou (& k1h koh
dlsmz(T) = h—z{ p (Zﬁlsm 20-1) % ) +% (Zﬁlsm 20-1 T)) }d1

ds SmZ(“’TAt) - i—i {“2” (Z:: By sin((21 — 1)%)) +5 (Z By sin((21 — 1)%)) }d2

p
A2 A tp [, kih kah
+ ?{T(Zﬁlsm(@l—lT)(Zﬁ;sm(?l—l) ))}Ch

By introducing the matrix B = (b;;) defined by :

by, = Ah—l; { A —ZQN (Z Brsin((2 — 1)%)) + K (12:; Brsin((2 — 1)%)) }

A

=1

2
A2 | X+ kih koh
b12 = b21:?{ p'u (Zﬁlsln 201 T) (Eﬁzsm 21—1)7)) }
=1

byy = Ah_i{Aerm (Zﬁl sin((21 — 1)%}1)) + % (12:;5, sin((20 — 1)%}1)) }

ol
ol

=1
we can write the previous relation as :

- At -
(4.2) Bd = sinz(wT) d

The eigenvalues of B then express w as a function of k, that is the dispersion relation. A quick
calculation gives the following result

sm(w—At) - %\/Az(kl)ﬂmkz)
(4.3)
At At
(2 = ERL R+ AR
with
L
. kh
Alk) = Zﬁ,sm((21_1)7)
=1
A+2
Cp:ﬂ C}:ﬁ
p p

We show below examples of dispersion curves for different operators. That is we plot the normalised
phase F, error defined by

(4.4) E,=

10
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as a function of % = H. Here C is either C}, or C; depending on what kind of waves we are
interested in.

The CFL number is baptised PMAX and is the bound of the stability interval for p = C.At/h. The
first set of curves shows in 2D for a fixed direction of vibration 6 the influence of the parameter p.
The second set of curves shows for p =PMAX the angular dependence.

We notice on the first set of curves that when p increases the error grows due to dispersion in
time. This is even more so as the operator gets more and more accurate in space. If we had used
a Fourier operator to perform the space derivative the only error will be due to time dispersion.
This will be a limiting factor for the choice of an optimal scheme.

The second set of curves shows the anisotropy of the numerical scheme. The worst angle of
propagation is ¢ = w/4 generally, except for the (2,2) scheme (L=1). In this case it is well known
that for § = /4, we are on the caracteristic and integrate the equation without error.

11
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L=1 Pmax=0.707 Theta=45
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Figure 4.1: The normalised phase error for a propagation angle § = 45 as a function of the courant
parameter p = C.At/h for different operators. (solid) p = 0.2Pmaz (point) p = 0.4Pmax (dotted)
p = 0.6Pmax (dashdot) p = 0.8 Pmaz (dashed) p = 1.0Pmaz
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Figure 4.2: The normalised phase error for the courant parameter p = C.At/h at the stability
limit Pmaz, as a function of a propagation angle ¢ for different operators. (solid) ¢ = 0 (point)
6 = 10 (dotted) 8 = 20 (dashdot) 6 = 30 (dashed) 6 = 45

With the dispersion relation, we can use Von Neumann stability criterion. A necessary stability
condition is that the pulsation w is real. This implies that the eigenvalues of B must be lower than
1, therefore :

- At o At
Vk € R CPT A2(ky) + A2(k2) < 1 ¢ TV A% (k1) + A2(k) < 1
It is easy to verify that
max \/A2(k1) + A2(ks) = \/A%(x/h) + A2(x/h) = (Zw,)
EeR2

therefore we can state

13



Alain Sei

Proposition 4.1 In homogeneous media, with Ax = Az = h, a sufficient and necessary stability
condition for the numerical scheme (3.1) is given by :

(4.5) Gl ?(Zlﬂll)

This necessary and sufficient stability criterion is exactly the result of corollary 1 for homoge-
neous media. In that case the parameter 6, which measures the heterogeneity of the medium has
its lowest value, that is § = 1. This lets us think that corollary 1 even though only a sufficient
stablity result, must be quite close to a necessary condition as well.

5 Analysis of the Computational Cost

We impose a precision criterion on the phase velocity so that, at the end of the simulation, the
phase velocity of the scheme is within a certain neighbourhood of the exact phase velocity. Then
we choose the discrete parameters At and h (or equivalently the number of points per shortest
wavelength and the number of points per shortest period) in order to respect this criterion. We
can then derive the numerical cost of the simulation and see which operator minimize it. This
operator will be the cheapest to fulfill the precision criterion stated above.

Equation (4.3) is composed of two dispersion relations, one for the P-waves and one for the S-waves.
Like in the continous problem the two types of wave decouple into two acoustic wave equation.
In order to study the quality of the approximation we use the phase velocity C, and the relative
error E, defined in (4.4).

