Automatic Data Layout for
Distributed-Memory Machines

Ulrich Kremer

CRPC-TR93299-S
February, 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Automatic Data Layout
for Distributed-Memory Machines

Ulrich Kremer

Thesis Proposal

Department of Computer Science
Rice University

P.O. Box 1892
Houston, Texas 77251

February 17, 1993

Abstract

An approach to programming distributed memory-parallel machines that has recently become
popular is one where the programmer explicitly specifies the layout of data in a global name space,
relying on a compiler to generate a parallel program including all the communication. While this
frees the programmer from the tedium of thinking about local name spaces and message-passing,
no assistance is provided in determining an efficient data layout scheme on the target machine. We
wish to fill this gap by providing automatic data alignment and distribution techniques for a large
class of regular, scientific computations written in a data-parallel programming style.

We propose an interactive software tool that will first determine a set of efficient data decom-
position schemes for the entire program. Subsequently, the user will be able to select a region of
the input program and the system will respond with set of decomposition schemes and their per-
formance characteristics for the selected region. For each scheme, the tool will provide information
about the location and type of the communication operations generated by the compiler. This
will enable the user to obtain insights into the characteristics of the program when executed on a
distributed memory machine, and the behavior of the underlying compilation system.

The proposed tool will use static performance estimation based on training sets. An empirical
study of application programs will show whether automatic techniques are able to generate data
decomposition schemes that are close to optimal. If automatic techniques fail to do so, we want
to answer the question of how user interaction can help overcome the deficiencies of automatic
techniques.

1 Introduction

Although distributed-memory message-passing parallel computers are among the most cost-effective
high performance machines available, scientists find them extremely difficult to program. The rea-
son is that traditional programming languages support a global name space and hence, most pro-
grammers feel more comfortable working with a shared memory programming model. A number
of researchers have proposed annotating a language based on a global name space with directives
specifying how the data should be mapped onto the distributed memory machine [CK88, CCLS88,

KMV90, PSvG91, RA90, RP89, RSWS8S, ZBG8R], KZBG8Y, Ger89]. This approach was inspired by
the observation that the most demanding intellectual step in writing a program for a distributed
memory machine is the appropriate data layout - the rest is straightforward but tedious and error
prone work. The Fortran D language and its compiler [FHKT90, HKT92b] support this program-
ming style. Given a Fortran D program, the compiler uses data layout directives to automatically
generates a single-program, multiple data (SPMD) node program for a given distributed-memory
target machine.

Selecting a good data layout is important for a program to achieve high performance. Current
tools provide little or no support. The choice of a good data decomposition scheme depends on the
compiler, the target machine and its size, and the problem size. Depending on the specified data
decomposition scheme and the structure of the source program, the compiler performs a variety of
different optimization transformations. The machine size and problem size influence the balance
between computation and communication in the compiler-generated node program. This balance is
crucial for the performance of the node program. These factors make it difficult for a programmer
to predict the behavior of a given data decomposition scheme without compiling and running the
program on the specific target system.

My thesis is that efficient data layouls can be generated automatically for many application
programs that solve regular problems, if they are writlen in a data-parallel programming style. A
program is written in a data-parallel programming style if it allows advanced compilation systems
to generate efficient code for most distributed-memory machines. In the context of vectorization,
the existence of a usable programming style has been partially responsible for the success of auto-
matic vectorization [CKK89, Wol89]. T do not believe that such fully automatic techniques will be
successful for parallelizing ‘dusty deck’ programs.

To support my thesis I will build a prototype tool that takes a Fortran 77 program as input and
generates a Fortran D program. This tool has to understand how the data layout scheme affects
the execution time and memory requirements of the compiler generated code. This is a difficult
task since advanced compilation systems perform extensive intra and inter-procedural analysis and
optimizations. A large number of these optimizations depend on the specified data layout scheme.
Once the compiler generated node programs are known the tool must be able to predict their
performance on a given distributed-memory machine.

I will enhance existing techniques for automatic data layout and develop new techniques based
on a new approach to static performance estimation that takes problem and machine sizes into
account. In contrast to previous work, my techniques will handle the complexity of advanced
compilation systems such as Fortran D and a rich set of data mappings. The techniques will
consider the profitability of dynamic data mapping and data replication, and will be able to deal
with control flow.

I will validate my thesis by applying my tool to a test suite of programs and program kernels
written in a data-parallel programming style. I will use a benchmark suite developed by Geoffrey
Fox at Syracuse [MFvL792] and a set of real application programs. If automatic techniques will fail
to generate data decomposition schemes that are close to optimal, I want to answer the question
how user interaction can help to overcome the deficiencies of automatic techniques. In particular,
I want to investigate language annotations that allow partial specifications of data layouts.

The remainder of this proposal is organized as follows. Section 2 provides a short introduction
to the Fortran D language and compilation system, followed by the definition of a data-parallel
programming style. Section 3 contains a discussion of related work. Section 4 lists an outline of my
research plan and validation strategy. This proposal concludes with a discussion of possible spin-offs
of automatic data decomposition and a summary of the proposed work and its contributions.

2 Fortran D

2.1 The Language

The task of distributing data across processors can be approached by considering the two levels
of parallelism in data-parallel applications. First, there is the question of how arrays should be
aligned with respect to one another, both within and across array dimensions. We call this the
problem mapping induced by the structure of the underlying computation. It represents the minimal
requirements for reducing data movement for the program, and is largely independent of any
machine considerations. The alignment of arrays in the program depends on the natural fine-grain
parallelism defined by individual members of data arrays.

Second, there is the question of how arrays should be distributed onto the actual parallel machine.
We call this the machine mapping caused by translating the problem onto the finite resources of
the machine. It is affected by the topology, communication mechanisms, size of local memory, and
number of processors of the underlying machine. The distribution of arrays in the program depends
on the coarse-grain parallelism defined by the physical parallel machine.

Fortran D is a version of Fortran that provides data decomposition specifications for these two
levels of parallelism using DECOMPOSITION, ALIGN, and DISTRIBUTE statements. A decomposition
is an abstract problem or index domain; it does not require any storage. Each element of a
decomposition represents a unit of computation. The DECOMPOSITION statement declares the name,
dimensionality, and size of a decomposition.

The ALIGN statement maps arrays onto decompositions. Arrays mapped to the same decompo-
sition are automatically aligned with each other. Alignment can take place either within or across
dimensions. The alignment of arrays to decompositions is specified by placeholders I, J, K, ...
in the subscript expressions of both the array and decomposition. In the example below,

REAL X(N,N)
DECOMPOSITION A(N,N)
ALIGN X(I,J) with A(J-2,I+3)

A is declared to be a two dimensional decomposition of size N X N. Array X is then aligned with
respect to A with the dimensions permuted and offsets within each dimension.

After arrays have been aligned with a decomposition, the DISTRIBUTE statement maps the de-
composition to the finite resources of the physical machine. Distributions are specified by assigning
an independent attribute to each dimension of a decomposition. Predefined attributes are BLOCK,
CYCLIC, and BLOCK_CYCLIC. The symbol “:” marks dimensions that are not distributed. Choosing
the distribution for a decomposition maps all arrays aligned with the decomposition to the machine.
In the following example,

DECOMPOSITION A(N,N), B(N,N)
DISTRIBUTE A(:, BLOCK)
DISTRIBUTE B(CYCLIC,:)

distributing decomposition A by (:,BLOCK) results in a column partition of arrays aligned with A.
Distributing B by (CYCLIC, :) partitions the rows of B in a round-robin fashion among processors.
These sample data alignment and distributions are shown in Figure 1.

We should note that the goal in designing Fortran D is not to support the most general data
decompositions possible. Instead, the intent is to provide decompositions that are both powerful
enough to express data parallelism in scientific programs, and simple enough to permit the compiler
to produce efficient programs. Fortran D is a language with semantics very similar to sequential

b ST T P1

o N A D2

IR S I R D3
o el -
PEb Pl CLT P D1
N EEEEEEE SRR ERE L
A D3

P4

DECOMPOSITION REAL X(N,N) DISTRIBUTE DISTRIBUTE
A(N,N) ALIGN X(I,J) A(:,BLOCK) A(CYCLIC,:)
with A(J-2,I+3)

Figure 1: Fortran D Data Decomposition Specifications

Fortran. As a result, it should be easy to use by computational scientists. In addition, we believe
that the two-phase strategy for specifying data decomposition is natural and conducive to writing
modular and portable code. Fortran D bears similarities to both CM Fortran [TMC89] and KaLI
[KM91]. The complete language is described in detail elsewhere [FHK*90].

2.2 The Compilation System

A Fortran D compilation system translates a Fortran D program into a Fortran 77 SPMD node
program that contains calls to library primitives for interprocessor communication. A vendor-
supplied Fortran 77 node compiler is used to generate an executable that will run on each node of the
distributed-memory target machine. A Fortran D compiler may support optimizations that reduce
or hide communication overhead, exploit parallelism, or reduce memory requirements. Procedure
cloning or inlining may be applied under certain conditions to improve context for optimization. A
Fortran D compiler may relax the owner computes rule for reductions and parallel prefix operations,
and for scalars or arrays that are recognized to be temporaries [HKT91, HKT92a, HHKT91, Tse93].
Node compilers may perform optimizations to exploit the memory hierarchy and instruction-level
parallelism available on the target node processor [Car92, Wol92, Bri92].

Our tool for automatic data decomposition is based on a specific Fortran D compilation system
representing state-of-the-art compiler technology. Note that the optimizations performed by the
Fortran D compiler are not restricted to the ones implemented in the current prototype of the
Fortran D compiler [Tse93]. Our compilation system will target a variety of distributed-memory
multiprocessors such as Intel’s iPSC /860 and Paragon, Ncube’s Ncube-1 and Ncube-2, and Thinking
Machine Corporation’s CM-5.

2.3 The Programming Style

Our tool takes sequential Fortran 77 programs that solve regular problems as input. The programs
are written in a style that enables a given compiler or class of compilers to generate efficient code
for many different architectures. The burden for machine-dependent optimizations is shifted from
the user to the compiler.

The following incomplete list contains guidelines to write programs in a data-parallel program-
ming style:

e Do not write machine-dependent code. For instance, do not linearize for vector machines or
block the code to improve locality of accesses (cache performance).

e Name data objects explicitly. Do not use work arrays. We assume the availability of dynamic
memory allocation in our version of Fortran 77.

¢ Avoid indirect addressing where possible.

The program should be written in a way that takes full advantage of the abilities of advanced
compilation systems. Machine dependent programming is substituted by compiler technology de-
pendent programming. Although this might still not be the desired problem dependent program-
ming style, we consider it a significant step into this direction. A discussion of a routine written
for a vector CRAY and rewritten in data-parallel programming style is given in appendix A.

3 Related work

Most techniques for automatic data layout discussed in the literature address the problem of finding
an optimal data layout scheme in terms of overall execution time rather than in terms of mem-
ory requirements. The techniques described below determine data layout schemes that minimize
communication while maximizing parallelism.

3.1 MIMD Machines

Initial approaches to automatic data decomposition for MIMD machines concentrate on single
loop nests. The iteration space is first partitioned into sets of iterations that can be executed
independently. The data mapping is then determined by the iterations that are assigned to the
different processors [RS89, Ram90, D’H89, KKBPI1].

Other techniques for single loop nests are based on recognizing specific computation patterns in
the loop, called stencils [SS90, HA90]. This more abstract representation is used to find a good data
mapping. While these approaches will minimize the necessary communication in single loop nests,
it is not clear whether a compiler can generate eflicient node programs for the loop nests or between
adjacent loop nests. In particular, the computation necessary to determine which processor owns
which datum can be very complex.

In the remainder of this section we will only present related work that discusses automatic data
decomposition for entire subroutines or whole programs.

