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MIMD Distributed-Memory Machines

Chau-Wen Tseng

Abstract

Massively parallel MIMD distributed-memory machines can provide enormous computational power; how-
ever, the difficulty of developing parallel programs for these machines has limited their use. Our thesis is
that an advanced compiler can generate efficient parallel programs, if data decompositions are provided.
To validate this thesis, we have implemented a compiler for Fortran D, a version of Fortran that provides
data decomposition specifications at two levels: problem mapping using sophisticated array alignments, and
machine mapping through a rich set of data distribution functions.

The Fortran D compiler is organized around three major functions: program analysis, program opti-
mization, and code generation. Its compilation strategy is based on the “owner computes” rule, where each
processor only computes values of data it owns. Data decomposition specifications are translated into mathe-
matical distribution functions that determine the ownership of local data. By composing these with subscript
functions or their inverses, the compiler can efficiently partition computation and determine nonlocal accesses
at compile-time.

Fortran D optimizations are guided by the concept of data dependence. Program transformations modify
the program execution order to enable optimizations. Communication optimizations reduce the number of
messages and overlap communication with computation. Parallelism optimizations detect reductions and
optimize pipelined computations to increase the amount of useful computation that may be performed in
parallel. Empirical evaluations show that exploiting parallelism is vital, while message vectorization, coarse-
grain pipelining, and collective communication are the key communication optimizations. A simple model
is constructed to guide compiler optimizations. Loop indices, bounds, and nonlocal storage are managed by
the compiler during code generation.

Interprocedural analysis, optimization, and code generation algorithms limit compilation to only one
pass over each procedure by collecting summary information after edits, then compiling procedures in re-
verse topological order to propagate necessary information. Delaying instantiation of the work partition,
communication, and dynamic data decomposition enables interprocedural optimization. Interactions be-
tween the compiler and other elements of the programming system are discussed. Empirical measurements
show that the output of the prototype Fortran D compiler is comparable to hand-written codes on the Intel
iPSC/860 and significantly outperforms the CM Fortran compiler on the Thinking Machines CM-5.
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Chapter 1

Introduction

The power of massively-parallel processing is hindered by the difficulty of parallel programming. Our goal is
to develop the compiler technology required to provide a simple yet efficient machine-independent parallel
programming model. We show that for dense-matrix numerical computations annotated with data decom-
position specifications, an advanced compiler can generate efficient codes for MIMD distributed-memory
machines. In this thesis we develop advanced compilation techniques, evaluate them experimentally, and
empirically validate their effectiveness in a prototype compiler.

1.1 Background

1.1.1 Machine-Independent Parallel Programming

It is widely recognized that parallel computing represents the only plausible way to continue to increase the
computational power available to scientists and engineers. Highly parallel supercomputers also provide the
best cost/performance ratio of all supercomputers. In particular, distributed-memory machines such as the
Intel Paragon or the Thinking Machines CM-5 are among the most powerful, flexible, and scalable parallel
computers available. Despite their advantages, parallel machines have only enjoyed limited success because
parallel programming is a difficult and time-consuming task. To obtain adequate performance, scientific
programmers must write explicitly parallel programs and solve many machine-dependent efficiency issues.

Given these concerns, how can we make parallel supercomputers more accessible and useful for scientific
programmers? History shows us that conventional vector supercomputers owe a large part of their success to
the introduction of automatic vectorizing compilers. These compilers can take Fortran or C programs written
in a vectorizable style and automatically convert them to run efficiently on any vector machine [206, 39]. This
provides a machine-independent programming model that allows scientific programmers to concentrate on
their actual algorithms, introducing high-level parallelism where needed. The compiler handles machine-
dependent optimizations for efficient execution. The resulting programs are easily maintained and portable.

Compare this with the task of programming existing parallel machines. Scientists must rewrite their
programs in a programming language that explicitly reflects the underlying machine architecture. Options
include a message-passing dialect for multiple-instruction, multiple-data (MIMD) distributed-memory ma-
chines, extended vector & array syntax for single-instruction, multiple-data (SIMD) machines, and an explic-
itly parallel dialect with synchronization for MIMD shared-memory machines. Scientists must also wrestle
with machine-specific issues such as improving data locality to take advantage of the memory hierarchy.
Even after successfully developing, debugging, and optimizing the resulting parallel program, there is little
assurance that it can be easily modified or ported to a different parallel machine. Scientists are thus dis-
couraged from utilizing parallel machines because they risk losing their investment whenever the program
changes or a new architecture arrives.

Programming MIMD distributed-memory machines is a particularly difficult process. Processors have
separate address spaces, and inter-processor data movement takes place through calls to machine-specific
communication libraries. Users must thus write message-passing Fortran 77 programs that deal with ad-
dress translation, synchronizing processors, and communicating data using messages. The process is time-
consuming, tedious, and error-prone. Significant blowups in source code size are not only common but
expected. Parallel computers are thus not likely to be widely used until they are easier to program in a
machine-independent manner without sacrificing efficiency.
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1.1.2 Compiler Assistance

The goal of this thesis is to solve the parallel programming problem by developing the compiler technology
needed to establish a machine-independent programming model. It must be easy to use yet perform with
acceptable efficiency on different parallel architectures. In particular, we focus on data-parallel scientific
codes that apply identical operations across large data sets, since these applications easily scale up to take
advantage of massive parallelism [101].

One approach would be to identify a data-parallel programming style for Fortran that may be compiled to
execute efficiently on a variety of parallel architectures. However, researchers working in the area, including
ourselves, have concluded that such a programming style is needed but not sufficient in general. The reason
is parallel programming is a difficult task in which many tradeoffs must be weighed. In converting from a
Fortran program, the compiler simply is not able to always do a good job of picking the best alternative
in every tradeoff, particularly since it must work solely with the text of the program. As a result, the
programmer may need to add additional information to the program for it to be correctly and efficiently
parallelized.

But in accepting this conclusion, we must be careful not to give up prematurely on the goal of supporting
machine-independent parallel programming. In other words, if we extend Fortran to include information
about the parallelism available in a program, we should not make those extensions dependent on any partic-
ular parallel machine architecture. From the compiler technologist’s perspective, we need to find a suitable
language for expressing parallelism and compiler technology that will translate this language to efficient
programs on different parallel machine architectures.

1.1.3 Parallel Architectures and Programming Models

We begin our search for a suitable programming model by examining existing paradigms for parallel pro-
gramming. Figure 1.1 depicts four different machine types and the dialect of Fortran commonly used for pro-
gramming on each of them: Fortran 77 for the sequential machine, Fortran 90 for the SIMD parallel machine
(e.g., the TMC CM-2, MasPar MP-1), message-passing Fortran for the MIMD distributed-memory machine
(e.g., the Intel iPSC/860, Intel Paragon, Thinking Machines CM-5) and Parallel Computing Forum (PCF)
Fortran [136, 166] for the MIMD shared-memory machine (e.g., the Cray Research C90 Y-MP, BBN TC2000
Butterfly). Each of these languages seems to be a plausible candidate for use as a machine-independent
parallel programming model.

Research on automatic parallelization has already shown that Fortran 77 is unsuitable for general parallel
programming. However, message-passing Fortran looks like a promising candidate—it should be easy to
implement a run-time system that simulates distributed memory on a shared-memory machine by passing
messages through shared memory. Unfortunately, most scientific programmers reject this alternative because
programming in message-passing Fortran is difficult and tedious. In essence, this would be reduction to the
lowest common denominator—programming every machine would be equally hard.

Starting with PCF Fortran is more promising. It seems plausible that we might be able to use the parallel
loops in PCF Fortran to indicate which data structures should be partitioned across the processors—data
arrays accessed on different iterations of a parallel loop should probably be distributed. So what is wrong
with starting from PCF Fortran? The problem is that the language is nondeterministic. If the programmer
inadvertently accesses the same location on different loop iterations, the result can vary for different execution
schedules. Hence PCF Fortran programs will be difficult to develop and require complex debugging systems.

Fortran 90 is more promising, because it is a deterministic language. The basic strategy for compiling
it to different machines is to block the multidimensional vector operations into submatrix operations, with
different submatrices assigned to different processors. We believe that this approach has a good chance of
success. However, there are questions about the generality of this strategy. SIMD machines are not yet
viewed as general-purpose parallel computers. Hence, the programs that can be effectively represented in
Fortran 90 may be only a strict subset of all interesting parallel programs. We would still need some way to
express those programs that are not well-suited to Fortran 90.

More importantly, we find that selecting a data decomposition is one of the most important intellectual
steps in developing data-parallel scientific codes. Though many techniques have been developed for automatic
data decomposition, we feel that the compiler will not be able to choose the most efficient data decomposition
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Figure 1.1 Fortran Dialects and Machine Architectures

for all programs. To be successful, the compiler needs additional information not present in Fortran 77,
Fortran 90, or PCF Fortran. This conviction forms the basis for our thesis.

1.2 Thesis

We believe that a fundamental ingredient required for compiling programs to distributed-memory machines
is a specification of the data decomposition of the program. Our thesis is that:

An advanced compiler can generate efficient parallel programs for MIMD distributed-memory
machines, if data decompositions are provided for well-written data-parallel numeric programs.

In other words, we believe that when data decompositions are provided for sequential programs written in
a data-parallel programming style, an advanced compiler can automatically generate parallel programs that
execute efficiently on MIMD distributed-memory machines.

1.3 Fortran D

Unfortunately, most current parallel programming languages concentrate on constructs to express paral-
lelism; they provide little support for data decomposition [165]. For these reasons, we have developed an
enhanced version of Fortran that introduces data decomposition specifications. We call the extended lan-
guage Fortran D, where “D” suggests data, decomposition, or distribution.