To control the dispersion effect we require that at the final time of simulation T},,., the phase
shift between the exact wave (pulsation w), and the numerical wave (pulsation w(k)) is less than
7/2. That is to say, the two waves are not shifted more than half a wavelength, so :

(5.1) w — w(k)]. Tras < g
Assuming that we propagated the wave on J wavelength A = 2#/|E|, the time of propagation is
Trmas = % Then (5.1) becomes

1
(5.2) |Ee| <

4.7

We see here the cumulative effect of dispersion. To respect the constraint (5.1) at the final time
Tmaz the error on the phase velocity has to be inversely proportional to the propagation time.
The computational cost of the simulation is obviously linked to the precision on the phase error.
It is defined as the total number of arithmetical operations and is given by :

Cost = N x N2 x N,

where Np, is the number of operations per points and time step for the scheme of order 2L in space,
Ny is the number of points in one direction (the domain is a square), N; is the number of time
steps. Assuming that the size S of the domain in one direction is S = C.Tpq45/2 (i.€ we propagate
the wave for a round trip to the bottom of the domain), we can write the cost as a function of J:

J 5, J

Cost(J,H,G,L) = NL.(ﬁ)Z.(E)
h At
=3 “=xrc

14
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H is the inverse of number of points per wavelength A, and G is the inverse of the number of points
per period T'= A/C.

Now H and G are going to depend on J, since we impose (5.1), that is |E,| < 1/4J. The
dispersion curves displayed above show that the discretization in time gives a positive contribution
to the phase error, whereas the discretization in space gives a negative contribution to the phase
error. This can be shown analytically by a development around |E|h = 0 of the phase error function.

With k = |k| and k; = k cos() ko = ksin(f) we have

E,(k,0,h, At) = chAt arcsin (%\/Az(kl) + AZ(/Q)) -1

When kh — 0 we have :

A ﬁ(w - kh
Eo(k,0,h, At) = é(“;)z — Ty (cos() +sin(@) () + Ok
>0 <0

Therefore to minimize the cost we look for the biggest time step At respecting the constraint
E, < 1/4J, and the biggest space step h respecting the constraint E, > —1/4J, for all directions
of propagation §. We show below different choices of At and h, for J = 100 that is |E,| < 2.5 1073,
via the CFL parameter p = CAt/h and H = A/h for different operators of order 2 (L=1), 4 (L=2),
8 (L=4).

For the (2,2) scheme (L=1), the space error forces us to choose H = 5.25 1072 (that is 19.05 points
per wavelength) and p = /2/2 (that is 26,8 points per period) to respect the precision on the
phase error.

For the (2,4) scheme (L=2), we improve the space error and we have H = 17.5 102 (that is 5.7
points per wavelength). For the time error however the special case of the (2,2) scheme where
the phase error is always negative, does not happen anymore. Thus we can not choose like before
p =PMax. The bound on the phase error allows us p = 0.282 (that is 20.2 points per period). We
have therefore greatly decreased the cost of the simulation already by a factor of nearly 15.

For the (2,8) scheme (L=4), we still improve the space error and we have H = 27.2 102 (that is
3.7 points per wavelength). For the time error the bound on the phase error allows us p = 0.150
(that is 24.7 points per period). Here we do not have the best deal anymore since we do not gain
in space and in time. We improve the space accuracy, therefore decreasing the number of points
per wavelength, but the limiting order 2 in time shows up here and we do not decrease the number
of points per period.
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Figure 5.1: The normalised phase error for the maximum courant parameter p = C.At/h respecting
the constraint F, < 2.5 1073 as a function of a propagation angle @ for different operators. One can
read on the curve the maximum admissible value of H respecting the constraint E, > —2.5 1073,

(solid) @ = 0 (point) # = 10 (dotted) 6 = 20 (dashdot) 6 = 30 (dashed) 0 = 45
For a given domain, that is a given J, it is possible to plot the functions J — Nx(J), J — Np(J).

Therefore we get a table to choose the discrete parameters according to the medium size and the
operator used.
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Figure 5.2: The number of points per wavelength and the number of points per period admissible

to respect the constraint |E,| < 1/4.J.(solid) L = 1 (point) L = 2 (dotted) L = 4 (dashdot) L =8
(dashed) L =10
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It is also interesting to plot the function (J,L) — Cost(J,L). For an average geophysical
medium, corresponding to the propagation of a hundred wavelength (J = 100) the function L —
Cost(100, L)/Cost(100, 1) shows the computational cost of the simulation compared to the cost of
the (2,2) scheme. It shows that after a certain threshold corresponding at L = 4 (that is order 8
in space) the computational cost actually increases with the order of approximation in space.

Normalised Cost
©o o
4] o
T T

o
IS
T

0 L L L L L L
o 2 4 6 8 10 12 14 16 18 20

Operator Length

Figure 5.3: The normalised numerical cost of simulation respecting the constraint |E,| < 1/4.J as
a function of the order of the operator.

6 Discussion and Conclusions

The previous study shows that in order to control the phenomenon of dispersion in the numerical
propagation of elastic waves, one must prescribe a number of points per wavelength and number
of points per period, depending on the size of the domain. This is the cumulative effect of the
dispersion error. Thus the widespread rule of thumb “10 points per wavelength” for a (2,2) scheme
(cf Alford et al) is here to be understood in the sense “10 points per wavelength for an average
geophysical medium” that is for the propagation of a hundred wavelength.