3.1.1 Li, Chen, and Choo at Yale University

Li, Chen, and Choo investigated techniques for automatic data layout as part of the Crystal com-
piler and language project at Yale University [CCL89, LC90a, LC91b, LC91a, LCIOb]. Crystal
is a high-level, purely functional language. It does not contain statements that specify the data
layout. The goal of the Crystal compiler is to generate efficient SPMD node programs with explicit
communications or synchronization for a variety of massively parallel machines. In the following,
we will only discuss the aspects of the project that relate to automatic data decomposition.

The automatic data layout algorithm used by Crystal works only on single procedures. A
procedure is first partitioned into separate groups of computations, called phases, based on the flow
of values in the subroutine. Alignment and distribution analysis is performed for each phase in
isolation, resulting in a single data decomposition scheme for the phase. Finally, the data layout
schemes of the different phases are merged.

Most of the published work concentrates on the problem of finding a static alignment for a
single phase. A possible phase merging algorithm is only sketched. In the remainder of this section
we will assume that we only deal with a single phase.

The alignment algorithm performs inter-dimensional alignment, followed by intra-dimensional
alignment. The index domain of arrays are mapped onto the single, common index domain of the
phase based on four simple types of alignment functions, namely permutation, embedding, shift,
and reflection. Permutation and embedding are inter-dimensional alignment functions that map
dimensions of the array onto the dimensions of the common index domain. In a permutation, the
array and the common index domain have the same number of dimensions. The alignment function
is a permutation of the dimensions of the array. If the index domain has more dimensions than the
array, the embedding maps each dimension of the array onto a distinct dimension of the common
index domain and specifies the location of the induced subspace in the common index domain. In
particular, diagonal embeddings are possible. Shift and reflection are intra-dimensional alignment
functions of the form g(i) = i - const and g(i) = - i, respectively.

The inter-dimensional alignment problem is modeled as a graph problem. An undirected,
weighted graph, called the component affinity graph, is constructed based on normalized refer-
ence patterns in the source program. Each dimension of an array that is referenced in the phase
is represented by a node. There is an edge between two nodes if the subscript expressions of the
corresponding dimensions are afline, i.e. have the form i and i + const, where const is a small
constant. Edges that are generated by the same reference pattern and are incident to the same
node are assigned a weight ¢, a small positive integer. All other edges have weights equal to 1. The
alignment algorithm partitions the component affinity graph into n disjoint subsets of nodes, where
n is the maximal number of dimensions of an array referenced in the phase. The goal is to find a
partitioning that minimizes the overall sum of weights of edges between nodes in distinct partitions.
Note that edges between partitions are alignment requests that cannot be satisfied. The solution
of this alignment problem is shown to be NP-complete [LC90a]. The intra-dimensional alignment
algorithm is based on the affine reference patterns and is straight forward.

In the next compiler step the functional program is transformed into an imperative program
that allows multiple assignments into the same memory location in order to ensure eflicient reuse
of memory. Subsequently, calls to communication routines are inserted based on pattern matching
using a parameterized layout scheme that distributes all dimensions of the common index domain.
Hence the program is ‘compiled’ only once for a whole family of distribution schemes. For each
communication routine a cost function is available that is parameterized with respect to the chosen
distribution, problem size, and machine characteristics. The distribution strategy with the minimal
cost is selected. Once a distribution strategy is chosen, redundant communication is eliminated.

A prototype of the compiler has been implemented as part of Li’s Ph.D. thesis at Yale Univer-
sity. Experimental results are reported for a heuristic algorithm that performs inter-dimensional
alignment on a set of randomly generated component affinity graphs [LC90a]. Distribution analysis
has not been implemented. The distribution strategy is read in at runtime [Li92].

3.1.2 Banerjee and Gupta at the University of Illinois

Gupta and Banerjee at the University of Illinois at Urbana-Champaign developed techniques
for automatic data layout as part of a compiler based on the Parafrase-2 program restructurer
[GB90, GBI91, GBY92]. The compiler takes Fortran 77 as input and generates SPMD node programs
with explicit communication. The compiler performs alignment and distribution analysis based on
constraints for each single statement in the program. Constraints represent properties of the data

layout and are associated with a quality measure. Constraints that reflect the alignment of arrays
in a statement are either satisfied or not. The quality measure is a penalty function representing
the cost for the case that the arrays are not aligned. Constraints that reflect the distribution of
aligned arrays have parameterized execution time cost functions as their quality measures. The
parameters include the problem size, and number of processors and distribution schemes used in
each dimension. The automatic techniques handle cyclic, block, and block-cyclic distributions. In
addition, partial replication of arrays is considered. Scalars are assumed to be replicated. With the
problem size and machine size known at compile time, the system selects a decomposition scheme
that allows arrays to be distributed across a two-dimensional processor grid. The optimal num-
ber of processors in each distributed dimension is selected automatically. The compiler does not
perform inter-procedural analysis. A single, static decomposition scheme is derived for the entire
program, i.e. dynamic realignment or redistribution are not supported.

The compiler performs alignment analysis based on Li’s and Chen’ s approach [LC90a] (see
Section 3.1.1). The communication cost of each statement with an array reference is expressed
as a function of the machine size, number of processors in each dimension, and the method of
partitioning, namely block or cyclic. The functions try to reflect the effects of loop transformations
and communication optimizations, such as message vectorization and aggregation, on the com-
munication costs of a single statements. Fach function represents a constraint for the statement.
In the next step, the best distribution scheme for each distributed dimension is determined for a
default number of processors. The distribution schemes considered are block (continuous), cyclic,
and block-cyclic with different block sizes. The best resulting scheme is parameterized with respect
to the processor number in each dimension and the optimal number of processors in the two grid
dimensions is computed. Finally, the compiler checks whether array replication is profitable.

The automatic techniques have been implemented as part of Parafrase-2. They have been
applied to five Fortran programs, namely one routine from the Linpack library (dgefa), one Eispack
routine ({red?), and three programs from the Perfect Club Benchmark Suite (irfd, mdg, flo52)
[CluR9]. In the study, all the steps of the described automatic data layout techniques are simulated
by hand. A distributed memory compiler is not part of Parafrase-2. Actual performance figures for
the generated data layout schemes are only given for ¢red2 on an iPSC/2 hypercube system. The
automatic layout performs well compared to three other data mappings.

3.1.3 Wholey at Carnegie Mellon University

Wholey at Carnegie Mellon University [Who92a, Who91] developed a compiler for the high-level,
block structured, non-recursive language ALEXI. Communication and parallelism is expressed ex-
plicitly by primitive operations that are similar to Fortran90 array constructs and intrinsic commu-
nication functions. The work concentrates on the problem of deriving a good data layout scheme
automatically without the knowledge of the problem and machine size at compile time. Dynamic
realignment or redistribution is not considered, but inter-procedural performance analysis is per-
formed.

Alignment analysis is done at compile time based on the approach by Knobe, Lukas, and
Steele [KLS90] (see Section 3.2.1). Distribution analysis is performed at run-time. Fach primitive
operation is associated with a cost function that computes the execution time of the operation under
a given distribution, problem size, machine size, and machine topology. Given these parameters,
the overall execution time of the program is determined by adding up the costs for each primitive
operation. The performance estimation does not deal with the case where communication and
computation overlaps. The search space is restricted to non-cyclic, block distributions. A hill

climbing search method generates the search space of the possible number of processors in each
dimension of the virtual processor array. The algorithm returns the distribution, machine size, and
topology with the minimal estimated execution time.

A prototype ALEXI compiler has been implemented. Based on simulations of some kernel
routines on different distributed memory machines, the performance of the routines with the auto-
matically generated data layouts is shown to be superior to the performance of the routines under
some straight-forward data mappings. The performance of automatically determined data layouts
has not been compared with the optimal possible [Who92b]. The precision of the performance
estimation technique in terms of the relative performance of different data layouts is demonstrated
by comparing the estimated costs with the actual execution times of a simplex program on a CM-2.

3.1.4 Sussman at Carnegie Mellon University

Sussman discusses static performance estimation to guide the mapping of data and computation
onto distributed-memory machines in an automatic compiler [Sus92, Sus91]. His work focuses on
determining efficient data and computation mappings for programs consisting of single loop nests.
A program is classified as either a sequential loop, a sequentially iterated parallel loop, or a parallel
loop. Given a loop nest, the compiler chooses a data and computation mapping scheme out of a set
of schemes whose performance can be predicted efficiently at compile time. Each possible mapping
scheme onto a target machine for a class of loops is associated with an execution model of that
machine. Execution models are parameterized with respect to problem and machine characteristics,
such as the number of iterations in the loop, the problem size, and the number of processors used.

The author implemented his execution model approach as part of a compiler for the applicative
language SISAL for the Warp systolic array machine. For several benchmark programs and program
kernels the compiler is able to predict the relative performance of different mapping schemes with
high accuracy.

It is not clear whether the same results can be achieved for entire programs or on machines
such as the iPSC/i860 or CM-5. The compiler does not perform any intra or inter-procedural
optimizations. Data redistribution or replication is not considered.

3.1.5 Chapman, Fahringer, Blasko, Herbeck, Zima at the University of Vienna

Chapman, Fahringer, Blasko, Herbeck, and Zima at the University of Vienna propose automatic
data decomposition as part of the interactive parallelization system SUPERB-2 [CHZ91, CH91,
FBZ92]. SUPERB-2 takes Fortran 77 programs as input and generates SPMD node programs with
explicit communication. Their approach is based on Gupta’s and Banerjee’s work at Illinois (see
Section 3.1.2). In addition to the statement level pattern matching, high-level pattern matching
is used to identify specific computations in the program such as stencil computations and matrix
multiply. Information about the implementation of these computation patterns on the target
machine is stored in a knowledge data base. A ‘weight finder’ locates the portions of the code that
contribute the most to the overall execution time of the program. The effort to find a good data
layout is concentrated on these crucial regions. Static performance estimation is used to evaluate
the data mappings in a search space of reasonable data layouts. The tool performs inter-procedural
analysis and determines the profitability of redistribution.

The proposed tool is currently being implemented at the University of Vienna. A prototype
static performance estimator is in its testing phase [FBZ92, Fah92]. No experimental results have
been published.

3.1.6 ASPAR and P3C

ASPAR is a compiler for the C language developed by the ParaSoft corporation [[FKF90]. P3C
is a research Pascal compiler designed and implemented at the Tel-Aviv University by Gabber,
Averbuch, and Yehudai [GAY91]. Both systems generate SPMD node programs that contain calls
to communication library routines. The compilers perform only a simple form of program analysis
to generate the correct communications. The set of possible data decomposition schemes is small.
Inter-procedural analysis is performed. The P3C has been tested on several programs with good
results. Performance numbers of the ASPAR system are only reported for a conjugate gradient
program.

3.2 SIMD Machines

3.2.1 Albert, Knobe, Lukas, Natarajan, Steele, and Weiss at Compass and Thinking
Machines

Albert, Knobe, Lukas, Natarajan, Steele, and Weiss discuss automatic data layout as part of the
design and implementation at Compass of SIMD compilers for Fortran 77 extended by Fortran 8x
array features [AKLS88, KLS88, KLS90, KN90, Wei91]. The target machines are the Connection
Machine CM-2 and the MasPar MP-1. Automatic data layout is an integral part of these compilers.

Arrays are aligned by mapping them onto virtual processors based on their usage as opposed to
a their declared shape. The latter mapping is referred to as the canonical mapping. Each virtual
processor holds at most a single element of each array. The alignment algorithm performs intra-
dimensional alignment and inter-dimensional alignment using similar techniques as Li and Chen
(see Section 3.1.1). However, inter-dimensional permutations are not supported. Arrays may be
mapped differently in different sections of the program [KN90]. The described techniques work
only on single procedures. However, they handle complex control flow.