As shown in Figure 1.2, we believe that if a Fortran D program is written in a data-parallel program-
ming style with reasonable data decompositions, it can be implemented efficiently on a variety of parallel
architectures. We should note that our goal in designing Fortran D is not to support the most general
data decompositions possible. Instead, our intent is to provide data decompositions that are both powerful
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enough to express data parallelism in scientific programs, and simple enough to permit the compiler to
produce efficient programs.

A Fortran D program is a Fortran program augmented with a set of data decomposition specifications. If
these specifications are ignored the program can be run without change on a sequential machine. Hence, the
meaning of the program is exactly the meaning of the Fortran program contained within it—the specifications
do not affect the meaning, they simply advise the compiler. Compilers for parallel machines can use the
specifications not only to decompose data structures but also to infer parallelism, based on the principle
that only the owner of a datum computes its value. In other words, the data decomposition also implicitly
specifies the distribution of the work in the program.

1.4 Contributions

Despite its importance, a language such as Fortran D merely selects one avenue to machine-independent
parallel programming. Only the development of advanced compilation technology can make this approach
truly efficient and practical. The core of this thesis is devoted to demonstrating that Fortran D programs
written in a data-parallel programming style can be compiled into efficient parallel programs for MIMD
distributed-memory machines. It makes contributions in three areas: new and extended compilation tech-
niques, experimental evaluation and verification of several design decisions, and implementation and empirical
validation of a prototype Fortran D compiler.

The Fortran D compiler is distinguished by its reliance on advanced compile-time analysis and opti-
mization to generate efficient programs. In comparison, most other distributed-memory compilers rely on
extensive language features or run-time support, placing greater strain on the programmer and run-time
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system. The Fortran D compiler also directly generates the optimized program, rather than first generating
a naive program and applying optimizations through a series of program transformations.

1.4.1 New Compilation Techniques

The Fortran D compiler incorporates a number of novel compilation techniques that are important for
efficient generation of high-performance code for distributed-memory machines. They include:

e The DECOMPOSITION or TEMPLATE language feature, which allows users to map different arrays to the
same logical group (Chapter 2).

o Vector message pipelining, a technique that combines message vectorization and message pipelining to
hide communication overhead (Chapter 5).

o Detecting pipelined computations via cross-processor loops. Exploiting pipeline parallelism while bal-
ancing communication costs through coarse-grain pipelining (Chapter 5).

e Guiding communication and parallelism optimizations using cost models for communication and com-
putation (Chapter 6).

o Strategies for efficient one-pass interprocedural compilation and interprocedural optimization of com-
munication, partitioning, and dynamic data decomposition (Chapter 7).

As the Fortran D compiler is a second generation research project, many of the compilation techniques and
optimizations found in the Fortran D compiler have been discussed or implemented by other researchers.
However, previous researchers tend to apply each technique in isolation, without evaluating their effectiveness
or considering their interaction with other elements of the compiler. In the Fortran D compiler we adapt,
integrate, and extend a number of compilation techniques, including the following:

e Combine ALIGN and DISTRIBUTE language features to provide data decomposition for both SIMD and
MIMD systems (Chapter 2).

e Extend the FORALL language feature to handle multiple statements and reductions through determin-
istic merge of multiple writes to the same location (Chapter 2).

e A formal compilation model based on the owner computes rule. The model employs translations of
index and iteration sets through invertible distribution functions derived from data decomposition
specifications (Chapter 3).

e Algorithms to partition data and computation at compile-time and generate code to efficiently instan-
tiate the partition at run-time (Chapter 4).

o Extend message vectorization from a method of extracting element-wise messages out of loop nests
into a complete code-generation strategy for guiding communication placement (Chapter 4).

e Introduce message coalescing and message aggregation, enhancements to message vectorization that
reduce the number of messages generated (Chapter 5).

e Adapt methods for relaxing the owner computes rule for private variables and reductions detected by
the dependence analyzer (Chapter 5).

e Generalize the application of iteration reordering to complete loop nests and individual statements in
order to enhance unbuffered messages (Chapter 5).

e Discover new profitability criteria for applying program transformations such as loop interchange,
fusion, distribution, and strip-mining in the context of distributed-memory machines (Chapter 5).

e Design a unified Fortran 77D and 90D compilation framework by integrating loop fusion, partitioning,
and scalarization (Chapter 8).
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1.4.2 Experimental Evaluation and Verification

In addition to developing new compilation techniques, we performed empirical experiments to verify some
design choices. These experiments are used to:

e Evaluate the impact of individual optimizations on overall performance, as well as interactions between
optimizations. Optimizations are classified, integrated in an overall optimization scheme, and ranked
in order of effectiveness (Chapter 6).

e Verify the importance of interprocedural optimization using DGEFA, a linear algebra computation in
Linpack (Chapter 7).

e Establish the need for a unified compilation framework for both Fortran 77D and 90D. First, determine
the importance of loop fusion and pipelining for ADI integration, a technique for solving partial dif-
ference equations. Second, measure the performance of scalarization optimizations such as loop fusion
and data prefetching (Chapter 8).

1.4.3 Implementation and Validation

Finally, we validated the overall effectiveness of our approach by designing and implementing a prototype
Fortran D compiler for MIMD distributed-memory machines. We evaluated the compiler in two ways, by
comparing the performance of its output code against:

e Hand-optimized message-passing kernels and programs on the Intel iPSC/860 (Chapter 9).

e Kernels and programs compiled by the CM Fortran compiler for the TMC CM-5 (Chapter 9).

These results proved very helpful in assessing prospects for automatic parallelization for distributed-memory
machines.

1.5 Overview

We close this chapter by providing an overview of this thesis. Our research focuses on four areas—the
Fortran D language, basic compilation, advanced optimizations, interprocedural compilation. In addition,
we also present a unified compilation framework for both Fortran 77D and 90D, and elements of a complete
Fortran D programming system. Other compiler projects will establish that Fortran D can also be compiled
onto SIMD and shared-memory machines. The Fortran D compiler is designed to support both regular and
irregular computations, but for this thesis we concentrate on compiler techniques for regular computations.

We are implementing the prototype Fortran D compiler in the context of the ParaScope programming
environment in order to utilize its analysis and transformation capabilities [35, 117]. The prototype compiler
automatically derives from the data decomposition node programs for MIMD distributed-memory machines;
its goal is to minimize both load imbalance and communications costs. This thesis describes the design,
implementation, and evaluation of the prototype Fortran D compiler. Here we present a brief overview of
the remainder of the thesis.

Fortran D Language

Fortran D is a version of Fortran enhanced with data decomposition specifications. It is designed to support
two fundamental stages of writing a data-parallel program: problem mapping using sophisticated array
alignments, and machine mapping through a rich set of data distribution functions. The DECOMPOSITION
statement declares an abstract problem or index domain. The ALIGN statement maps each array element onto
the decomposition. The DISTRIBUTE statement groups elements of the decomposition and aligned arrays,
mapping them to the parallel machine. Each dimension is distributed in a block, cyclic, or block-cyclic
manner. Because the alignment and distribution statements are executable, dynamic data decomposition is
possible. The FORALL loop specifies parallelism in a deterministic manner.
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Compilation Model

The Fortran D compiler utilizes a code generation strategy based on the “owner computes” rule—where each
processor only computes values of data it owns. Fortran D data decomposition specifications are translated
into mathematical distribution functions that determine the ownership of local data. By composing these with
subscript functions or their inverses, the Fortran D compiler can partition the computation and determine
nonlocal accesses at compile-time. This information is used to generate the program for execution on the
nodes of the distributed-memory machine.

Basic Compilation

The basic structure of the Fortran D compiler is organized around three major functions—program analysis,
program optimization, and code generation. New analysis techniques are required to compile shared-memory
programs for distributed memory machines. Internal data structures used in the compilation process are
described. The Fortran D compiler utilizes a compilation strategy based on the concept of data dependence
[130] that unifies and extends previous techniques. The major step of the compilation process are:

1. Analyze Program. Symbolic and data dependence analysis is performed.

2. Partition data. Fortran D data decomposition specifications are analyzed to determine the decom-
position of each array in a program.

3. Partition computation. The compiler partitions computation across processors using the “owner
computes” rule.

4. Analyze communication. Based on the work partition, references that result in nonlocal accesses
are marked.

Optimize communication. Nonlocal references are examined to determine optimization opportu-
nities. The key optimization, message vectorization, uses the level of loop-carried true dependences to
combine element messages into vectors [16, 212].

Ot

6. Manage storage. “Overlaps” [212] or buffers are allocated to store nonlocal data.

7. Generate code. The compiler instantiates the communication, data and work partition deter-
mined previously, generating a Fortran 77 program with explicit message-passing. This single-program
multiple-data (SPMD) program can then be compiled and executed directly on the nodes of the
distributed-memory machine [111].

In the Fortran D compiler, collections of data and work are referred to as inder sets and iteration sets,
respectively. Both are represented by regular section descriptors (RSDs) [98], which we describe using
Fortran 90 triplet notation.

Compiler Optimizations

A number of Fortran D compiler optimizations are introduced and classified. Program transformations mod-
ify the program execution order to enable optimizations. Communication optimizations can be separated
into two classes, those that reduce communication overhead by decreasing the number of messages, and those
that hide communication overhead by overlapping the cost of remaining messages with local computation.
Parallelism optimizations restructure the computation or communication to increase the amount of useful
computation that may be performed in parallel. Optimizations improve computation partitioning by elimi-
nating explicit guards. Storage requirements are reduced by partitioning data across processors and sending
messages in smaller blocks.