The study also shows that the computational cost is not a decreasing function of the order of
approximation, and that after order 8 in space (with the finite difference operators introduced in
this paper) the cost actually increases linearly with the order of approximation. The maximum
gain for the computational cost is when we change from a (2,2) scheme to a (2,4) scheme. This
justifies the endeavor for (2,4) schemes for the elastic wave equation (cf [4], [5]). It also proves that
higher order schemes would not greatly improve the cost.

As arule of thumb, for an average geophysical medium one must choose Ny = 6, that is 6 points
per shortest wavelength, and Np = 20 that is 20 points per shortest period for the (2,4) scheme.
The shortest wavelength is defined by the slowest velocity in the medium (the S-waves velocity)
divided by the highest frequency in the source spectrum (which is the inverse of the shortest period
T). Therefore

Cs,minT T

Ny =
A h At

18



Numerical Schemes for the Computation of Elastic Waves

and one can write the stability condition as

M < Cte NA Cte Cs min
h NT Cp max

Therefore we see that Ny = 6 and Np = 20, gives the parameter p = C.At/h. This shows that the
stability criterion which gives the CFL number as the upper bound of the parameters p = C.At/h
is only indicative in practise.

The analysis presented here for the phase error velocity is transposable to the group velocity
(cf [13]). The conclusions are qualitatively the same. The different functions giving the number
of points per wavelegth, the number of points per period and the relative cost in the case of a
criterion precision on the group velocity can be found in [14].

A natural extension of this paper would be to consider schemes of order 4 in time. This has been
done in [14], and the results show that the phenomenal increase of computations to approximate
a quantity like @) = a%l/paax l/pa“ is not balanced by the improvement of the time step. In
fact we only need to approximate @ with a quantity of order two in space, to get order four in
time and space. But when we approximate @ by *A2(1/p(A%(A'A2(1/p(A2))))) where A? is the
finite difference operator of order 2, we do not have stability results.

7 Appendix

7.1 Appendix 1

The coefficients 3 are defined by 8 = a; /(21 — 1). For consistency reasons «; verify

L
EO(] =1
=1

and to approximate the first derivative to order 2L
L
d@-1)Pu=0 p=1.L
=1

Solving this linear system in oy gives :

[[em-1)
o = (—)H
IT 12m—1)* = (20— 1)*|
m#Zl

7.2 Appendix 2

Lemma 7.1 With

L
+N)z+z 1/2, A+ w)icig1/2,)
¢ = D_lan maxZw S S Ty
Pij i,j

Hij+i—1/2 n /~‘z’,j—l+1/2]

_|_
2pi j 2pi j
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we have

Proof :

I

I

I

I

I

I

IN

IN

IN

IN

INA

VU € LZO Il

IN

(50 + 30 (Zw,) ()

L
Z (A4 1)ig1/2, Z Aﬂ (wiprj — ui—ig17)]* Az Az

i,] =1

L
ﬁ
> pige Z s (wijp1 — uij_ig1))” Az Az

L L
Bi Bi
> 15! z:(A + 1)it1/2,5 Z | A (it = ui—i41,7)” Ar Az
=1 i\ J =
L

Z 1A IEM,]+1/ZZ| |(us gt — i j-141)” Aw Az

=1
- B = Bi
2 E _l‘ ]ZZ |E ()‘+u)i+1/2,j(u?+17j —I—'u?_,_H’j) Azx Az
=1 i,j I=1
L
ﬁl Bi
[E ZE| |Hz,]+1/2( 7J+1+u” 141) Az Az
=1 i,j I=1
L
A+ pivi—1y2; | (A+Ricigiy2 )
32N 3 i P stasns | O trsay oy,
=1 i,j I=1 ) )
L
P Nw+l 1/2 | Mij—i141/2 9
sl Az A
Y L Y Bt
=1 i,j I=1 ) )
L
4 A Witi=1yzg | A+ wicipiyz
A2 al ZZI@ o = )
=1 ij I=1 bd 2
L
4 /%, +i-1/2 | Mij—i41/2
72 1A ZZWI 2 2, )
Az =1 ij I=1 (%] 2pl]

L L
4 4 A+ Wigim1/2; A+ wicig1y2,
(Xt EM; |Bl|][nil,?X; i 2pi i 2pi

Hij+i—1/2  Hij—14+1/2
u,u
2pij 2pij ICpw, 4)eo

Lemma 7.2 With

L
A )iti/zj+t A+ f)ig1/25-1
Do la maxZw it 4 =

2pit1/2,541/2 2pig1/2,541/2

Hitlj+1/2 Hi=l,j+1/2
+
20i41/2,541/2  2Pit1/2,5+1/2
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we

have

I3 2
4 4
Ywell, < (A2t a2 (Z |ﬁ’|) €.(pv, v) s
=1

Proof : Straightforward and totally parallel to lemma 1.
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