Since the CM-2 supports the concept of virtual processors through its programming environ-
ment, data alignment is suflicient to specify the data layout. In contrast, the MasPar machine
does not support virtual processors. The virtual processors have to be mapped onto the physical
processors explicitly [Wei91].

The alignment algorithm is based on the usage patterns of arrays and Fortran 8x array sections
in the source program. Each pattern generates allocation requests, called preferences, that indicate
the optimal layout of the arrays relative to each other [KLS88, KLS90]. An identily preference
exists between corresponding dimensions of a definition and a use of the same array. It describes
a preference to allocate identical elements of the array on the same processors for the two textual
occurrences. A {rue dependence exists between the definition and the use that generate the identity
preference. A conformance preference is introduced between corresponding dimensions of textual
occurrences of different arrays if they are operated on together. It indicates a preference to allocate
corresponding elements of distinct arrays on the same processor. An independence anti-preference
is associated with a single dimension of an array occurrence. It expresses the preference to allocate
the array dimension across the processors in order to exploit the data parallelism in this dimension.
More recently, Knobe, Lukas, and Dally introduced the concept of a control preference. A control
preference exists between the corresponding dimensions of an array in a conditional expression and
an array occurrence in an operation that is control dependent on this expression [KLD92].

The preferences of the program are represented by the undirected preference graph where the
arcs correspond to the preferences and the nodes are dimensions of textual occurrences of arrays and
array sections. Each edge is labeled with a cost that reflects the performance penalty that occurs if

the preference is not honored, i.e. not honoring identity and conformance preferences may lead to
communication while unhonored independence anti-preferences potentially reduce the exploitable
parallelism. The cost functions take the structure of the program into account. Conflicting align-
ment requirements can only occur in strongly connected components of the preference graph. To
locate the cycles, a spanning tree is constructed, using a greedy algorithm that chooses the next
arc to add by finding the highest cost arc that is not already processed. If a cycle-creating arc
induces a conflict, the corresponding preference will not be honored [KLS90]. Knobe and Natara-
jan have extended this algorithm to optimize the communication resulting from unhonored identity
and conformance preferences [KN90].

For the MasPar machine, the data allocation functions generated by the data optimization
component have to be transformed from mappings based on virtual processors to mappings based
on physical processors. Weiss discusses three distribution schemes, namely cyclic (horizontal), block
(vertical), and block-cyclic distributions [Wei91].

Most of the described work has been implemented as part of the CM-2 and MP-1 Fortran
compilers developed at Compass. The authors report significant performance improvements of up
to a factor of 60 due to using the compiler generated data mapping instead of the naive, canonical
mapping. The performance numbers are given for a few computational kernels that were hand-
compiled and hand-simulated on the CM-2 and MP-1. Performance figures of actual runs are not
reported.

3.2.2 Chatterjee, Gilbert, Schreiber, and Teng at RIACS, Xerox PARC, and MIT

Chatterjee, Gilbert, Schreiber, and Teng discuss a framework for automatic alignment in an array-
based, data-parallel language such as Fortran90 [CGST93, CGST92, GS91]. They provide algo-
rithms for automatic alignment of arrays in a single basic block. Each intermediate result of a
computations in a basic block is assigned to a temporary array. This allows intermediate results
to be mapped explicitly. The basic block may contain explicit communication such as transposes,
spreads, or reductions. Alignment functions for each of the array dimensions are restricted to linear
functions of a single, distinct induction variable. Diagonal alignments are not possible.

A weighted directed acyclic graph (DAG) represents the computation in each basic block. Inter-
nal nodes represent operations and are labeled with names of temporary arrays. Edges are directed
from the nodes representing the operands to the node representing the operator. Each edge is
labeled with a nonnegative integer w equal to the size of the data object at its source. A position
space models all possible alignments of an array onto a decomposition (Fortran D terminology).
A distance d(p,q) between two positions p and q is a nonnegative number describing the cost per
unit data of changing positions from p to q. Different distance metrics d are used to model com-
munication characteristics of the target machine. Distance metrics cover machine topologies such
as grids, rings, and fat-trees.

Alignment analysis is done in two separate steps. Inter-dimensional (axis) alignment and stride
alignment is performed, followed by offset-alignment. Each step uses a different distance metric d.
If the arrays at the sink and source of an edge in the DAG cannot be aligned, a communication cost
of w* d(p,q) will occur, assuming the sink and source arrays are at position p and q, respectively,
and w is the edge label. A solution to the alignment problem minimizes the cost of all edges that
are not aligned.

The authors discuss a variety of distance metrics and give asymptotically efficient solutions to
the corresponding alignment problems. Algorithms are given for solving the alignment problem for
a DAG where the alignment of the arrays at the leaf nodes is given as input (fixed-source variant) or

10

has to be chosen by the algorithm (free-source variant). The complexity of the algorithms depend
on the characteristics of the metric used and the structure of the DAG, namely whether it is a forest
or not. Some variations of the problem are shown to be NP-complete. The authors show how to
extend their approach for single basic blocks across basic blocks. Their technique uses traces and
a combination of free-source and fixed-source alignment algorithms.

The presented work is a big step towards the theoretical foundation of the alignment problem
and discusses a variety of algorithms for its solution. The algorithms handle dynamic realignment.
However, it is not clear, how these algorithms will work on real application programs. Experimen-
tal results on the applicability and efliciency of the algorithms, and efficiency of their produced
alignments using real programs are not reported. Many of the listed examples are rather contrived.

Introducing temporary arrays has the advantage that intermediate values are named and there-
fore can be mapped explicitly to avoid an inefficient mapping due to the owner computes rule. This
is often referred to as "relaxing the owner-computes rule”. In the SIMD model of execution, array
temporaries must be introduced by the compiler for intermediate values [CGST93]. The possibility
of using these temporaries to relax the owner computes rule comes therefore ‘for free’. This is not
true for the compilation for MIMD machines with scalar node processors. The node compiler will
generate the necessary temporaries. We are planning to introduce temporaries only if we expect a
significant performance improvement by relaxing the owner computes rule.

3.3 Discussion

The presented works differ significantly in the assumptions that are made about the input language,
the possible set of data decompositions, the compilation system, and the target distributed-memory
machine.

The initial work in automatic data layout was done at Yale University and by Compass. Both
groups concentrated on the problem of automatic data alignment. While Crystal uses an MIMD
programming model and a purely functional input language, the Compass compilers are based on an
SIMD programming model and Fortran8X. These differences lead to distinct alignment algorithms
that stress inter-dimensional alignment in Crystal and intra-dimensional alignment in the Compass
compilers. Crystal performs distribution analysis based on a simple cost model that takes machine
characteristics and problem sizes into account. Only Compass’ MasPar-1 compiler performs a
simple form of distribution analysis. The machine model for the CM-2 using PARIS does not
require data distribution.

Subsequent projects done by Gupta and Banerjee at the University of lllinois and by Wholey
at Carnegie Mellon University base their alignment analysis on Crystal’s and Compass’ alignment
analysis, respectively. In both cases, the distribution analysis models the costs for each statement
under a set of possible data distributions. Machine characteristics and problem sizes are considered.
Wholey performs distribution analysis at runtime allowing the machine size and problem size to be
unknown at compile time. Chatterjee, Gilbert, Schreiber, and Teng provide a theoretical foundation
for the alignment problem by providing a framework in which inter- and intra-dimensional alignment
problems can be formulated and efficiently solved for basic blocks. Sussman demonstrates that
static performance estimation can be used to efficiently predict the tradeoffs between different data
mappings in the special case of a mapping compiler for a functional language targeted for a systolic
array or processors.

Superb-2, a tool being developed at the University of Vienna, proposes automatic data de-
composition as part of an interactive parallelization system. Their approach is based on the work
done by Gupta and Banerjee. In addition, performance estimation uses pattern matching and a

11

knowledge data base. Inter-procedural data decomposition analysis is planned since the Superb
interactive compilation system performs inter-procedural optimizations.

ParaSoft’s ASPAR system and P?C at Tel-Aviv University do not give detailed descriptions of
their approaches to automatic data decomposition. Both recognize and determine data mappings
for stencil computations.

The published work on automatic data decomposition does not show that the presented algo-
rithms and techniques will work well for real application programs. Only very few experiments
were conducted to validate the different approaches. In many cases, no experimental results are
given at all. The majority of the discussed techniques assume a simple compilation system that
does not perform inter-procedural optimizations or optimizations that exploit existing parallelism
by pipelining computations. In many cases, the set of possible data decomposition schemes is re-
stricted. Dynamic data decomposition is not addressed in the context of an MIMD programming
model. The relationship between data decompositions and memory requirements of the compiler
generated node program is not considered.

The major difference between the previous work and my thesis work is that my approach to
automatic data decomposition will assume an advanced compilation system that performs extensive
intra and inter-procedural optimizations. My tool has to understand the implication of a data
decomposition scheme on the optimizations performed by the compiler as well as on the performance
of the compiler generated node program running on the target distributed-memory machine. I will
develop new technique for performance estimation based on training sets that will be able to handle
this complexity.

Previous work only deals with the problem of dynamic data alignment and only discusses a
restricted form of data replication. The importance and complexity of dynamic data alignment and
distribution is illustrated in Appendix B. My techniques will handle dynamic data decomposition
and data replication in the presence of control flow.

Current supercomputers are used not only for their ability to perform millions of floating point
operations per second, but also for the size of main memory that they provide. Dynamic data
remapping can be used to reduce the memory requirements of a program. My tool may detect
situations where dynamic data mapping is necessary due to the otherwise non-satisfiable memory
requirements of the program.

In the context of the SIMD model of execution, using the owner computes rule can lead to
ineflicient code. I will investigate the benefits of relaxing the owner computes rule for the MIMD
model of execution.

An essential contribution of my thesis will be the the validation of my automatic tool using
a benchmark suite of real programs and program kernels written in a data-parallel programming
style. It is important to note that I do not validate my techniques based for ‘dusty deck’ programs
or programs written for a specific machine architecture. When automatic techniques will fail to find
a good data layout, the user needs to be involved in the process of data mapping. I will investigate
how the user can interact with the compilation system to find a good data layout.

4 Research Plan

In my thesis work I will design, implement and validate new techniques for automatic data decom-
position. An initial assumption of this work is that for each program the problem size and the
number of processors to be used are known at compile time. The following subsection contains
a brief description of our overall research plan, the remainder discusses each research problem in
more detail.

12

4.1 Overview

The proposed tool will focus on regular problems which are loosely synchronous or result in wave-
front style computations [Lam74]. Loosely synchronous problems represent a large class of scientific
computations [FJLT88]. They can be characterized by computation intensive regions that have
substantial parallelism, with a synchronization point between the regions.

4.1.1 Automatic data decomposition

Our approach to data decomposition is based on the assumption that a good data decomposition
for the entire program can be found by successively decomposing the data for smaller program
segments, and realignment /redistribution when necessary between the segments. A program phase
is the basic unit of this hierarchical approach. The definition of a phase is given in section 4.2. For
each phase the set of locally efficient data decomposition schemes is determined. Subsequently, the
local decompositions are merged in a hierarchical fashion until the global decomposition scheme for
the entire program is found.

Under the above assumptions, we will develop algorithms and techniques that perform the
following steps:

1. Define, identify, and represent program phases. The identification of a local phase may
require inter-procedural analysis. Its definition will have a major impact on the quality of
the generated decompositions and on the speed of the tool itself.

2. Build a search space of reasonable, local decompositions and search it efficiently. The search
space is determined by intra and inter-dimensional alignment analysis, followed by distribution
analysis. The search space contains schemes where data has been replicated. New source-to-
source level transformations are considered that allow to relax the owner computes rule. The
search algorithm employs a search space pruning heuristic.