Evaluation of Optimizations

Communication and parallelism optimizations are analyzed and empirically evaluated for stencil computa-
tions. Profitability formulas are derived for each optimization. Results show that exploiting parallelism
for pipelined computations, reductions, and scans is vital. Message vectorization, coarse-grain pipelining,
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and collective communication significantly improve performance because they eliminate large numbers of
messages. Remaining optimizations help hide communication overhead by overlapping communication with
computation.

Interprocedural Compilation

Algorithms for compiling Fortran D for MIMD distributed-memory machines are significantly restricted in
the presence of procedure calls. Interprocedural analysis, optimization, and code generation algorithms for
Fortran D are presented that limit compilation to only one pass over each procedure. This is accomplished
by collecting summary information after edits, then compiling procedures in reverse topological order to
propagate necessary information. Delaying instantiation of the computation partition, communication, and
dynamic data decomposition is key to enabling interprocedural optimization. Empirical results show that
this can be crucial in achieving acceptable performance for common applications.

Fortran 77D and 90D

An integrated approach to compiling Fortran 77D and Fortran 90D programs is presented. The integrated
Fortran D compiler relies on two key observations. First, array constructs may be scalarized into FORALL
loops without loss of information. Second, loop fusion, partitioning, and sectioning optimizations are essential
for both Fortran D dialects.

Preliminary Experiences

Case studies are used to illustrate its strengths and weaknesses of the prototype Fortran D compiler. When
compared against hand-optimized message-passing code on the Intel iPSC/860, the output of the prototype
is slower than hand-optimized kernels by 50-100% due to unimplemented optimizations. However, it closely
matches the performance of parallel stencil programs since computation dominates execution time. By
making more decisions at compile-time, the Fortran D compiler outperforms the CM Fortran compiler by
a factor of 2-17 on the Thinking Machines CM-5. Despite these successes, the prototype requires better
symbolic analysis, greater flexibility, and improved optimization of linear algebra and pipelined codes to be
truly useful. Overall, we find that the success of automatic parallelization is dependent on the amount of
communication and parallelism inherent in the application.

Programming System

We describe the elements of a complete Fortran D programming system. A static performance estimator
based on training sets provides machine-dependent details that fine-tune the compilation process. The
automatic data partitioner derives Fortran D data decomposition specifications based on the original Fortran
program. A shared-memory parallelizing and vectorizing compiler exploits multiple processors on a single
node. The data locality optimizer restructures the node program for improved use of the memory hierarchy,
backed up by an optimizing scalar compiler. The programming environment provides program profiling,
performance measurement and visualization, as well as support for debugging and accepting user feedback.
A portable lightweight communication library improves performance.



Chapter 2

Fortran D Language

Fortran D is a version of Fortran enhanced with data decomposition specifications. It is designed to support
two fundamental stages of writing a data-parallel program: problem mapping using sophisticated array
alignments, and machine mapping through a rich set of data distribution functions. We believe that Fortran D
provides a simple machine-independent programming model for most data-parallel computations.

2.1 Introduction

High-level parallel languages such as Delirium [147], Linda [41], and Strand [70] are valuable when used to
coordinate coarse-grained functional parallelism. However, these languages do not meet the needs of compu-
tational scientists because they do not elegantly describe data-parallel computations of the type described by
Hillis and Steele [101] and Karp [111]. Parallelism must be explicitly specified because these languages do not
provide compilers that can automatically detect and exploit parallelism. In addition, these languages also
lack both language and compiler support to assist in efficient data placement, the partitioning and mapping
of data to individual processors [165].

To overcome this deficiency, we have designed Fortran D, a version of Fortran enhanced with a rich set of
data decomposition specifications. Fortran D is targeted at data-parallel numeric applications that are not
supported by existing parallel languages. The extensions proposed in Fortran D are compatible with both
Fortran 77 and Fortran 90, a version of Fortran with explicit manipulation of high-level array structures.
Fortran 90D can be viewed as a refinement of CM Fortran [196] consistent with a parallel Fortran 77.

We consider Fortran D to be one of the first of a new generation of data-placement programming languages.
Its design was inspired by the observation that modern high-performance architectures demand that careful
attention be paid to data placement by both the programmer and compiler. As one measure of its relevance,
we note that many features from Fortran D have been adopted by High Performance Fortran (HPF), a new
proposed Fortran standard [99]. HPF is being used by Cray Research, DEC, IBM, and Thinking Machines
for programming their newest generation of parallel machines.

Our goal with Fortran D is to provide a simple yet efficient machine-independent parallel programming
model. By shifting much of the burden of machine-dependent optimization to the compiler, we allow the
programmer to easily write data-parallel programs that can be compiled and executed with good performance
on a variety of parallel architectures.

We believe that Fortran D is powerful enough to express most fine-grain parallel computations, but
also simple enough that a sophisticated compiler can produce efficient programs for different parallel ar-
chitectures. In particular, Fortran D is well suited for supporting compiler techniques for automatic data
decomposition and communication generation, two crucial problems in programming distributed-memory
machines. Fortran D programs also have the advantage of being deterministic, unlike programs written in
most explicitly parallel languages.

This chapter presents the design of Fortran D, especially its strategy for expressing data parallelism and
mapping it to the underlying parallel architecture. A number of language issues are discussed and solutions
presented. Language features for partitioning data are crucial. Because of the Fortran D compilation model,
they ultimately determine the shape of the resulting code by defining the computation partitioning and the
resulting inter-processor communication. We start by describing our view of data parallelism.
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2.2 Data-Parallel Programming Model

The data decomposition problem can be approached by noting that there are two levels of parallelism in
data-parallel applications. First, there is the question of how arrays should be aligned with respect to one
another, both within and across array dimensions. We call this the problem mapping induced by the structure
of the underlying computation. It represents the minimal requirements for reducing data movement for the
program, and is largely independent of any machine considerations. The alignment of arrays in the program
depends on the natural fine-grain parallelism defined by individual members of data arrays.

Second, there is the question of how arrays should be distributed onto the actual parallel machine. We
call this the machine mapping caused by translating the problem onto the finite resources of the machine. It
is dependent on the topology, communication mechanisms, size of local memory, and number of processors in
the underlying machine. Data distribution provides opportunities to reduce data movement, but must also
maintain load balance. The distribution of arrays in the program depends on the coarse-grain parallelism
defined by the physical parallel machine.

Fortran D requires the user to specify data decompositions in terms of these two levels of data parallelism.
First, the ALIGN statement is used to describe a problem mapping. Second, the DISTRIBUTE statement is
used to map the problem and its associated arrays to the physical machine. We believe that our two phase
strategy for specifying data decomposition is natural for the computational scientist, and is also conducive to
modular, portable code. Previous projects also include a third intermediate level of parallelism representing
a coarse-grain “virtual machine”. We do not think this is necessary for our work, although it may be helpful
for explicit message-passing programs.

2.3 N$PROC

Fortran D reserves the variable NSPROC to indicate the number of processors available. It may be evaluated
at run-time or passed as a compile-time option to the compiler.

2.4 DECOMPOSITION Statement

In Fortran D, the DECOMPOSITION statement may be used to declare a name for each problem mapping.
Arrays in the program are mapped to the decomposition with the ALIGN statement. The result represents
an abstract high level specification of the fine-grain parallelism of a problem. There may be multiple decom-
positions representing different problem mappings, but an array may be mapped to only one decomposition
at a time. All scalars and arrays not mapped to a decomposition are allocated locally.

Decompositions are designed to enable users to easily group data arrays associated with solving a single
problem. The decomposition statement declares the name, dimensionality, and size of a decomposition for
later use. A decomposition is simply an abstract problem or index domain. No storage is allocated for a
decomposition.

DECOMPOSITION A(N)
DECOMPOSITION B(N,N)

In this example, A is declared as an one-dimensional decomposition of size N, with elements indexed from 1
to N. B is a two-dimensional N x N decomposition.

We have also adopted a feature proposed in High Performance Fortran back into Fortran D. We have
made the DECOMPOSITION statement optional, allowing arrays to be aligned or distributed directly. We do
this by assuming arrays in Fortran D are implicitly aligned with a decomposition of the same size and shape.
Any Fortran D statements applied to an array affects the underlying decomposition in the standard way.

2.5 ALIGN Statement

The ALIGN statement is used to map arrays with respect to a decomposition. Arrays mapped to the same
decomposition are automatically aligned with each other. Alignment can take place either within or between
dimensions.
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The alignment of arrays to decompositions is specified by placeholders in the subscript expressions of both
the array and decomposition. I, J, K, etc. .. are canonical placeholders indicating the location of dimensions
in a decomposition. Array subscripts are fixed; they always consist of the placeholders in alphabetical
order beginning with I. The decomposition subscripts can be functions of the placeholders; they specify the
alignment of the array with respect to the decomposition.

2.5.1 Exact Match

The simplest alignment occurs when the array is exactly mapped onto the decomposition. In the following
example, the arrays X1 and X2 are mapped exactly onto the equivalent dimensions in the decompositions A
and B.

REAL X1(N), X2(N,N), X3(N,N)
DECOMPOSITION A(N), B(N,N)
ALIGN X1(I) with A(I)

ALIGN X2(I,J) with B(I,J)
ALIGN X3(I,J) with B(I,J)

For convenience, placeholders are not required where the mapping is exact. Multiple arrays may also be
aligned with the same statement. For instance, the alignments in the previous example could also have been
specified with the following syntax.

REAL X1(N), X2(N,N), X3(N,N)
DECOMPOSITION A(N), B(N,N)
ALIGN X1 with A

ALIGN X2, X3 with B

2.5.2 Intra-dimension Alignment

Intra-dimension alignment determines the data decomposition within each dimension. This section describes
how offset and stride may be specified.

Alignment Offsets

In Fortran D, the user can specify an alignment offset for any dimension of an array. The simplest case
occurs when the array and decomposition have the same number of dimensions. Constants are added to the
placeholders in the decomposition to indicate the offset in that dimension.