3. Estimate the performance of a local decomposition at the Fortran D source level. The estima-
tor has to evaluate the relative performance of local decomposition schemes for each phase or
local sequence of phases. Performance is defined as execution time and memory requirements.
The estimator must understand the performance implications of compiler transformations
such as coarse-grain pipelining that overlap communication with computation. The control
flow in a phase has to be considered.

4. Merge the local decompositions into a single decomposition scheme for the entire program.
The profitability of realignment and redistribution has to be considered. The algorithm
will require inter-procedural analysis. The control flow between phases has to be taken into
account.

We will discuss each of the subproblems in more detail after this overview section.

4.1.2 Validation of Automatic Data Decomposition

The feasibility of the proposed automatic techniques depends on the ‘quality’ of the generated
decomposition schemes compared to schemes that are considered optimal. For an unbiased dis-
cussion of results gained by an empirical study, we want to define our quality measure prior to an
investigation into automatic techniques.

We will use a benchmark suite being developed by Geoffrey Fox at Syracuse that consists of a
collection of Fortran programs and program kernels written in a data-parallel programming style

13

/— N\

. Message
User Environment | = | Fortran D P 28
Compiler assing
p
/ \ Fortran
Automatic Static
Data =<—| Performance
Partitioner Estimator

Training
Sets

Figure 2: Fortran D Parallel Programming System

[MFvL*92]. In addition, we will examine parts of the version of UTCOMP that is written in a
data-parallel programming style. UTCOMP is 33,000 line oil reservoir simulation code developed
at the University of Austin, Texas.

4.1.3 Interactive Programming Environment

For some programs we expect the automatic tool not to generate decomposition schemes that satisfy
our quality measure. In these cases we want to understand why the techniques failed. We want to
investigate how user interaction can help to overcome the deficiencies of our techniques. We will
investigate possible extensions to Fortran D that allow the partial specification of a data layout. For
instance, language annotations can be used to restrict the search space of possible decomposition
schemes considered by the automatic tool.

The interactive system allows the user to browse through the search space of decomposition
schemes considered by the automatic tool. For each decomposition scheme, the tool provides
information such as the type and location of communication operations generated by the compiler
and the overall performance estimates. The usefulness of such a tool has been recognized in the
final report of the findings of the Pasadena Workshop on System Software and Tools for High-
Performance Computing Environments [SMC*92].

4.1.4 Implementation

The proposed automatic techniques will be implemented as part of the ParaScope parallel program-
ming environment adapted to distributed memory multiprocessors [BKK*89, KMT91, BFKK90,
HKK*91]. An overview of the system is shown in Figure 2. The system is part of the D Envi-
ronment currently under development at Rice University [CCH192]. A prototype of the machine
module of the static performance estimator is available [BFKKO91].

14

4.2 Program Phases

The analysis performed by the automatic data partitioner divides the program into separate compu-
tation phases. A phase is a syntactic entity. Phases try to identify program segments that perform
operations on entire data objects. Dynamic realignment and redistribution is allowed only between
phases. In the absence of procedure calls we define a phase as follows: A phase is a loop nest such
that for each induction variable that occurs in a subscript position of an array reference in the loop
body the phase contains the surrounding loop that defines the induction variable. The definition
in the presence of procedure calls is given later. A phase is minimal in the sense that it does not
include surrounding loops that do not define induction variables occurring in subscript positions.

For example, the red-black program in Figure 10 in appendix C has four phases (the inner
loop nests) enclosed in the outer k-loop. Each phase has an associated Fortran D decomposition of
dimensionality and size equal to the array v.

4.3 Static Performance Estimation

It is clearly impractical to use dynamic performance information to choose between data decom-
positions in our programming environment. Instead, a static performance estimator is needed that
can predict the performance of a Fortran D program on the target machine as accurately as possi-
ble. This performance estimator is not based on a general theoretical model of distributed-memory
computers. Instead, it employs the notion of a training set of kernel routines that measures the
cost of various computation and communication patterns on the target machine. The results of
executing the training set on a parallel machine are summarized and used to adjust the performance
estimator for that machine. By utilizing training sets, the performance estimator achieves both
accuracy and portability across different machine architectures.

The static performance estimator is divided into two parts, a compiler module and a machine
module. The compiler module predicts the performance at the source language level while the
machine module estimates the performance at a level where the decomposition scheme is already
‘hard coded’ into the program, i.e. at the node program level containing explicit communications.

4.3.1 Machine Module

The machine module predicts the performance of a node programs with explicit communications.
It uses a machine-level training set written in message-passing Fortran. The training set contains
individual computation and communication patterns that are timed on the target machine for
different numbers of processors and data sizes. To estimate the performance of a node program,
the machine module can simply look up results for each computation and communication pattern
encountered.

Note that the static performance estimator does not need to predict the absolute performance
of a given data decomposition to assist automatic data decomposition. Instead, it only needs
to accurately predict the performance relative to other data decompositions. In many cases the
accurate prediction of the crossover point at which one data decomposition scheme is preferable
over another will be sufflicient.

We implemented a prototype of the machine module for the large class of loosely synchronous
scientific problems. Techniques to estimate the performance of programs where communication
and computation overlap, for instance pipelined computations, have to be developed as part of this
thesis.

15

The prototype predicts the performance of a node program using EXPRESS communication
routines for different numbers of processors and data sizes [EXP89]. The prototype performance
estimator has proved quite precise, especially in predicting the relative performances of differ-
ent data decompositions [BFKK91]. Our experience with applying the prototype estimator to a
point-wise red-black relaxation routine is given in Appendix C. In the context of shared-memory
programming, Kennedy, McIntosh, and McKinley have used our training set approach to estimate
the performance of entire programs with do-loop parallelism [KMM91].

4.3.2 Compiler Module

The compiler module forms the second part of the static performance estimator. It predicts the
performance of a program at the source level for a set of data decomposition schemes. The compiler
module employs a compiler-level training set written in the source language that consists of common
computation patterns and program kernels such as stencil computations and matrix multiplication.
Note that in contrast to pattern matching algorithms as they are used in compilers for optimization
or code generation [ASU86, LCI0b, PPI1], our pattern matcher does not need to preserve the
semantics of the program. Program segments are considered ‘equivalent’ if their corresponding
compiler generated code exhibit a similar performance behavior. The training set itsell as well as
the pattern matching algorithm has to be developed and validated as part of this thesis.

The training set is converted into message-passing Fortran using the Fortran D compiler and
executed on the target machine for different data decompositions, numbers of processors, and array
sizes. Estimating the performance of a Fortran D program then requires matching computations
in the program with computation patterns from the training set.

Since it is not possible to incorporate all possible computation patterns in the compiler-level
training set, the performance estimator will encounter code fragments that cannot be matched with
existing kernels. To estimate the performance of these codes, the compiler module must rely on
the machine-level training set. We plan to incorporate elements of the Fortran D compiler in the
performance estimator so that it can mimic the compilation process. The compiler module can
thus convert any unrecognized Fortran D program fragment into an equivalent node program and
invoke the machine module to estimate its performance.

4.3.3 Intra-Phase Alignment and Distribution

The intra-phase decomposition problem consists of determining a set of good data decompositions
and their performance for each individual phase. The data partitioner first performs alignment
analysis to determine a set of reasonable alignment schemes for the entire program. Subsequently,
the automatic tool tries to match phases or a sequence of phases with computation patterns in the
compiler training set. If a match is found, it returns the set of distributions with the best measured
performance as recorded in the compiler training set. If no match is found, the data partitioner
must perform distribution analysis on the phase. The resulting solution may be less accurate since
the effects of the Fortran D compiler and target machine can only be estimated.

Alignment analysis is used to prune the search space of possible array alignments by select-
ing only those alignments that minimize data movement. Alignment analysis is largely machine-
independent; it is performed by analyzing the array access patterns of computations in the entire
program. Interprocedural techniques will be developed that identify good alignment schemes.

In a source-to-source transformation step, temporary arrays are introduced to facilitate the
relaxation of the owner computes rule by naming intermediate results of computations explicitly.
This process is selective and not as general as described in [CGST93] where all intermediate results

16

REAL a(N), b(N), ¢(N) REAL a(N), b(N), ¢(N), temp(N)

DECOMPOSITION d1(N) DECOMPOSITION d1(N)
ALIGN a, b, ¢ WITH d1 ALIGN a, b, ¢, temp WITH d1
DISTRIBUTE d1(BLOCK) DISTRIBUTE d1(BLOCK)
DOi=1,N-1 DOi=1,N-1
a(i) = F (b(i+1), c(i+1)) temp(i+1) = F (b(i+1), c(i+1))
ENDDO a(i) = temp(i+1)
ENDDO

(A) (B)

REAL a(N, N), b(N, N), ¢(N, N) REAL a(N, N), b(N, N), ¢(N, N), temp(N, N)
DECOMPOSITION d2(N, N) DECOMPOSITION d2(N, N)
ALIGN a, b, ¢ WITH d2 ALIGN a, b, ¢, temp WITH d2
DISTRIBUTE d2(BLOCK,:) DISTRIBUTE d2(BLOCK,:)
DOj=1,N DOj=1N

DOi=1,N DOi=1,N

a(i¢ .]) =F (b(j¢ i)= CG} i)) temp(j, i) =F (b(j¢ i)} C(j¢ i))

ENDDO a(i, j) = temp(i, j)

ENDDO ENDDO
ENDDO

(C) (D)

Figure 3: Opportunities to relax owner computes rule by insertion of temporary variables

of a computation are assigned to newly introduced temporary data objects. In contrast to SIMD
architectures, such as the CM-2 or MP-1, relaxing the owner computes rule for computations that
require nearest-neighbor communication is not profitable on most MIMD machines. An example
of such a situation is given in Figure 4.3.3. By introducing a temporary array in (B), one cshift
operations can be saved as compared to the two cshift operations necessary in (A). On an MIMD
machine, in terms of execution time, it does not make a significant difference whether 4 or 8 bytes
are communicated between neighboring processors in case (A) or (B), respectively. A contrived
example where relaxing the owner computes rule is profitable on an MIMD machine is given in
Figure 4.3.3. The example assumes that due to the surrounding context of the loop, the arrays a,
b, and c have to be aligned. In case (C), arrays b and ¢ have to be transposed. In contrast, only
the transpose of temp is necessary in case (D).

We intend to build on the inter-dimensional and intra-dimensional alignment techniques of Li
and Chen [LC90a], Knobe et al. [KLS90], and Chatterjee, Gilbert, Schreiber, and Teng [CGST93].

The alignment problems can be formulated as an optimization problem on an undirected, weighted

17

graph. Some instances of the problem of alignment have been shown to be NP-complete [LC90a,
CGST93]. One major challenge in our proposed work will be to define the appropriate weights
of the graph and to develop an interprocedural algorithm that solves the alignment problem in
a way that is suitable for loosely synchronous problems. Note that our alignment algorithm will
not necessarily determine a single alignment scheme but may generate a set of possible alignment
schemes in the case of alignment conflicts.

Intra-Phase distribution analysis follows alignment analysis. It applies heuristics to prune un-
profitable choices in the search space of possible distributions for each single phase. Distribution
analysis is compiler, machine, and problem dependent. For instance, the compiler may not be able
to generate efficient wavefront computations [Lam74] for a subset of distributions. Transforma-
tions such as loop interchange and strip-mining can substantially improve the degree of parallelism
induced by the wavefront [HKT91]. A consideration in our pruning heuristic are the sizes of the
dimensions of the decomposition. If the size of a dimension is smaller than a machine dependent
threshold, the dimension will always be localized. This eliminates all distributions that map small
dimensions to distinct processors. We will also restrict the possible block sizes in BLOCK_CYCLIC
distributions to a reasonable subset of values.

After the automatic data partitioner has determined a set of reasonable data decomposition
schemes, the static performance estimator is invoked to predict the performance of each reasonable
scheme.