REAL X1(N), X2(N)
DECOMPOSITION A(N)
ALIGN X1(I) with A(I+1)
ALIGN X2(I) with A(I-1)

In this example, X1 and X2 are aligned with respect to decomposition A by 1 and —1. X1(I) is thus always
mapped to the same element of the decomposition as X2(I+2); e.g., X1(1) is mapped together with X2(3).

REAL X3(N,N), X4(N,N)
DECOMPOSITION B(N,N)

ALIGN X3(I,J) with B(I,J-1)
ALIGN X4(I,J) with B(I-1,J+2)

Similarly, in this example the alignment of X3 and X4 with respect to decomposition B means that X3(I,J)
is mapped to the same element of B as X4(I+1, J-3).
Alignment Strides

Fortran D also allows a stride to be specified when performing intra-dimensional alignment. Alignment
strides are used to determine the density of an array mapped to a dimension. They are introduced as
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DECOMPOSITION A(I)

ALIGN X1(I) with A(I+1)

ALIGN X2(I) with A(I-1)

1 41
1

Figure 2.1 1-D Alignment Offsets

...........................................

...........................................

DECOMPOSITION B(I,J) ALIGN X3(I,J) ALIGN X4(I,J)
with B(I,J-1) with B(I-1,J+2)

Figure 2.2 2-D Alignment Offsets

coefficients of placeholders in the subscript expressions of decompositions in an ALIGN statement. Strides
may be also used in combination with offsets.

REAL X1(N), X2(N)
DECOMPOSITION A(N)

ALIGN X1(I) with A(2+*I)
ALIGN X2(I) with A(2*I-1)

In this example, array X1 has a stride of 2 with respect to decomposition A. It is thus mapped to the even
elements of A. Array X2 also has a stride of 2, but the alignment offset of —1 causes it to be mapped to
every odd element of A. Alignment strides are easily extended to higher order arrays and decompositions,
as in the following example.

REAL X1(N,N), X2(N,N+N)
DECOMPOSITION B(N,N)

ALIGN X1(I,J) with B(2*I,2%J)
ALIGN X2(I,J) with B(2*I-1,J)

Alignment strides with negative values are also allowed; they correspond mapping the reflection of the array
dimension onto the decomposition.
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Figure 2.3 Alignment Stride
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Figure 2.4 Alignment Permutation
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2.5.3 Inter-dimension Alignment

Inter-dimension alignment determines the data decomposition between dimensions. This section describes
how permutation, collapse, and embedding may be specified.

Permutation

In Fortran D, the user can arbitrarily permute the dimensional alignment between arrays and decompositions.
A common application would be to perform array transpositions. Canonical placeholders must be used to
mark the aligned dimensions.

REAL X1(N,N), X2(N,N,N)
DECOMPOSITION B(N,N), C(N,N,N)
ALIGN X1(I,J), with B(J,I)
ALIGN X2(I,J,K), with C(K,I,J)

In this example, the transpose of X1 is mapped to the decomposition B, as indicated by the reversed
placeholders T and J. Similarly, the third and first dimensions of X2 are mapped to the first and second
dimensions of decomposition B.

Collapse

It is sometimes convenient to ignore certain dimensions of the array when mapping an array to a decompo-
sition. All data elements in the unassigned dimensions are collapsed and mapped to the same location in
the decomposition. An array dimension may be collapsed in the ALIGN statement simply by excluding its
placeholder from the decomposition subscripts, as this demonstrates that the dimension has no effect on the
actual alignment.

REAL X1(N,N), X2(N,N), X3(N,N,N), X4(N,N,4)
ALIGN X1(I,J) with A(I)

ALIGN X2(I,J), X3(I,J,K) with A(J)

ALIGN X4(I,J,K) with B(I,J)

In this example, the first dimension of array X1 is mapped onto the decomposition A. The second dimension
of X1 is collapsed and stored on the same processor. In other words, each row of X1 is mapped to an
individual element in decomposition A. Similarly, each column of array X2 is mapped to A. For array X3,
the second dimension is mapped onto the decomposition A, with the first and third dimensions local. Array
collapse frequently occurs when an array dimension is used to store multiple data fields per problem element,
such as for array X4 in the example.

Embedding

Conversely, it may be necessary to map arrays with fewer dimensions onto the decomposition. In these cases
it is necessary to specify both the mapping for each dimension of the array and the actual position of the
array in the unmapped dimensions of the decomposition. This determines the embedding of the array in the
decomposition.

REAL X1(N), X2(N), X3(N), X4(N)
ALIGN X1(I) with B(I,2)

ALIGN X2(I) with B(1,I)

ALIGN X3(I) with B(I-1,2)
ALIGN X4(I) with B(1,I+2)

In this example, array X1 is mapped to the first dimension of decomposition B, a column. It is necessary to
specify the actual column position with a constant remaining unmapped dimension. In this case the constant
“2” in the second dimension indicates that X1 should be mapped to the second column of decomposition B.
Similarly, array X2 is mapped to the first row of decomposition B. In a more complex example, arrays X3
and X4 are both aligned and mapped to decomposition B.
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ALIGN X1(I,J) with A(I)
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Figure 2.5 Array Collapse

DECOMPOSITION B(I,J)

ALIGN X1(I) with B(I,2) ALIGN X2(I) with B(1,I)

ALIGN X3(I) with B(I-1,2) ALIGN X4(I) with B(1,I+2)

Figure 2.6 Array Embedding
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This scheme can be extended to higher order arrays and decompositions. Note that when arrays are
mapped only to part of a decomposition, the array may not be mapped to all the processors in the machine,
depending on the actual distribution.

2.5.4 Combinations

The user can apply any combination of intra-dimensional and inter-dimensional alignments when mapping
arrays to decompositions.

REAL X1(N,N), X2(N,N)
ALIGN X1(I,J) with B(J+2,I-1)
ALIGN X2(I,J) with B(4,I-2)

In this example, array X1 is both aligned and transposed with respect to decomposition B. Array X2 is
collapsed into its first dimension (forming a single column), mapped to the fourth row of decomposition B,
and aligned by —2.

2.5.5 Alignment Options

The ALIGN statement also supports options to specify actions for overflows, mapping parts of arrays to a
decomposition, and either totally or partially replicating arrays. These options are discussed in this section.

Array Overflow

It is possible that the array to be aligned does not fit completely within the decomposition, causing an
overflow. In these cases, an optional overflow clause may be used to select one of three options, ERROR,
TRUNC, and WRAP, described below.

The default choice, ERROR, considers elements overflowing the decomposition to be unmapped. Any
attempt to access such elements will be considered to be an error. Alternatively, the user may choose to
truncate the array with the TRUNC option. All elements overflowing the decomposition are then mapped to
the element on the edge of the decomposition in that dimension. WRAP, the last choice, wraps overflowing
array elements back to the opposite end of the decomposition. Systolic algorithms in particular may benefit
from this feature.

REAL X1(N), X2(N), X3(N), X4(N,N,N)

DECOMPOSITION A(N), C(N,N,N)

ALIGN X1(I) with A(I-1)

ALIGN X2(I) with A(I-1) overflow (TRUNC)

ALIGN X3(I) with A(I-1) overflow (WRAP)

ALIGN X4(I,J,K) with C(I-1,J-1,K-1) overflow (ERROR,TRUNC,WRAP)

In the previous example, attempting to reference X1(1) would be illegal since it maps to the undeclared
decomposition element A(0), which by default is defined as type ERROR. Because X2 is truncated, the array
elements X2(1) and X2(2) map to the same decomposition element A(1). Wrapping X3 causes the array
element X3(1) to map to the decomposition element A(N). The alignment statement for X4 shows how
overflow options may be specified for multidimensional decompositions.

Restrictions A problem exists with detecting array overflow that occur when attempting to access array
elements that have not been mapped to a decomposition. Most cases may be detected at compile-time, but
irregular or complex computations require run-time support. To restrict complexity the Fortran D compiler
may either provide a special compile-time option that generates code that assumes no array overflows, or an
option that generates code to aid run-time detection of such overflows.

Array Range

By default, the ALIGN statement maps the entire array to the decomposition. However, Fortran D also allows
just part of an array to be mapped onto a decomposition. This may be done by specifying a section of the
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DECOMPOSITION A(N) | 1 | 2 | 3 | |N—2 |N—1 | N |
———

ALIGN X(I) with A(I-1) B2 |3 |4 [ [N | N |

ALIGN X(I) with A(I-1) overflow (TRUNC) | 1,2 | 3 | 4 | ........... |N?1 | N

ALIGN X(I) with A(I-1) overflow (WRAP) 2 |3 |4 | Ina |~ | 1]

Figure 2.7 Array Overflow

array to be mapped using the RANGE clause. The RANGE clause specifies a range for each dimension of the
form <from>:<to>. The : symbol indicates that the entire array dimension should be mapped. A subarray
can thus be selected and aligned with a decomposition. This partial alignment feature is useful when one
large work array is subdivided into several smaller logical arrays at run-time.

REAL X1(N+N), X2(N+N), X3(N+N,N+N), X4(N,N+N)
DECOMPOSITION A(N), B(N,N)

ALIGN X1(I) with A(I) range (1:N)

ALIGN X2(I) with A(I-N) range (N+1:N+N)

ALIGN X3(I,J) with B(I-N,J-N) range (N+1:N+N,N+1:N+N)
ALIGN X4(I,J) with B(I,J-N) range (:,N+1:N+N)

In the previous example, the RANGE clause is used to map elements 1 to N of array X1 to decomposition A
and elements N+1 to 2N of array X2 to decomposition A, starting at decomposition element 1. Similarly,
the subarray of X3 beginning at (N4+1,N+1) is aligned with decomposition B. Finally, half of array X4 is
aligned with decomposition B, with the : symbol indicating that the entire first dimension of X4 is mapped
to the decomposition.

2.5.6 Replication

The ALIGN statement may also be used a means to replicate distributed variables in Fortran D. This can be
done by assigning a range for a dimension rather than a position or placeholder. Ranges may be specified
as <from>:<to>, or simply as : if the entire dimension is desired. If an assignment is made to a replicated
value, all replicated values would be updated. Note that all variables not aligned to a decomposition are
considered to be totally replicated on all processors. The compiler will label scalar and array variables as
local, distributed, or replicated.

REAL X1(N), X2(N), X3(N)
DECOMPOSITION B(N,N)

ALIGN X1(I) with B(I,1:2)
ALIGN X2(I) with B(I,:)
ALIGN X3(I) with B(I-1:I,:)

In the first ALIGN statement in this example, a range from 1 to 2 is specified in the second dimension
of B. This causes each of the first two columns of decomposition B to each get a copy of array X1, in
effect replicating every element of X1 among the first five elements of each row of B. In the second ALIGN
statement, the : symbol in the second dimension of decomposition B specifies that each element of array
X2 is replicated across all elements of B in the same row. The two modes may also be combined, as in the
third statement, where each row of B gets a copy of the element of array X3 in that row, as well the element
of X3 from the previous row.
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Figure 2.8 Array Range
J —_—
\ * N [N
.z = =
RN
RN
RN
ALIGN X1(I) with B(I,1:2) ALIGN X4(I,J) with B(I,*)
Z N NN N ;22 N
—— : A
Z N NN N X
e A
Z N NN N <
e 7
Z N NN N N\

ALIGN X2(I) with B(I,*)

ALIGN X5(I,J) with B(%*,J)

Figure 2.9 Array Replication

REAL X4(N,N), X5(N,N), X6(N,N)
DECOMPOSITION B(N,N)

ALIGN X4(I,J) with B(I,:)
ALIGN X5(I,J) with B(:,J)
ALIGN X6(I,J) with B(:,:)

Replication can also be extended to higher dimension arrays. In this example, the first ALIGN statement

causes each row of array X4 to be mapped to each element in the corresponding row of decomposition
B. Similarly, the second ALIGN statement causes each column of X5 to be mapped to each element in the
corresponding column of B. Finally, each element of X6 is totally replicated for each element of decomposition
B; i.e., each processor is guaranteed to have a copy of X6. This is exactly the default case for unaligned
arrays.
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2.6 DISTRIBUTE Statement

In Fortran D, we use the DISTRIBUTE statement to specify the mapping of the decomposition to the physical
parallel machine. The distribution selected will affect the ability of the compiler to minimize communications
and load imbalance for the resulting program. Physical machine characteristics such as the number of
processors, amount of memory per processor, and communication costs between processors must all be
taken into account since they affect which distributions are feasible and efficient. Program characteristics
such as the size of distributed arrays and computation structure may also be crucial in determining a good
distribution.

In addition, data parallelism may either be regular or irregular. Regular parallelism can be effectively
exploited through relatively simple data distributions. Irregular data parallelism, on the other hand, may
require irregular data distributions and run-time preprocessing to manage the parallelism.

In Fortran D, a distribution specifies the machine mapping for exactly one decomposition. The compiler
then applies the distribution to all the arrays mapped to the decomposition. The user does not need to
specify a distribution for each array. It is illegal to access any element of a distributed array before it has
been mapped to the machine with a DISTRIBUTE statement.

The DISTRIBUTE statement takes the name of a decomposition and assigns an attribute to each dimension
of the decomposition. Each attribute describes the mapping of the data in that dimension of the decompo-
sition. Attributes in each dimension are independent, and may specify regular or irregular distributions, as
described in later sections. The symbol : is used to denote dimensions which are assigned locally; i.e., these
dimensions are not distributed.

DISTRIBUTE A(attribute)
DISTRIBUTE B(attribute, atiribute)

In this example, the decompositions A and B are assigned an attribute for each dimension of the decompo-
sition. Distributions in effect describe the assignment of data to an underlying processor array.

2.6.1 Regular Distributions

The three types of attributes for regular distributions in Fortran D are BLOCK, ¢YCLIC, and BLOCK_CYCLIC.
Suppose there are P processors and N elements in a decomposition. We assume for simplicity that P divides
N evenly. If this is not the case, the resulting distribution will be slightly unbalanced. The Fortran D
distributions can then be described as follows:

e BLOCK divides the decomposition into contiguous chunks of size N/P, assigning one block to each
Processor.

e CYCLIC specifies a round-robin division of the decomposition, assigning every P!”* element to the same
processor. CYCLIC distributions are useful for load balancing.

e BLOCK_CYCLIC is similar to cycLIC but takes a parameter M. It first divides the dimension into
contiguous chunks of size M, then assigns these chunks in the same fashion as cycLic.

Only one attribute may be assigned for each dimension of the decomposition. However, multidimensional
decompositions may have different combinations of distribution patterns. For these decompositions, proces-
sors are allocated as evenly as possible to each distributed dimension. This creates an implicit processor
array. The following examples show some common Fortran D distributions.

DISTRIBUTE A(BLOCK), B(CYCLIC), C(BLOCK.CYCLIC(2))

DISTRIBUTE A(BLOCK,:), B(:,BLOCK), C(BLOCK,BLOCK)

DISTRIBUTE A(CYCLIC,:), B(:,CYCLIC), C(CYCLIC,CYCLIC)

DISTRIBUTE A(BLOCK_CYCLIC(2),:), B(:,BLOCK CYCLIC(3))

DISTRIBUTE C(BLOCK_CYCLIC(2),BLOCK.CYCLIC(4))

DISTRIBUTE A(CYCLIC,BLOCK), B(BLOCK,CYCLIC), C(BLOCK,BLOCK CYCLIC(2))
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Figure 2.10 1-D Distributions

2.6.2 Processor Allocation

Fortran D also provides the capability of specifying processor allocations, where the allocation specifies
the number of processors assigned to each dimension of the decomposition. Users can thus define their own
uneven processor allocation, instead of using the even processor allocations the compiler generates by default.

Processor allocations are specified by adding an additional parameter indicating the number of processors
for each dimension of the distribution. The multiplicand of the processors in each dimension must be less
than or equal to the total number of processors defined by NSPROC, since Fortran D does not support
virtual processors. If BLOCK_CYCLIC is passed two parameters, the first parameter specifies the block size
and the second specifies the number of processors. The following are some examples of uneven distributions:

DISTRIBUTE A(BLOCK(4),BLOCK(2)), B(BLOCK(2),BLOCK(4))
DISTRIBUTE A(BLOCK(4),CYCLIC(2)), B(BLOCK(2),CYCLIC(4))
DISTRIBUTE C(CYCLIC(4),BLOCK(2)), D(BLOCK CYCLIC(2,2),BLOCK(4))

2.6.3 Unsupported Distributions

Though Fortran D supports several regular distribution patterns, our intention is to keep the distribution
attributes relatively simple to allow straightforward communications generation by the compiler. As a result,
Fortran D distributions obey these simple rules:

e decomposition dimensions are distributed independently
(no diagonal distributions are possible)

e decomposition segments have uniform size and shape (except for boundary conditions)

e processor assignments are regular

Figure 2.17 shows some distributions we do not plan to support in Fortran D. We do not believe there will
be a significant loss of performance caused by using the regular distributions provided in Fortran D.
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2.6.4 Irregular Distributions

For problems with irregular data parallelism, regular distributions may not be efficient. For these cases,
Fortran D allows user specified irregular distributions through the use of a mapping array, which will itself
usually be distributed. An example for implementing an irregular distribution in this manner is as follows:

n$proc = 4

REAL X(16)

INTEGER MAP(16)

DECOMPOSITION REG(16), IRREG(16)

ALIGN MAP with REG

ALIGN X with IRREG

DISTRIBUTE REG(BLOCK)

...set values of MAP array by some algorithm...
DISTRIBUTE IRREG(MAP)

In this example, the elements of MAP must be set to integers between 1 and 4 (the number of processors).
TRREG(i) will then be stored on the processor value in MAP(i), as shown in Figure 2.18.

If an element of MAP is not a valid processor number, then that element of decomposition IRREG will
not be mapped to any processor; accessing such an element is an error. This is the case with X(15) in the
figure. Changes to MAP made after the DISTRIBUTE statement is executed do not affect the distribution.
MAP may be either distributed or replicated; distributed MAP arrays will consume less memory, but may
require more communication steps to access elements.

2.6.5 Combined Regular and Irregular Distribution
A mixture of regular and irregular distributions may also be used.

n$proc = 16

INTEGER MAP(16)

REAL X(16,16)

DECOMPOSITION A(16), B(16,16)

ALIGN MAP with A

ALIGN X with B

DISTRIBUTE A(BLOCK)

...set values of MAP array by some algorithm...
DISTRIBUTE B(MAP,BLOCK(4))

In this example, the map array is block distributed among all processors. The array X (aligned with
decomposition B) is distributed irregularly in the first dimension according to the map array, and block
distributed in the second dimension. Since only four processors are available in the first dimension, the map
array must only provide a distribution for processors 1-4.

2.7 Dynamic Alignment and Distribution

Data mappings may change between different computation phases, thereby requiring dynamic realignment
and/or redistribution to reduce data movement. We term this dynamic data decomposition. To support
this, in Fortran D both ALIGN and DISTRIBUTE may be interpreted as executable statments rather than
declarations, depending on their location. In the following example, the second set of data specifications
cause dynamic realignment of arrays X and Y. This is done to reduce communications for the second loop.