4.4 Inter-Phase Distribution

After computing data decomposition schemes for each phase, the automatic data partitioner must
solve the inter-phase decomposition problem of merging individual data decompositions. It consid-
ers realigning and redistribution of arrays between computational phases to reduce communication
costs or to improve the available parallelism.

The merging problem can be formulated as a single-source shortest paths problem over the
phase control flow graph. The phase control flow graph is similar to the control flow graph [ASU86]
where all nodes associated with a phase are substituted by nodes representing the set of reasonable
data decomposition schemes for the phase. The static performance estimator is used to predict the
costs for these reasonable decomposition schemes. The availability of fast collective communication
routines will be crucial for the profitability of realignment and redistribution.

The merging problem for a linear phase control flow graph can be solved as a single-source
shortest paths problem in a directed acyclic graph [CLR90]. For example, Figure 4 shows a three
phase problem with four reasonable decompositions for each phase. Each decomposition scheme is
represented by a node. The node is labeled with the predicted cost of the decomposition scheme for
the phase. Edges between phases are labeled with the realignment and redistribution costs for the
source and sink decomposition schemes. For each of the four decompositions of the first phase we
will solve the single-source shortest paths problem. In general, let & denote the maximal number of
decomposition schemes for each phase and p the number of phases. The resulting time complexity
is O(p x k3).

The merging of phases in a strongly connected component of the phase control flow graph should
be done before merging any of its phases with a phase outside of the strongly connected component.
This suggests a hierarchical algorithm for merging phases based on, for example, Tarjan intervals
[Tar74]. Assuming that the innermost loop bodies can be represented by a linear phase control flow
subgraph, the merging problem is solved by adding a shadow copy of the first phase after the last
phase in the linear subgraph keeping the subgraph acyclic. After solving the single-source shortest

18

oNoNoNeI™

IONONONOIE.

IONCHONOIE.

Figure 4: Interphase merge problem with realignment and redistribution

ENTRY decomposition schemes
EXIT decomposition schemes

Figure 5: An example interval summary phase

19

paths problem, the subgraph is collapsed into a single interval summary phase representing the
different costs resulting from entering the interval with a decomposition scheme and exiting it with
a possibly different scheme. An example interval summary phase is shown in Figure 5. In the
resulting phase control flow graph we again identify the innermost loops and repeat the process of
collapsing and summarizing until the phase control flow graph consists of a single node.

In fully automatic mode, the data partitioner selects the decomposition scheme that has the
minimal cost for the shortest path from a decomposition in the first phase to a decomposition in
the last phase of the selected program segment. Following the selected shortest path, ALIGN, and
DISTRIBUTE statements are inserted if the decomposition at the source of an edge is different from
the decomposition at the sink. DECOMPOSITION specifications are declared at the beginning of the
subroutine containing the selected program segment.

4.4.1 The Algorithm

Figure 6 gives the basic algorithm for automatic data decomposition for a program segment without
procedure calls. The algorithm does not handle control flow other than loops and does not consider
data replication.

Algorithm DECOMP

Input: program segment without procedure calls; problem sizes and number of processors to be used.
Output: data decomposition schemes for data objects referenced in the input program segment
with diagnostic information.

perform alignment analysis for input program;
determine program phases of input program;
build phase control flow graph;
for each phase do
perform distribution analysis;
generate diagnostic information, if available;
endfor
while phase control flow graph contains a loop do
identify innermost loop (e.g. using Tarjan intervals);
solve single-source shortest paths problem for this loop;
identify realignment and redistribution points;
generate diagnostic information, if available;
substitute loop by its interval summary phase in the phase control flow graph;
endwhile
use the computed shortest path to generate DECOMPOSITION, ALIGN,
and DISTRIBUTE statements, if in fully automatic mode;

Figure 6: Basic Algorithm for Automatic Data Alignment and Distribution

20

4.4.2 Automatic Decomposition in the Presence of Procedure Calls

One of the major challenges of the proposed research on automatic data decomposition is to devise
techniques that can deal with procedure calls. Inter-procedural analysis is used to allow the merging
of computation phases across procedure boundaries.

Inter-procedural phase merging is compiler dependent. In particular, the automatic data par-
titioner has to know whether and when the compiler performs inter-procedural optimizations such
as procedure cloning [CHK92, HHKT91] or procedure inlining [Hal91]. In the following we will
assume that the compiler performs procedure cloning for every distinct pattern of entry and exit
decomposition schemes. To simplify our discussion we will assume that programs have only acyclic
call graphs.

The augmented call graph is used to identify phases across procedure boundaries [HKM91].
Subsequently, the call graph is traversed in reverse topological order. For each procedure P the
single-source shortest paths problem is solved on its phase control flow graph using the hierarchical
approach of algorithm DECOMP in Figure 6. Each call site of P in procedure) is represented by
a copy of the interval summary phase of P in the phase control flow graph of Q.

If the compiler does not perform cloning a procedure can have only a single entry and exit
decomposition scheme. The automatic data partitioner will use a heuristic to select the decompo-
sition scheme. The heuristic takes the static execution count of call sites and the penalties due to
mismatched decomposition schemes into account.

4.5 Validation

Our validation is based on a benchmark suite being developed by Geoffrey Fox at Syracuse and
parts of an oil reservoir simulation code, called UTCOMP, developed at the University of Austin,
Texas. Fox’s program suite consists of a collection of Fortran programs and program kernels and
is described in detail in [MFvLT92]. Fach program in the suite will have five versions:

(v1) the original Fortran 77 program,

(v2) the best hand-coded message-passing version of the Fortran program,
(v3) a “nearby” Fortran 77 program,

(v4) a Fortran D version of the nearby program, and

(v5) a Fortran 90 version of the program.

The “nearby” version of the program will utilize the same basic algorithm as the message-passing
program, except that all explicit message-passing and blocking of loops in the program are re-
moved. The Fortran D version of the program consists of the nearby version plus appropriate data
decomposition specifications.

To validate the automatic data partitioner, we will use it to generate a Fortran D program from
the nearby Fortran program (v3). The result will be compiled by the Fortran D compiler and its
running time compared with that of the compiled version of the hand-generated Fortran D program
(v4). Our goal is that for 80% of the benchmark programs the nearby version with automatically
generated data layout will run at most 20% slower than the hand-generated Fortran D program. We
expect that such a performance degradation due to automatic data decomposition is still acceptable
to the user.

We believe that in many cases it is easy for the user to specify the problem mapping, i.e. the

data alignment onto a decomposition, since the problem mapping is determined by the structure

21

of the underlying algorithm. However, the user will have difficulties to predict the combined
effects of the compiler, problem, and machine characteristics on the performance of a specified data
decomposition scheme. Therefore we expect the Fortran D program generated by the automatic
data partitioner to do better than the hand-coded Fortran D version for some programs of the
benchmark suite.

Initially, the automatic techniques will be validated by applying them to whole programs in the
benchmark suite. Where automatic techniques will fail for whole programs, we want to understand

why this is the case and how user interaction can overcome their deficiencies.

5 Spin-offs and Future Research

An obvious extension of our proposed work is to relax the restrictions that (1) programs cannot
contain recursion and that (2) the problem size and number of processors used have to be known
at compile time.

We believe that automatic data decomposition generates information that is very useful in the
context of virtual shared memory systems. The decomposition scheme together with its induced
communication can support the decision of how to efficiently place the data in the shared memory
to improve the locality of data accesses and avoid false sharing.

An important future research topic is how to make our automatic data decomposition tool more
compiler independent. It is desirable to have a tool that is able to adapt easily to changes in the
underlying compilation system. One possible solution might be to include a parameterized compiler
model in the tool. A training set approach to gather information about the compiler itself might
help to solve this problem.

Since irregular problems represent a large class of real applications the applicability of our
techniques to irregular problems should be investigated. It might be possible to use some of our

algorithms at runtime to solve the automatic data mapping problem.

6 Summary

We believe that an efficient data layout can be automatically generated for many application
programs that solve regular problems, if they are written in a data-parallel programming style.
Previous research has been limited in many respects: the underlying compilation system does
not perform extensive intra and inter-procedural analysis, the choice of possible decomposition
schemes is restricted, or only a single machine architecture is targeted. Most techniques have not
been sufliciently validated using real programs.

We will enhance the existing techniques for automatic data layout and develop techniques
based on a new approach to static performance estimation. These new techniques will deal with
dynamic data mapping and data replication, the complexity of advanced compilation systems such
as Fortran D, and the possibility of a rich set of data mappings. A source-to-source transformation
will allow the relaxation of the owner computes rule. We will validate our thesis by applying

our tool to a test suite of programs and program kernels written in a data-parallel programming

22

style. We will use a benchmark suite developed by Geoffrey Fox at Syracuse and parts of a
33,000 line oil reservoir simulation code developed at the University of Austin, Texas. If automatic
techniques fail to generate good data decomposition schemes, we want to answer the question how
user interaction can help to overcome the deficiencies of our techniques. We propose an interactive
system that allows the user to browse through the set of data decomposition schemes selected by the
automatic system. For each scheme, the location and type of the compiler generated communication
is presented to the user. We will consider language extensions to Fortran D as one form of user

input to the compiler.

References

[AKLS88] E. Albert, K. Knobe, J. Lukas, and G. Steele, Jr. Compiling Fortran 8x array features for the
Connection Machine computer system. In Proceedings of the ACM SIGPLAN Symposium on
Parallel Programming: Experience with Applications, Languages, and Systems (PPEALS), New
Haven, CT, July 1988.

[ASUS6] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, second edition, 1986.

[BFKK90] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environment for data
partitioning and distribution. In Proceedings of the 5th Distributed Memory Computing Con-
ference, Charleston, SC, April 1990.

[BFKK91] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance estimator to
guide data partitioning decisions. In Proceedings of the Third ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Williamsburg, VA, April 1991.

[BGMZ92] P. Brezany, M. Gerndt, P. Mehrotra, and H. Zima. Concurrent file operations in a high perfor-
mance FORTRAN. In Proceedings of Supercomputing '92, Minneapolis, MN, November 1992.

. Balasundaram, K. Kennedy, U. Kremer, K. S. inley, and J. Subhlok. e ParaScope
BKK*89] V. Bal d K. K dy, U. K K. S. M¢Kinl d J. Subhlok. The ParaS
Editor: An interactive parallel programming tool. In Proceedings of Supercomputing ’89, Reno,

NV, November 1989.
[Bri92] P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University, April 1992.
[Car92] S. Carr. Memory-Hierarchy Management. PhD thesis, Rice University, September 1992.

[CCHt92] A. Carle, K. Cooper, M. Hall, K. Kennedy, , C. Koelbel, J. Mellor-Crummey, L. Torczon,
and S. Warren. A software platform for parallel scientific programming. Internal Report, Rice
Unwversity, 1992.

[CCL88] M. Chen, Y. Choo, and J. Li. Compiling parallel programs by optimizing performance. Journal
of Parallel and Distributed Computing, 1(2):171-207, July 1988.

[CCL8Y] M. Chen, Y. Choo, and J. Li. Theory and pragmatics of compiling efficient parallel code. Tech-
nical Report YALEU/DCS/TR-760, Dept. of Computer Science, Yale University, New Haven,
CT, December 1989.

[CGSTY2] S. Chatterjee, J.R. Gilbert, R. Schreiber, and S-H. Teng. Optimal evaluation of array expres-

23

[CGSTY3]

[CHO1]

[CHK92]

[CHZ91]

[CK8S]

[CKK89]

[CLR90]

[Clu89]

[D’H8Y]

[EXP8Y]

[Fah92]

[FBZ92]

[FHK*90]

[FIL*88]

[GAY91]

sions on massively parallel machines. In Proceedings of the Second Workshop on Languages,
Compilers, and Runtime Environments for Distributed Memory Multiprocessors, Bolder, CO,

October 1992.