REAL X(N), Y(N)

DECOMPOSITION A(N)

ALIGN X, Y with 4

DISTRIBUTE A(BLOCK)

DOI = 1,N
X(I)=Y(I)

ENDDO
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MAP[1:4] 2 3 1 3
processory
x @ 6O GO W W
MAPI5:8] 1 4 1 3
Processors
x @ O
MAP[9:12] 2 2 1 4
processors
x @ O (1)
MAP[13:16] 1 4 0 3
Processory
x o @ W

Figure 2.18 Irregular Distribution Example

ALIGN X(I) with A(I+1)

DOI = 1,N
X(I)=Y(I+1)
ENDDO

Another reason to employ dynamic data distributions is to is to configure a program for greater efficiency,
based on the problem size or number of available processors.

REAL X(N,N)
DECOMPOSITION B(N,N)
ALIGN X with B
IF (n$proc .GT. 20) THEN
DISTRIBUTE B(BLOCK,BLOCK)
ELSE
DISTRIBUTE B(BLOCK,:)
ENDDO

In this example, the program is configured so that the data distribution chosen is dependent on the total
number of processors available. The Fortran D compiler will require additional sophistication in order to
handle dynamic data decompositions.
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Restrictions To reduce implementation complexity, the prototype may require that only one local data
mapping can “reach” any reference to a distributed variable. This will simplify the job of communication
generation. The compiler can ensure this by requiring all ALIGN and DISTRIBUTE statements to be unguarded.

REAL X(N)

DECOMPOSITION A(N)

ALIGN X with A

DISTRIBUTE A(BLOCK)

IF ( I .EQ. 1 ) THEN
DISTRIBUTE A(CYCLIC)

ENDIF

X(I) = 1.0

For instance, this example will not be supported, because the program determines at run-time whether X
has a BLOCK or ¢YCLIC distribution.

2.8 Procedures

There are a number of issues concerning procedures in Fortran D. First, it is permitted to call procedures
with distributed arrays as arguments. The array formal parameters in the procedure will inherit the data
decomposition of the actual parameters in the caller. The Fortran D compiler is responsible for performing
all the analysis required to generate the correct code.

Second, in Fortran D the effect of all DECOMPOSITION, ALIGN, and DISTRIBUTE statements are limited
to the scope of the enclosing procedure. This provides users with a structured method to limit the scope of
their decompositions, and simplifies the problem of dealing with dynamic decompositions.

REAL X(I), Y(IN)
DECOMPOSITION A(N)
ALIGN X, Y with A
DISTRIBUTE A(BLOCK)
CALL F0O(X)

X(1) = ...

For instance, in this example the scoping rule in Fortran D ensures that the array X will be BLocK distributed
at the assignment to X(1), even if procedure FOO redistributes X locally. However, procedures do inherit
data decompositions from their callers. Upon entry of procedure FOQ, the array X will be BLOCK distributed.
Array X may be dynamically redistributed in procedure FOO, but Fortran D ensures that it will not affect
the decomposition of X of the parent procedure.

2.8.1 Restrictions

To reduce interprocedural analysis, the prototype Fortran D compiler may place restrictions on procedures.
First, to avoid calculating interprocedural reaching data decompositions, the prototype may require proce-
dures to locally declare data decompositions for all distributed arrays accessed. Second, procedure calls may
also be barred from FORALL loops.

2.9 FORALL Loops

Certain programming constructs, such as the use of index arrays, make compile-time detection of data
dependences impossible. This is especially true for irregular computations, since many parallel loops cannot
be detected by the compiler. The compiler is forced to assume loop-carried or inter-iteration dependences
that force synchronization to be inserted [10].

In a separate situation, the user may wish to design computations such as Jacobi iteration where existing
values in an array are used to calculate new values. However, the user is forced to explicitly copy the old
values of the array to a separate location in order to avoid inadvertently overwriting the old values before
they have been used. This requires both additional effort and storage.
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As a remedy, Fortran D defines FORALL to be a loop such that each iteration can only use values defined
before the loop or within the current iteration. When a statement in an iteration of the FORALL loop accesses
a memory location, it will not get any value written by a different iteration of the loop. Instead, it will get
the old value at that memory location (i.e., the value at that location before the execution of the FORALL
loop) or it will get some new value written on the current iteration.

Another way of viewing the FORALL loop is that it has copy-in/copy-out semantics. In other words, each
iteration gets its own copy of the entire data space that exists before the execution of the loop, and writes
its results to a new data space at the end of the loop [6, 148, 22].

At the end of a FORALL loop, any variables that are assigned new values by different iterations have these
values merged at the end of the loop. Merges are performed deterministically, by using the value assigned
from the latest sequential iteration.

The major benefit of a FORALL loop is that since no values depend on other iterations, the loop may be
executed in parallel without communication. However, communication may still be required before the loop
to acquire non-local values, and after the loop to update or merge non-local values. Another advantage of
the FORALL loop is that it has deterministic semantics, provided that the underlying system merges values in
a deterministic manner. Finally, the user can use the FORALL loop to preserve values in a rhs array without
the need for explicit copies or storage.

2.9.1 Example FORALL Loop
The syntax of the FORALL loop is shown in the following example:

FORALL I = 1,N
X(IDX(I)) = ...
. = X(IDX(I+1))
ENDDO

In this example, the FORALL loop may be executed in parallel without communication or synchronization,
even though loop-carried dependences cannot be eliminated by compile-time analysis. Instead, the compiler
and run-time system will ensure that statements in the loop body access old values of X instead of new
values written on other iterations.

Here we provide a more detailed example. In the following FORALL loop, there are three dependences
caused by the assignment to X(I) at statement S;—a loop-carried antidependence to X(I+1) at S, a loop-
independent true dependence to X(I) at S, and a loop-carried true dependence to X(I-1) at Sy.

FORALL I = 1,N

S X(I) = ...

Sy ...= X(I+1)

S3 ..= X(D)

Sy ... = X(I-1)
ENDDO

Both sequential Fortran and FORALL semantics specify that the reference to X(I+1) at Sy uses its old value;
i.e., the value of X(I4+1) before it is assigned at statement S;. Similarly, both sequential and FORALL
semantics require the reference to X(I) at Ss to use the new value; i.e., the value assigned to X(I) at Sj.
This is because the new value is assigned in the current iteration.

On the other hand, sequential and FORALL semantics differ for the loop-carried true dependence between
X(I) and X(I-1). Sequential Fortran semantics require that the reference to X(I-1) at statement S; use
the new value computed at S;. However, FORALL semantics cause statements in the loop body to use new
values only if they are calculated in the current loop iteration. All other values are old values from before the
FORALL loop. The reference to X(I-1) thus uses the old value of X(I-1), before it is assigned to at statement
S1. In effect, all loop-carried true dependences are converted to antidependences in a FORALL loop.

2.9.2 Nested FORALL Loops

Multiple nested FORALL loops may be used to specify more than one level of data parallelism. A nested
FORALL loop has exactly the same semantics as the standard FORALL loop—no value may be computed and
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used on different iterations of the FORALL loop. In most cases, all communications can be moved entirely
out of several nested FORALL loops.

FORALL I =
FORALL J
X(..) = ...
ENDDO
ENDDO

1,8
= 1,N

FORALL I =
FORALL J
X(..) = ...

= X(..)

1,8
= 1,N

ENDDO
ENDDO

For instance, consider the two example loop nests. Standard FORALL semantics allow all communications
resulting from values assigned to X in the inner J loop to be moved outside the J loop. What is less clear
is that the communications can actually be moved outside the outer I loop as well. This is because the
semantics of the FORALL loop guarantee that the values of X produced (by the J loop) in one iteration of
I cannot be used until the entire I loop is complete. Since there is no possible use of these values in the
same iteration of loop I, the communications may be delayed to the end of the entire loop nest. However, a
different situation exists in this example:

FORALL I = 1,N
FORALL J = 1,N
X(..) = ...
ENDDO
o= XD
ENDDO

In this loop nest, there is actually a possible of use of X following the inner J loop. The difference here is
that the values generated in the inner J loop may be used in the same iteration of the outer I loop. If the
compiler cannot eliminate possible dependence between the definition and use of X, communications may be
necessary at the end of the J loop to update values of X.

Our intent in providing the FORALL loop in Fortran D is to provide an optional method for users to aid
the compiler in generating efficient codes for irregular or sparse computations. FORALL loops are unnecessary
for regular computations—we believe that a sophisticated compiler can readily extract the parallelism from
normal do loops for regular computations.

We have defined semantics of the FORALL loop to be quite close to sequential Fortran. In particular,
FORALL loops are deterministic. As a result we believe that it will be easy to understand and use for scientific
programmers. The FORALL loop possesses similar semantics to the CM Fortran FORALL statement [196, 6]
and the Myrias PARDO loop [22]. In fact, the FORALL statement in CM Fortran is simply a special form of
the FORALL loop—one that has only one statement in the loop body.

2.9.3 Restrictions

With the assistance of dependence analysis, FORALL loops with regular computation patterns may be com-
piled into efficient code. When compile-time analysis is insufficient to guarantee deterministic results for a
FORALL loop, run-time support is required. This is particularly true for irregular computations over sparse
arrays involving index arrays, as in the following example.

FORALL I =1, N
X(IDX(I)) = X(IDX(I+1))
ENDFOR

Because the index array DX is used, it is not possible to determine at compile-time whether there are any
loop-carried true or output dependences that must be handled. There are two possible run-time approaches.
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First, the compiler may conservatively save all rhs values potentially accessed by the FORALL loop, then
modify the loop to use those values. This results in the code below.

DOI =1, N
XOLD(I) = X(I)
ENDDO

FORALL I =1, N
X(IDX(I)) = XOLD(IDX(I+1))
ENDFOR

Buffering data eliminates the possibility of nondeterminism, but may require significant amounts of storage.
Additional code must be inserted to ensure deterministic merge of output dependences. Alternatively, the
compiler may generate code to preprocess values of IDX(I) at run-time, in order to determine whether old
values of X need to be saved.

For ease of implementation the prototype compiler may wish to simply assume that no loop-carried true
or output dependences exist for FORALL loops containing irregular computations. A compile-time warning
should then list all references that may cause violations of FORALL semantics. In particular, nondeterministic
merges of values produced by output dependences carried by the FORALL loop are rare and easily detected.
Alternatively, special compile-time options may be provided to instruct the compiler to either generate code
to ensure the proper results through some form of run-time resolution, or to generate debugging code that
will detect when such violations occur.

2.10 Reductions

A reduction is an operation on a collection of data that results in new data of lesser dimensionality, usually a
single scalar value. Simple but common examples of reductions include calculating the sum or maximum of
a vector or array of numbers. Fortran D provides the REDUCE statement as an optional method of specifying
reductions that the compiler may find difficult to detect. It can also be used to specify reductions in FORALL
loops that bypass its copy-in/copy-out semantics. The syntax of the REDUCE statement is as follows:

REDUCE (function, LHS, RHS)

Where the function is the reduction function to be performed, the lhs is the target data, and the RHS is the
source data. The following standard reduction functions are provided in Fortran D:

SUM sum of a list of numbers
PROD product of a list of numbers
MIN minimum of a list of numbers

MAX  maximum of a list of numbers
AND logical AND of a list of booleans
OR logical OR of a list of booleans

Programmers may also define their own reduction functions, providing much greater flexibility in performing
reductions. Fortran D will assume any function passed to a REDUCE statement to be user-defined if it does
not match the name of a standard reduction function. In such cases, all other arguments to the REDUCE
statement are passed as arguments to the user-defined reduction function. The following example shows
reductions performed with both standard and user-defined reduction functions:

REAL X(N), S, P, M1, M2, Z

BOOLEAN B(N), T1, T2

DOI = 1,N
REDUCE(SUM, S, X(I))
REDUCE(PROD, P, X(I))
REDUCE(MIN, M1, X(I))
REDUCE (MAX, M2, X(I))
REDUCE(AND, T1, B(I))
REDUCE(OR, T2, B(I))
REDUCE (USER_FUNCTION, Z, X(I))

ENDDO
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Reductions in DO loops may be automatically recognized by the Fortran D compiler, even if the REDUCE
statement is not employed. However, use of the REDUCE statement is required for reductions in FORALL
loops, since FORALL semantics change the meaning of standard user-programmed reductions. Reductions in
essence provide appropriate merge functions for FORALL loops.

2.10.1 Restrictions

Reductions provide a means for executing otherwise sequential computations in parallel. However, several
restrictions must be observed in order to avoid nondeterministic results when using reductions in FORALL
loops. First, because reductions change the order of operations in a reduction, all user-defined reduction
functions must be both associative and commutative. Otherwise, any change in the actual evaluation order
of the reduction may affect the final value returned by the reduction operation. Note that this requirement
has to be relaxed for floating point operations, which may prove unstable because of rounding errors.

Second, since intermediate values of the LHS variables in reductions are undefined, they must not be used
within the loop. However, they may be employed in other REDUCE statements in the same loop, provided that
the reduction functions are identical. The following shows some examples of variables involved in multiple
reductions.

REAL X(N), Y(N), S, M
FORALL I = 1,N
REDUCE(SUM, S, X(I))
REDUCE(SUM, S, Y(I))
IF (...) THEN
REDUCE(MAX, M, X(I))
ELSE
REDUCE (MAX, M, Y(I))
ENDIF
... =8
ENDFOR
In the previous example, the variables S and M serve as the LHS of several reductions. Variable S is used to
sum up the values in both arrays X and Y, and variable M is set to the maximum value in some subset of
arrays X and Y. In both cases the reductions are legal since the same reduction function is used. On the
other hand, the Fortran D compiler will mark the last statement in the loop as illegal, because it attempts
to use an intermediate value of variable S during execution of the FORALL loop.

2.10.2 Location Reductions

Fortran D also provides additional support for determining the location of minimum or maximum values.
For the MIN and MAX reductions, the REDUCE statement will accept additional pairs of arguments of the form
<LHS,RHS>. In the course of the reduction, the values of the RHS will be assigned to that of the LHS when
the minimum or maximum element is found. This provides a mechanism for determining the location of the
minimum or maximum value.

INTEGER I, J, IDX1, IDX2, IDX3, IDX4, IDX5, IDX6
REAL X1(N), X2(N,N), M1, M2, M3, M4
DOI = 1,N
REDUCE(MIN, M1, X1(I), IDX1, I)
REDUCE(MAX, M2, X1(I), IDX2, I)
DO J = 1,N
REDUCE(MIN, M3, X2(I,J), IDX3, I, IDX4, J)
REDUCE(MAX, M4, X2(I,J), IDX5, I, IDX6, J)
ENDDO
ENDDO

In the previous example, additional arguments of the form <var, current index> are passed to the REDUCE
statements for to find the index of the minimum or maximum element of the array. If there are multiple
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elements with the minimum or maximum value, the assignment is performed only for the first such value
found.

2.11 On Clause

Fortran D provides a feature from KALI [127], an optional oN clause. The oN clause is used to specify
the processor which will execute each iteration of a loop. This allows user greater control of where the
computation is performed for load-balancing and reducing communications.

n$proc = 4

REAL X(1024), Y(1024), Z(1024)

DECOMPOSITION A(1024)

ALIGN X, Y, Z with A

DISTRIBUTE A(BLOCK)

FORALL I = 1,512 on HOME(A(I))
X(I+512) = F(X(I),Y(I),z(I))

ENDFOR

In this example, it may be advantageous to perform the computation on the processor where the data is
stored (where X(I) is) rather than where the results are to be sent (where X(I4512) is). This is precisely
what the ON clause specifies. There are three forms of the oN clause.

n$proc = 4

REAL X(N)

DECOMPOSITION A(N)

ALIGN X(I) with A(I+1)

DISTRIBUTE A(CYCLIC)

FORALL I = 1,N on HOME(A(I))

FORALL I = 1,N on HOME(X(I))

FORALL I = 1,N on MOD(I, n$proc) + 1

In all cases, the expression in the ON clause names the processor to execute a given iteration of the FORALL
loop. HOME is used to derive the identifier of the actual processor assigned ownership. Referencing the
HOME of a decomposition or array element in the ON clause will cause the iteration to be assigned to the
processor where that element is mapped. This is the case for the first two FORALL loops. Otherwise the
ON clause takes an expression to calculate a processor identifier between 0 and N$PROC-1, and directly
assigns each iteration of the loop to a specific processor. Arbitrary expressions are allowed in the processor,
decomposition, or array subscripts. However, the user should be aware that complex expressions will be
difficult for the compiler to implement efficiently.

2.12 Discussion

Programming languages lack support to efficiently exploit fine-grain data parallelism on distributed-memory
machines. We believe that explicit data alignment and distribution specifications provide programmers and
compiler writers with the correct paradigm for specifying data decompositions. We have designed Fortran D
to be powerful enough to express most fine-grain parallel computations, but also simple enough that a
sophisticated compiler can produce efficient programs for different parallel architectures. To make it usable
for computational scientists, we have also made the meaning of Fortran D deterministic and quite close to
sequential Fortran. In fact, any Fortran program is also a valid Fortran D program.



33

Chapter 3

Compilation Model

The Fortran D compiler utilizes a code generation strategy based on the “owner computes” rule—where each
processor only computes values of data it owns. Fortran D data decomposition specifications are translated
into mathematical distribution functions that determine the ownership of local data. By composing these
with subscript functions or their inverse, the Fortran D compiler can partition the computation and determine
nonlocal accesses at compile-time. This information is used to generate efficient SPMD program for execution
on the nodes of the distributed-memory machine.

3.1 Introduction

Writing efficient parallel message-passing programs for MIMD distributed-memory machines is a difficult
and machine-dependent task. The Fortran D compiler relieves users of this responsibility by automatically
translating sequential Fortran 77 or 90 programs into SPMD Fortran 77 programs containing explicit calls
to message-passing routines. In this thesis we refer to this process as “compiling” Fortran D, even though it
is actually a source-to-source translation at the Fortran level.

There are two major concerns in compiling Fortran D for MIMD distributed-memory machines.

e Partition data and computation across processors.

o (Generate communications where needed to access nonlocal data.

Our philosophy is to use the “owner computes” rule, where every processor only performs computation for
data it owns [212, 38, 178]. The owner compute rule may be relaxed depending on the structure of the com-
putation; however, in this paper we concentrate on deriving a functional decomposition and communication
generation by applying the owner computes rule.

3.2 Compilation Example

We begin by using the simple example program in Figure 3.1 to compare two different approaches to compiling
Fortran D programs. For clarity, we assume that the compiler targets a machine with four processors.

3.2.1 Run-time Resolution

A simple compilation technique known as run-time resolution yields code that explicitly calculates the
ownership and communication for each reference at run-time [38, 178, 212]. For instance, for the previous
example it generates the code shown in Figure 3.2. Run-time resolution does not require much compiler
analysis, but the resulting programs are likely to extremely inefficient. In fact, they may execute much slower
than the original sequential code.