S. Chatterjee, J.R. Gilbert, R. Schreiber, and S-H. Teng. Automatic array alignment in data-
parallel programs. In Proceedings of the Twentieth Annual ACM Symposium on the Principles
of Programming Languages, Albuquerque, NM, January 1993.

B.M. Chapman and H.M. Herbeck. Knowledge-based parallelization for distributed memory
systems. In First International Conference of the Austrian Center for Parallel Computation,
Salzburg, Austria, September 1991.

K. Cooper, M. W. Hall, and K. Kennedy. Procedure cloning. In Proceedings of the 1992 IEFEE
International Conference on Computer Language, Oakland, CA, April 1992.

B. Chapman, H. Herbeck, and H. Zima. Automatic support for data distribution. In Proceedings
of the 6th Distributed Memory Computing Conference, Portland, OR, April 1991.

D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors.
Journal of Supercomputing, 2:151-169, October 1988.

D. Callahan, K. Kennedy, and U. Kremer. A dynamic study of vectorization in PFC. Technical
Report TR89-97, Dept. of Computer Science, Rice University, July 1989.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press,
1990.

The Perfect Club. The Perfect Club benchmarks: efficient performance evaluation of supercom-
puters. Int. J. Supercomp. Appl., 3(3):5-40, 1989.

E. D’Hollander. Partitioning and labeling of index sets in do loops with constant dependence.
In Proceedings of the 1989 International Conference on Parallel Processing, St. Charles, IL,
August 1989.

Parasoft Corporation. Ezpress User’s Manual, 1989.
T. Fahringer. Private communication. 1992.

T. Fahringer, R. Blasko, and H.P. Zima. Automatic performance prediction to support paral-
lelization of Fortran programs for massively parallel systems. In Proceedings of the 1992 ACM
International Conference on Supercomputing, Washington, DC, July 1992.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran D
language specification. Technical Report TR90-141, Dept. of Computer Science, Rice University,
December 1990.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on
Concurrent Processors, volume 1. Prentice-Hall, Englewood Cliffs, NJ, 1988.

E. Gabber, A. Averbuch, and A. Yehudai. Experience with a portable parallelizing Pascal com-
piler. In Proceedings of the 1991 International Conference on Parallel Processing, St. Charles,
IL, August 1991.

24

[GBY0]

[GBY1]

[GBY2]

[Ger89]

[GS91]

[HA90]

[Hal91]

[HHKT91]

[HKK*91]

[HKM91]

[HKT91]

[HKT92a]

[HKT92b]

[IFKF90]

[KKBPY1]

M. Gupta and P. Banerjee. Automatic data partitioning on distributed memory multiproces-
sors. Technical Report CRHC-90-14, Center for Reliable and High-Performance Computing,
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, October 1990.

M. Gupta and P. Banerjee. Automatic data partitioning on distributed memory multiprocessors.
In Proceedings of the 6th Distributed Memory Computing Conference, Portland, OR, April 1991.

M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques for paral-

lelizing compilers on multicomputers. ITEEFE Transactions on Parallel and Distributed Systems,

April 1992.

M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing Systems. PhD
thesis, University of Bonn, December 1989.

J.R. Gilbert and R. Schreiber. Optimal expression evaluation for data parallel architectures.
Journal of Parallel and Distributed Computing, 13(1):58-64, September 1991.

D. Hudak and S. Abraham. Compiler techniques for data partitioning of sequentially iterated
parallel loops. In Proceedings of the 1990 ACM International Conference on Supercomputing,
Amsterdam, The Netherlands, June 1990.

M. W. Hall. Managing Interprocedural Optimization. PhD thesis, Rice University, April 1991.

M. W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. Interprocedural compilation of Fortran
D for MIMD distributed-memory machines. Technical Report TR91-169, Dept. of Computer

Science, Rice University, November 1991.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview of the Fortran
D programming system. In Proceedings of the Fourth Workshop on Languages and Compilers
for Parallel Computing, Santa Clara, CA, August 1991.

M. W. Hall, K. Kennedy, and K. S. M¢Kinley. Interprocedural transformations for parallel code
generation. In Proceedings of Supercomputing ’91, Albuquerque, NM, November 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for Fortran D on MIMD
distributed-memory machines. In Proceedings of Supercomputing ’91, Albuquerque, NM, Novem-

ber 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Evaluation of compiler optimizations for Fortran
D on MIMD distributed-memory machines. In Proceedings of the 1992 ACM International
Conference on Supercomputing, Washington, DC, July 1992.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-independent parallel
programming in Fortran D. In J. Saltz and P. Mehrotra, editors, Compilers and Runtime

Software for Scalable Multiprocessors. Elsevier, Amsterdam, The Netherlands, to appear 1992.

K. Tkudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic parallelization
system for distributed memory parallel computers. In Proceedings of the 5th Distributed Memory
Computing Conference, Charleston, SC, April 1990.

D. Kulkarni, K. Kumar, A. Basu, and A. Paulraj. Loop partitioning for distributed memory
multiprocessors as unimodular transformations. In Proceedings of the 1991 ACM International
Conference on Supercomputing, Cologne, Germany, June 1991.

25

[KLD92]

[KLS88]

[KLS90]

[KM91]

[KMMO91]

[KMT91]

[KMV90]

[KN90]

[KZBGSS]

[Lam74]

[LC90a]

[LC90b]

[LCY1a]

[LCY1D)

[Li92]

[MFvL*92]

K. Knobe, J.D. Lukas, and W.J. Dally. Dynamic alignment on distributed memory systems. In
Proceedings of the Third Workshop on Compilers for Parallel Computers, Vienna, Austria, July
1992.

K. Knobe, J. Lukas, and G. Steele, Jr. Massively parallel data optimization. In Frontiers8§:
The 2nd Symposium on the Frontiers of Massively Parallel Computation, Fairfax, VA, October
1988.

K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of arrays to reduce
communication on SIMD machines. Journal of Parallel and Distributed Computing, 8(2):102—
118, February 1990.

C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed execu-
tion. IEEE Transactions on Parallel and Distributed Systems, 2(4):440-451, October 1991.

K. Kennedy, N. M¢Intosh, and K. S. M¢Kinley. Static performance estimation. Technical Report
TRY91-174, Dept. of Computer Science, Rice University, December 1991.

K. Kennedy, K. S. M¢Kinley, and C. Tseng. Interactive parallel programming using the ParaS-
cope Editor. IEEE Transactions on Parallel and Distributed Systems, 2(3):329-341, July 1991.

C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on distributed
memory machines. In Proceedings of the Second ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programmaing, Seattle, WA, March 1990.

K. Knobe and V. Natarajan. Data optimization: Minimizing residual interprocessor data motion
on SIMD machines. In Frontiers90: The 3rd Symposium on the Frontiers of Massively Parallel
Computation, College Park, MD, October 1990.

U. Kremer, H. Zima, H.-J. Bast, and M. Gerndt. Advanced tools and techniques for automatic
parallelization. Parallel Computing, 7:387-393, 1988.

L. Lamport. The parallel execution of DO loops. Communications of the ACM, 17(2):83-93,
February 1974.

J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between
distributed arrays. In Frontiers90: The 3rd Symposium on the Frontiers of Massively Parallel
Computation, College Park, MD, October 1990.

J. Li and M. Chen. Synthesis of explicit communication from shared-memory program refer-
ences. Technical Report YALEU/DCS/TR-755, Dept. of Computer Science, Yale University,
New Haven, CT, May 1990.

J. Liand M. Chen. Compiling communication-efficient programs for massively parallel machines.
IEEE Transactions on Parallel and Distributed Systems, 2(3):361-376, July 1991.

J. Li and M. Chen. The data alignment phase in compiling programs for distributed-memory
machines. Journal of Parallel and Distributed Computing, 13(4):213-221, August 1991.

J. Li. Private communication. 1992.

A. Mohamed, G. Fox, G. von Laszewski, M. Parashar, T. Haupt, K. Mills, Y-H. Lu, N-T.
Lin, and N-K. Yeh. Applications benchmark set for Fortran D and High Performance Fortran.

26

[PPY1]

[PSvGI1]

[RA9O]

[Ram90]

[RP8Y]

[RS89]

[RSW8S]

[SMC*92]

[$590]

[Sus91]

[Sus92]

[Tar74]

[TMC89]

[Tse93]

[Wei91]

Technical Report SCCS-327, NPAC, Syracuse University, October 1992.

S. Pinter and R. Pinter. Program optimization and parallelization using idioms. In Proceedings of
the Eighteenth Annual ACM Symposium on the Principles of Programming Languages, Orlando,
FL, January 1991.

E. Paalvast, H. Sips, and A. van Gemund. Automatic parallel program generation and opti-
mization from data decompositions. In Proceedings of the 1991 International Conference on
Parallel Processing, St. Charles, IL, August 1991.

R. Ruhl and M. Annaratone. Parallelization of FORTRAN code on distributed-memory paral-
lel processors. In Proceedings of the 1990 ACM International Conference on Supercomputing,
Amsterdam, The Netherlands, June 1990.

J. Ramanujam. Compile-time Techniques for Parallel Ezecution of Loops on Distributed Memory
Multiprocessors. PhD thesis, Department of Computer and Information Science, Ohio State
University, Columbus, OH, 1990.

A. Rogers and K. Pingali. Process decomposition through locality of reference. In Proceedings
of the SIGPLAN ’89 Conference on Program Language Design and Implementation, Portland,
OR, June 1989.

J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs for multicom-
puters and complex memory multiprocessors. In Proceedings of Supercomputing ‘89, Reno, NV,
November 1989.

M. Rosing, R. Schnabel, and R. Weaver. Dino: Summary and examples. Technical Report
CU-CS-386-88, Dept. of Computer Science, University of Colorado, March 1988.

T. Sterling, P. Messina, M. Chen, F. Darema, G. Fox, M. Heath, K. Kennedy, R. Knighten,
R. Moore, S. Ranka, J. Saltz, L. Tucker, and P. Woodward. Workshop on system software and
tools for high performance computing environments. In Final Report on the Findings of the

Workshop, Pasadena, CA, April 1992.

L. Snyder and D. Socha. An algorithm producing balanced partitionings of data arrays. In
Proceedings of the 5th Distributed Memory Computing Conference, Charleston, SC, April 1990.

A. Sussman. Model-Driven Mapping onto Distributed Memory Parallel Computers. PhD thesis,
School of Computer Science, Carnegie Mellon University, September 1991.

A. Sussman. Model-driven mapping onto distributed memory parallel computers. In Proceedings
of Supercomputing ’92, Minneapolis, MN, November 1992.

R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and System Sciences, 9:355—
365, 1974.

Thinking Machines Corporation, Cambridge, MA. CM Fortran Reference Manual, version 5.2-
0.6 edition, September 1989.

C. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Machines. PhD
thesis, Rice University, Houston, TX, January 1993. Rice COMP TR93-199.

M. Weiss. Strip mining on SIMD architectures. In Proceedings of the 1991 ACM International

27

[Who91]

[Who92a]

[Who92b]

[Wol89]

[Wol92]

[ZBGS8S)

Conference on Supercomputing, Cologne, Germany, June 1991.

S. Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD thesis,
School of Computer Science, Carnegie Mellon University, May 1991.

S. Wholey. Automatic data mapping for distributed-memory parallel computers. In Proceedings
of the 1992 ACM International Conference on Supercomputing, Washington, DC, July 1992.

S. Wholey. Private communication. 1992.

M. J. Wolfe. Semi-automatic domain decomposition. In Proceedings of the 4th Conference on

Hypercube Concurrent Computers and Applications, Monterey, CA, March 1989.

M.E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Stanford University,
August 1992.

H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD par-
allelization. Parallel Computing, 6:1-18, 1988.

28

A Data-Parallel Programming Style

UTCOMP is a fully 3-D compositional reservoir simulation package developed at the Petroleum
Engineering Department at UT-Austin for vector processors. DISPER is a 500 non-comment lines
routine in UTCOMP which computes dispersion tensor terms. DISPER contains a variety of
stencils that lead to different communication patterns.

The original version of the routine has been written for the CRAY. A code fragment is shown
in Figure 7. The code contains indirections due to the linear representation of a 3-dimensional oil
reservoir and the fact that depending on runtime values different stencils are used in the compu-
tation. These indirections prohibit the detection and optimization of communication patterns at
compile time. To convert the routine into data-parallel style, we delinearized arrays and removed
indirect addressing by using code replication and other techniques'. The resulting program is
1500 lines long (non-comment lines). We added Fortran D data layout specifications and compiled
the program using the current implementation of the Fortran D compiler. Figure 8 shows the
data-parallel version of the code fragment of Figure 7 with Fortran D data layout specifications.

The performance of the compiler-generated code on a problem of size (8 x 256 x 8) is given in
Table 1. For this problem, only the logically second dimension was distributed across processors.
The second dimension of the oil reservoir is represented as the first dimension in the associated

data structures.

machine memory/proc | compiler #procs | exec time
Sparc2 64Mbytes | {77 -04 30.30 secs
RS6000 192Mbytes xIf -0 17.74 secs
iPSC/860 16Mybtes | if77 -O4 | 2 nodes | 19.67 secs
iPSC/860 8Mybtes | if77-0O4 | 4 nodes | 9.96 secs

8 nodes 5.03 secs
16 nodes 2.44 secs
32 nodes 1.29 secs

Table 1: Performance of data-parallel version of UTCOMP dispersion tensor routine

The numbers show a nearly linear speed-up. As a comparison, the table also contains the

performance numbers of the data-parallel style program on the Sparc2 and RS6000.

ioined work with Marcelo Ramé at Rice University

29

subroutine disper

cceccce..
C purpose: computes the dispersion term.

c calls: none

[oTeT ool ol o PN ccc

implicit real*8 (a-h, o-z)

c
parameter (npm = 4)
parameter (ncm = 5)
parameter (nbm = 8 * 256 * 8)
parameter (ncmpl = ncm 4+ 1)
c
common fcom100/ nb, nx, ny, nz, nw, np, nc, ncpl, nbwp
common fcom210/ nblk(nbm,6), nblkup(nbm,npm,3)
common fcom440/ ddx(nbm), ddy(nbm), ddz(nbm)
common fcom470/ porstd(nbm), por(nbm), vb(nbm),
common fcom480/ diffun(npm,ncmpl), tau, alphal(npm), alphat(npm)
common fcom510/ sat(nbm,npm), denml(nbm,npm), denms(nbm,npm),
logical lsat, lomfr, lpmfr
common fcom515/ lsat(nbm,npm), lomfr(nbm,ncm), Ipmfr(nbm,npm,ncm)
common fcom540/ omfr(nbm,ncm), pmfr(nbm,npm,ncm),
common fcom580/ trxcof(nbm), trycof(nbm), trzcof(nbm)
common fcom595/ velx(nbm,npm), vely(nbm,npm), velz(nbm,npm)
common fcom850/ disp(nbm,ncmpl), dispx(nbm), dispy(nbm),
& dispz(nbm)
common fcom870/ coexx(nbm,npm), coexy(nbm,npm), coexz(nbm,npm),
& coeyx(nbm,npm), coeyy(nbm,npm), coeyz(nbm,npm),
& coezx(nbm,npm), coezy(nbm,npm), coezz(nbm,npm)
c
c
do 900 k = 1, nc
do 850 j = 2, np
do 840 i =1, nb
ilypl = nblk(i,2)
iupy = nblkup(i,j,1)
c
c -
c y-direction
c -
c
if ((ilypl.gt.0).and.(lsat(i,j))
& .and.(lsat(ilypl,j))) then
grady = 2. * (pmfr(ilypl,j,k) - pmfr(i,j,k))
& / ((ddy(i) + ddy(ilypl))
dispy(i) = dispy(i)
& + denml(iupy,j) * (por(iupy) * sat(iupy,j)
& * diffun(j,k) + coeyy(i,j))
& * grady
endif
840 continue
840 continue

900 continue

Figure 7: Cray code fragment

30

double precision ddx(256,8,8),ddy(256,8,8),ddz(256,8,8)

double precision por(256,8,8),pmfr(256,8,8,4,5),diffun(4,6)

double precision alphal(4),alphat(4),sat(256,8,8,4),denml(256,8,8,4)
logical lsat(256,8,8,4)

double precision trxcof(256,8,8),trycof(256,8,8),trzcof(256,8,8)
double precision potx(256,8,8,4),poty(256,8,8,4),potz(256,8,8,4)
double precision velx(256,8,8,4),vely(256,8,8,4),velz(256,8,8,4)
double precision disp(256,8,8,6),dispx(256,8,8),dispy(256,8,8),

& dispz(256,8,8)
double precision coexx(256,8,8,4),coexy(256,8,8,4),coexz(256,8,8,4),
& coeyx(256,8,8,4),coeyy(256,8,8,4),coeyz(256,8,8,4),
& coezx(256,8,8,4),coezy(256,8,8,4),coezz(256,8,8,4)
¢ ———- FORTRAND ——m—

integer n$proc
parameter (n$proc = 8)

c decomposition dd(256)
c align ltemp(i),grady(i) with dd(i)
c align ddy(i,j,k),r(i,j,k),dispy(i,j,k) with dd(i)
c align poty(i,j,k,1),coeyy(i,j k,1) with dd(i)
c align sat(i,j,k,1),1sat(i,j,k,1),denml(i,j,k,1) with dd(i)
c align pmfr(i,j,k,1,m) with dd(i)
c distribute dd(block)
c -
do 900 k = 1, 5
do 850§ = 2, 4
do 840 i3 = 1, 8
do 840 i2 = 1, 8
do 840 i1 = 1, 256
if(poty(il,i2,i3,j).1t.0) then
<
c y-direction
c
if ((il.ne. 256) then
ltemp(il) = lsat(il,i2,i3,j).and.lsat(i14+1,i2,i3,j)
if (ltemp(il)) then
grady(il) = 2.*(pmfr(i1+1,i2,i3,j,k)
& -pmfr(il,i2,i3,j,k))
& / (ddy(i1,i2,i3) + ddy(i1+1,i2,i3))
dispy(i1,i2,i3) = dispy(il,i2,i3) + denml(il,i2,i3,j)
& * (por(il,i2,i3) * sat(il,i2,i3,j)
& * diffun(j,k) 4+ coeyy(il,i2,i3,j))
& * grady(il)
endif
endif
else
if ((il.ne. 256) then
ltemp(il) = lsat(il,i2,i3,j).and.lsat(i14+1,i2,i3,j)
if (ltemp(il)) then
grady(il) =2.*(pmfr(il+41,i2,i3,j,k)
& - pmfr(il,i2,i3,j,k))
& / (ddy(i1,i2,i3) + ddy(i1+1,i2,i3))
dispy(i1,i2,i3) = dispy(il,i2,i3)
& + denml(i141,i2,i3,j) * (por(il41,i2,i3)
& * sat(i141,i2,i3,j)
& * diffun(j,k) 4+ coeyy(il,i2,i3,j))
& * grady(il)
endif
endif
endif
840 continue
850 continue
900 continue

Figure 8: Code fragment in data-parallel style with Fortran D data layout specifications

31

#procs problem size butterfly transpose relative
total communication only (% of total) total communication only (% of total) speed-up
128 x 128
2 0.423 0.016 3.8% 0.432 0.019 4.4% 0.98
4 0.272 0.061 22.4% 0.217 0.015 6.9% 1.25
8 0.207 0.092 44.4% 0.113 0.012 10.6% 1.83
16 0.187 0.119 63.6% 0.062 0.011 17.7% 3.02
32 0.193 0.147 76.1% 0.042 0.017 40.5% 4.60
64 0.160 0.124 77.5% 0.035 0.022 62.8% 4.57
256 X 256
2 1.731 0.036 2.0% 1.819 0.070 3.8% 0.95
4 0.979 0.119 12.1% 0.903 0.050 5.5% 1.08
8 0.630 0.181 28.7% 0.459 0.031 6.7% 1.87
16 0.485 0.238 49.0% 0.237 0.023 9.7% 2.05
32 0.444 0.296 66.6% 0.130 0.023 17.7% 3.42
64 0.352 0.250 71.0% 0.081 0.026 32.0% 4.34
512 x 512
2 7.199 0.057 0.8% 7.822 0.299 3.8% 0.92
4 3.812 0.235 6.1% 3.814 0.194 5.0% 1.00
8 2.178 0.360 16.5% 1.919 0.108 5.6% 1.13
16 1.428 0.474 33.2% 0.969 0.064 6.6% 1.47
32 1.127 0.597 53.0% 0.498 0.046 9.2% 2.26
64 0.826 0.503 60.9% 0.270 0.040 14.8% 3.08
1024 x 1024
4 15.640 0.444 2.8% 16.561 0.836 5.0% 0.94
8 8.332 0.718 8.6% 8.274 0.432 5.2% 1.01
16 4.827 0.939 19.4% 4.156 0.238 5.7% 1.16
32 3.324 1.274 48.8% 2.097 0.137 6.5% 1.59
64 2.152 1.005 46.7% 1.083 0.090 8.3% 1.99
2048 x 2048
16 18.323 1.895 10.3% 18.360 0.893 4.9% 0.99
32 10.764 2.356 21.9% 9.215 0.487 5.3% 1.17
64 6.456 2.007 31.1% 4.687 0.277 5.9% 1.38

Table 2: Performance of two versions of 2D-FFT on the iPSC/860

B Redistribution

It is very difficult for a programmer to decide when dynamic data remapping is profitable of not. The
availability of fast collective communication routines is crucial for the profitability of realignment
and redistribution. In our experiments we used a transpose routine distributed by Intel as part of
a set of example programs for the iPSC/860. This sections gives examples where the transposition
of a matrix is profitable (2D-FFT) and where it is not (ADI). The latter case is interesting, since
a programmer might think that transposing the matrix is profitable.

Dynamic data remapping can be profitable before or after I/O operations if the underlying I/0
systems prefers specific data layout schemes as described in [BGMZ92].

Two-dimensional Fast Fourier Transform (2D-FFT)

The computation performed by a two-dimensional FFT can be described as a sequence of one-
dimensional FFTs (1D-FFTs) along each row of the input array, followed by one-dimensional FFT's
along each column. The input array in our example is of type complex. The butterfly version of the
2D-FFT distributes the first dimension of the two-dimensional array. This leads to communication
during the computation of the 1D-FFTs along each column. This communication can be avoided
if the array is transposed after all 1D-FFTs along each row have been performed. The transpose

version uses a row-distribution for the row-wise 1D-FFTs and a column-distribution for the column-

32

wise 1D-FFTs. Both versions were compiled using if77 under -O4 option and executed on the
iPSC/860 at Rice (32 processors) and Caltech (64 processors). Both machines have a two-way set
associative from instruction cache (4Kbytes) and data cache (8Kbytes). The cache lines are 32bytes
long. Table 2 lists execution times in seconds for the butterfly and transpose implementation
alternatives over a variety of data sizes and processor configurations. For each implementation
alternative, the table lists the total execution time and the fraction of the time spent communicating.
The last column lists the relative speed-ups of the transpose version over the butterfly version for
different problem size and processor configurations.

This program example assumes that the compiler is able to detect the FF'T (butterfly) commu-
nication pattern. If this is not the case, we expect the compiler-generated program for the static
row partitioning to run slower than the butterfly version, increasing the benefits of the transpose

version even more.

Alternating-Direction-Implicit Integration (ADI)

The sequential code is shown in Figure 9. The single iterations of the DO-loop in line 2 consists of a
forward and backward sweep along the rows of arrays x and b, followed by a forward and backward
sweep along the columns. The pipeline version of the code uses a static column-wise partitioning of
the perfectly aligned arrays x, a, and b. We specified this data layout using Fortran D language
annotations and compiled the program using the current implementation of the Fortran D compiler.
The compiler generated a coarse-grain pipelined loop for the forward and backward sweeps along
the rows of arrays x and b. The sweeps along columns do not require communication under this
data layout. The transpose version transposes arrays x and b between the row and column sweeps,
i.e. twice per iteration of the outermost DO-loop (line 2). No communication is needed during each
sweep.

The execution times for 10 iterations (MAXITER = 10) for the iPSC/860 is shown in Table 3. The
timings are given in seconds. Since the selected problem sizes are powers of two, cache conflicts
lead to a significant increase of the total execution time for the transpose version. To alleviate
this problem, we added a single column or row to each local segment of the arrays in the node
SPMD program. We expect a sophisticated node compiler to perform such an optimization. The
performance of the modified node programs are listed under the problem sizes marked with asterisks
in Table 3.

Summary

The 2D-FFT example shows that dynamic remapping can result in significant performance improve-
ments over a static data layout scheme. A programmer might have expected a similar performance
improvement for the ADI example program. However, due to the coarse grain pipelining optimiza-
tion performed by the Fortran D compiler dynamic data remapping is not profitable even if we

ignore cache conflicts.

33

REAL x(N, N), a(N, N), b(N, N)
DO iter = 1, MAXITER

// ADI forward & backward sweeps along rows

DOj=2 N
DOi=1,N
x(1,j) = x(1,J) = x(i, i=1) * a(i, j) / b(i, i-1)
b(i, j) = b(i,J) — ali, j) * a(i, j) / b(i, i-1)
ENDDO
ENDDO
DOi=1,N
x(i, N) = x(i, N) / b(i, N)
ENDDO
DOj=N-1,1, -1
DOi=1,N
x(i,) = (x(1,J) — a(i, j+1) = x(i, j+1)) / b(i, J)
ENDDO
ENDDO
// ADI forward & backward sweeps along columns
DOj=1,N
DOi=2N

x(3, §) = x(i,) — x(i-1,j) * a(i, j) / b(i-1, j)
b(i, j) = b(i, §) — a(i,j) * a(i,) / b(i-1, j)
ENDDO
ENDDO
DOj=1,N
x(N, §) = x(N, §) / b(N, j)
ENDDO
DOj=1,N
DOi=N-1,1, -1
x(3,§) = (x(i,) - a(i+1,§) * x(+1,3)) / b(i, j)
ENDDO
ENDDO

ENDDO

Figure 9: Sequential ADI code, REAL

34

#proc problem size pipeline transpose relative
total communication only (% of total) total communication only (% of total) speed-up
128 x 128
2 2.305 0.021 0.9% 3.894 0.371 9.5% 0.59
4 1.265 0.053 4.2% 1.547 0.298 19.3% 0.82
8 0.720 0.077 10.7% 1.371 0.246 17.9% 0.52
16 0.485 0.103 21.2% 0.617 0.280 45.4% 0.78
32 0.404 0.141 34.9% 1.137 0.444 39.0% 0.35
64 0.431 0.235 54.5% 1.130 0.821 72.6% 0.38
128 x 128%
2 2.283 0.020 0.9% 2.486 0.365 14.7% 0.92
4 1.281 0.053 4.1% 1.381 0.308 22.3% 0.93
8 0.715 0.080 11.1% 0.835 0.255 30.5% 0.85
16 0.505 0.116 23.0% 0.614 0.348 56.7% 0.82
32 0.402 0.143 35.6% 0.596 0.454 76.2% 0.87
64 0.430 0.236 54.9% 0.921 0.845 91.7% 0.47
256 x 256
2 9.142 0.041 0.4% 21.585 1.351 6.2% 0.42
4 4.781 0.106 2.2% 10.261 1.009 9.8% 0.46
8 2.598 0.162 6.2% 4.250 0.677 15.9% 0.61
16 1.531 0.180 11.7% 3.192 0.532 16.6% 0.48
32 1.064 0.215 20.2% 2.050 0.607 29.6% 0.52
64 0.838 0.307 36.6% 3.046 0.921 30.2% 0.27
256 x 256%
2 9.045 0.042 0.5% 10.116 1.368 13.5% 0.89
4 4.758 0.106 2.2% 5.296 1.009 19.0% 0.90
8 2.566 0.167 6.5% 2.844 0.678 23.8% 0.90
16 1.566 0.204 13.0% 1.709 0.596 34.9% 0.92
32 0.986 0.220 22.3% 1.235 0.623 50.4% 0.80
64 0.828 0.320 38.6% 1.255 0.958 76.3% 0.66
512 x 512
2 39.553 0.084 0.2% 161.896 5.504 3.4% 0.24
4 20.270 0.209 1.0% 81.868 3.717 4.5% 0.25
8 10.612 0.308 2.9% 39.072 2.289 5.8% 0.27
16 5.780 0.352 6.0% 10.980 1.439 13.1% 0.53
32 3.406 0.379 11.1% 6.576 1.110 16.9% 0.52
64 2.289 0.468 20.4% 5.704 1.257 22.0% 0.40
512 x 512%
2 35.913 0.083 0.2% 144.500 5.561 3.8% 0.25
4 18.434 0.207 1.1% 21.365 3.768 17.6% 0.86
8 9.573 0.313 3.3% 10.795 2.270 21.0% 0.89
16 5.302 0.372 7.0% 5.799 1.497 25.8% 0.91
32 3.060 0.376 12.2% 3.329 1.132 34.0% 0.92
64 2.083 0.467 22.4% 2.402 1.296 54.0% 0.87
1024 x 1024
2 168.055 0.175 0.1% 949.241 27.171 2.9% 0.18
4 85.106 0.411 0.5% 388.358 15.016 3.9% 0.22
8 43.605 0.602 1.4% 237.368 8.449 3.5% 0.18
16 22.860 0.678 3.0% 98.511 4.854 4.9% 0.23
32 12.509 0.686 5.5% 52.708 2.969 5.6% 0.24
64 7.351 0.788 10.7% 13.927 2.283 16.4% 0.53
1024 x 1024%*
2 147.682 0.177 0.1% 752.135 27.400 3.6% 0.20
4 73.467 0.410 0.5% 352.282 15.162 4.3% 0.21
8 37.484 0.608 1.6% 43.869 8.534 19.4% 0.85
16 19.860 0.714 3.6% 22.066 4.866 22.0% 0.90
32 10.820 0.683 6.3% 11.629 2.980 25.6% 0.93
64 6.466 0.786 12.1% 6.727 2.325 34.6% 0.96
2048 x 2048
4 337.115 0.909 0.3% *memory* *memory*
8 170.599 1.219 0.7% 815.495 34.042 4.2% 0.21
16 87.407 1.365 1.6% 602.598 17.979 3.0% 0.14
32 45.911 1.353 2.9% 193.612 10.004 5.2% 0.24
64 25.098 1.452 5.8% 131.027 6.052 4.6% 0.19
2048 x 2048%*
4 *memory* *memory* *memory* *memory*
8 146.694 1.241 0.8% 671.508 34.311 5.1% 0.22
16 75.563 1.414 1.9% 89.174 18.161 20.4% 0.85
32 39.464 1.353 3.4% 44.293 9.913 22.4% 0.89
64 21.691 1.450 6.7% 23.345 6.078 26.0% 0.93

Table 3: Performance of pipeline and transpose versions of ADI on the iPSC/860

35

C Red-Black Relaxation

Figure 11 and Figure 13 show the actual execution times of one iteration of the outermost time
step loop of the red-black relaxation program (shown in Figure 10) for increasing sizes of array v
using column-partitioning and block-partitioning schemes. Figure 11 shows the execution times on
the Ncube-1 for 16 and 64 processors, where v is a single precision floating point array. Figure 13
contains the results on 16 processors on the iPSC/860 for a single precision and double precision
array v.

Figure 12 and Figure 14 show the estimated execution times for the red-black program using
the training set approach. The crossover points and execution times induced by the different

decomposition schemes are predicted with high accuracy.

36

DOUBLE PRECISION v(N, N), a, b

DECOMPOSITION d(N, N)
ALIGN v(I, J) WITH d(1, J)
DISTRIBUTE d(BLOCK, BLOCK)

DOk=1,M
// Compute the red points
DOj=1,N,?2
DOi=1,N,?2

v(i,J) = ax(v(i, j=1) + v(i=1,J) 4+ v(i, j+1) + v(i+1,j)) + b+ v(i, j)

ENDDO
ENDDO
DOj=2N,2

DOi=2N,?2

v(i,J) = ax(v(i, j=1) + v(i=1,) + v(i, j+1) + v(i+1,])) + bx v(i, J)

ENDDO
ENDDO

// Compute the black points
DOj=1,N,?2
DOi=2N,?2

v(i,J) = ax(v(i, j=1) + v(i=1,]) 4+ v(i, j+1) + v(i+1,j)) + bx v(i, J)

ENDDO
ENDDO
DOj=2N,?2

DOi=1,N,?2

v(i, j) = a*x(v(i, j—1) + v(i—1,3) + v(i, j+1) + v(i+1, j)) + b* v(i, j)

ENDDO
ENDDO
ENDDO

Figure 10: Fortran D code with BLOCK distribution, DOUBLE PRECISION

37

=1Ll e

LT
/

V% —

N
(@]
(@]

ed / 16 PROCS

[dy]
o
o

200 —

oned / 64 PROCS

100 —

<~ — COLUMN partitioned / 64 PROCS

-0 IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
-0 32 64 96 128 160 192 224 256

Array size N (N x N REAL%4)

Execution time for single loop iteration (msec)

Figure 11: Measured times on Ncube-1: FLOAT operations on 16 and 64 processors

38

500

N
(ol
(@]

N
(@]
(@]

350

[dy]
o
o

200

150

100

Execution time for single loop iteration (msec)
N
N 0
o o

|
o

\

\

A

IgIIIII|IIII|IIII

7~ COLUMN partitiotled / 16 PROCS

VL

/ i
__<—— BLOCK partitijoned / 64 PROCS

&

2\

ed / 16 PROCS

<7 artiticn

<<~— COLUMN partitioned / 64 PROCS

o

32

64 96 128 160 192 224 256
Array size N (N x N REAL%4)

Figure 12: Estimated times on Ncube-1: FLOAT operations on 16 and 64 processors

39

35_IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|L

W
o

[AY]
o)

[A¥]
@)

d / DOUBLE

BLE

—
a

FLOAT

—
o

Average execution time / iteration (msec)
(9)}

N EEERI ARERE RN RRRNE ARRRERNRNE AERRE ARRNI ARRRE RERRE N
-0 32 64 98 128 160 192 224 256 288 320
Array size N (N x N REAL%*4 and REALx%8)

Figure 13: Measured times on iPSC/860: DOUBLE PRECISION and FLOAT operations on 16

Processors

40

35_IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|L

W
o

[AY]
V]

20
POUBLE
BLE
15
FLOAT

[
o

Average execution time / iteration (msec)

N EERI ERENE ARRRE RN NERNI ARERE ARRNE ARNRE AREN NRRRE A
-0 32 64 96 128 160 192 224 256 288 320
Array size N (N x N REAL%*4 and REALx%8)

Figure 14: Estimated times on iPSC/860: DOUBLE PRECISION and FLOAT operations on 16

Processors

41