There are several reasons for the poor performance of run-time resolution. First, parallelism is mostly
lost because each processor must execute the entire program. Worse still, not only does the program have to
explicitly check every variable reference, it generates a message for each nonlocal access. ;| Without adequate
compile-time information, the compiler is forced to rely on run-time techniques. Fortunately, few programs
inherently require run-time resolution.
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PROGRAM P1
REAL X(100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100)
ALIGN X with D
DISTRIBUTE D(BLOCK, :)

do i =1,95
X(i) = F(X(i+5))
enddo
end
Figure 3.1 Simple Fortran D Program
PROGRAM P1

REAL X(100)
my$p = myproc() {x 0...3 x}
do i =1,95
if (my$p .EQ. owner(X(i+5))) then
send X(i+5) to owner(X(i))
endif
if (my$p .EQ. owner(X(i))) then
recv X(i+5) from owner(X(i+5))
X(i) = F(X(@i+5))
endif
enddo
end
Figure 3.2 Run-time Resolution

PROGRAM P1
REAL X(30)
my$p = myproc() {x 0...3 x}
if (my$p .GT. 0) send X(1:5) to my$p-1
if (my$p .LT. 3) recv X(16:30) from my$p+1
ub$1l = nin((my$p+1)*25,95)- (my$p*25)
do i = 1,ub$1
X(i) = F(X(i+5))
enddo
end
Figure 3.3 Compile-time Analysis and Optimization

3.2.2 Compile-time Analysis and Optimization

In comparison, when extensive compile-time analysis is performed, the Fortran D compiler can produce
highly efficient code. We demonstrate by examining the compilation process for the example program.
During dependence analysis, we determine that ¢ is the index variable of a loop iterating from 1 to 95,
and that there are no true dependences for statement Sy (though a loop-carried anti-dependence exists).
During data partitioning, we find that decomposition D has size 100 and is distributed blockwise across
four processors, assigning to each a contiguous block of 25 elements. Throughout the program array X is
perfectly aligned with D, so each processor also has 25 elements of X.

During computation partitioning, we apply the inverse of the subscript function for X () to determine
that each processor executes 25 iterations of loop ¢. Intersection with the actual loop bounds shows that
boundary conditions exist for the last processor. During communication analysis, we determine that the
reference X (i + 5) causes nonlocal accesses on the last five loop iterations. Checking boundary conditions,
we find all accesses on the last processor are local. During communication optimization, we compare the
subscript expressions and choose to use calls to send and recv primitives for the simple shift communication
pattern. The lack of true dependences allows messages to be vectorized outside of the i loop. During storage
management, we choose to provide storage for nonlocal data using overlaps, expanding the local bounds of
X.

During code generation, we first eliminate Fortran D statements, then introduce an assignment to set
my$p to the local processor number, an integer between 0 and 3. We instantiate the data partition by
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reducing the array bounds for X. We instantiate the computation partition by reducing the bounds of the
¢t loop to 1 through 25. An expression is generated for the upper bound to handle boundary conditions for
the last processor. We then introduce communication by inserting calls to send and recv routines preceding
the i loop. The location and owners of the data are calculated at compile time and are used as arguments
to the communication routines. Because boundary conditions are present, guards are inserted so that only
the correct processors communicate.

The final compiler generated code is shown in Figure 3.3. As can be seen, it is much more efficient than
the program generated using run-time resolution. Computation has been statically partitioned efficiently to
exploit parallelism, and communication overhead has been greatly reduced by combining all nonlocal accesses
in a single message. This and the next few chapters describe the compilation process in greater detail.

3.3 Formal Model

In this section we provide a formal description of the Fortran D compilation model. Terminology and notation
are introduced. They are used to show conceptually how the Fortran D compilation process progresses from
a program with data decompositions to a SPMD node program with explicit message-passing. Actual design
and structure of the Fortran D compiler are presented later in Chapter 4.

We begin by examining the algorithm used to compile a simple loop nest using the owner computes rule.
Correct application of the rule requires knowledge of the data decomposition for a program. In Fortran D
information concerning the ownership of a particular decomposition or array element is provided by the
ALIGN and DISTRIBUTE statements.

3.3.1 Distribution Functions

Data distribution functions specify the mapping of data arrays. The ALIGN and DISTRIBUTE statements in
Fortran D specify how distributed arrays are mapped to the physical machine. The Fortran D compiler uses
the information contained in these statements to construct distribution functions that can be used to calculate
the mapping of array elements to processors. Distribution functions are also created for decompositions and
are used during the actual distribution of arrays onto processors.

The distribution function p, defined below,

pa(i) = (6a(i),aa(d) = (p,7)
is a mapping of the global index iof a decomposition or array A to a local index ;for a unique processor
p. Each distribution function has two component functions, § and «. These functions are used to compute
ownership and location information. For a given decomposition or array A, the owner function 64 maps the
global index i to its unique processor owner p, and the local index function a4 maps the global index itoa
local index ;

Regular Distributions

The formalism described for distribution functions are applicable for both regular and irregular distributions.
An advantage of the simple regular distributions supported in Fortran D is that their corresponding distribu-
tion functions can be easily derived at compile-time. For instance, given the following regular distributions,

/L(jloc’c’:)(',j) = ([i/BlockSize], ((i — 1) mod BlockSize + 1, j))

o

W) = (- Dmed P+ L([i/P7)
pux(i,5) = ([i/BlockSize], (( — 1) mod BlockSize +1,j + 1))
py(i7) = (G = 1) mod P +1,([j/P],7))

Figure 3.4 Distribution Functions
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REAL X(N, 0:N-1), Y(N,N)
DECOMPOSITION A(N,N), B(N,N)
ALIGN X(I,J) with A(I, J+1)
ALIGN Y(I,J) with B(J, I)
DISTRIBUTE A(BLOCK, :)
DISTRIBUTE B(CYCLIC, :)

the compiler automatically derives the distribution functions in Figure 3.4. In the figure, the 2-D decompo-
sitions A and B are declared to have size (N, N). The number of processors is P. For a block distribution,
BlockSize = [N/ P].

Irregular Distributions

For an irregular distribution, we use an integer array to explicitly represent the component functions é4(¢ ) and
aa(i ) This is the most general approach possible since it can support any arbitrary irregular distribution.
Unfortunately, the distribution must now be evaluated at run-time. In the following 1-D example,

INTEGER MAP(N), X(N)
DECOMPOSITION A(N)
ALIGN X(I) with A(I)
DISTRIBUTE A(MAP)

the irregular distribution for decomposition A is stored in the integer array MAP. The distribution func-
tions for decomposition A and array X are then computed through run-time preprocessing techniques [188,
153]. Researchers are examining more sophisticated methods of specify irregular distributions for Fortran D
programs [47, 172, 209].

3.3.2 Computation

We continue to describe some additional notation we will employ later in this paper. We assume the
computation is represented by the following simple loop nest:

DO k=1 toﬁlbys

X(g(F)) = Y (h(k))
enddo

In the example loop nest, k is the set of loop iterations. It is also displayed as as the triplet [ : 5. In
addition, X and Y are dlstrlbuted arrays, and ¢ and h are the array subscript functions for the left-hand
side (lhs) and right-hand side (rhs) array references, respectively.

3.3.3 Image, Local Index Sets
We define the image of an array X on a processor p as follows:

imagex (p) = {i|8x(i) = p}
The image for a processor p is constructed by finding all array indices that cause a reference to a local
element of array X, as determined by the distribution functions for the array. As a result, image describes
all the elements of array X assigned to a particular processor p. This may also referred to as the local indez
set of the array. In addition, we define ¢, as this processor, a unique processor identification representing the
local processor. Thus the expression imagex (t,) corresponds to the set of all elements of X owned locally.

3.3.4 TIteration Sets

We define the iteration set of a reference R for a processor p to be the set of loop iterations ; that cause R
to access data owned by p. Each element of the iteration set corresponds to a point in the iteration space,
and is represented by a vector containing the iteration number for each loop in the loop nest.

The iteration set of a statement can be constructed in a very simple manner. Our example loop contains
two references, X(g(k)) and Y (h(k)). The iteration set for processor p with respect to reference X(g(k)) is
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simply g~ (imagex (p)), the inverse subscript function ¢g~!

p. Similarly, the iteration set with respect to reference Y (h(k)) can be calculated as h™'(imagey (p)).

This property will be used in several algorithms later in the paper. In particular, notice that when using
the owner computes rule, the iteration set of the lhs of an assignment statement for processor p is exactly
the iterations in which that statement must be executed on p. For example, in the simple loop above,
the function ¢g~!(imagex (t,)) may be used to determine when ¢,, the local processor, should execute the
statement.

applied to the image of the array X on processor

3.3.5 Computation Partitioning

The computation partitioning phase of the compiler ensures that computations in a program are divided
correctly among the processors according to the owner computes rule. This may be accomplished by a
combination of reducing loop bounds and guarding individual statements. Both approaches are based on
calculating iteration sets for statements in a loop.

Loop Bounds Reduction

Since evaluating guards at run-time increases execution cost, the Fortran D compiler strategy is to reduce
loop bounds where possible for each processor to avoid evaluating guard expressions.

Figure 3.5 presents a straightforward algorithm for performing simple loop bounds reduction. The algo-
rithm works as follows. First, the iteration sets of all the lhs are calculated for the local processor ¢,. These

for each loop nest k=1tom by § do
reduced_iter_set = () .
for each statement; in loop with lhs = X;(g;(k))
iter_set = g7 *(imagex, (t,)) N [l 3]
reduced_iter_set = reduced_iter_set U iter_set
endfor
reduce bounds of loop nest to those in reduced_iter_set
endfor

Figure 3.5 Reducing Loop Bounds Using Iteration Sets

for each loop nest k=10tom by §do
previous_iter_set = [ : 1 : 3]
for each statement; in order do .
if statement; = assignment AND lhs = global array X;(g;(k)) then
iter_set = g7 (imagex,(t,)) N [l 5]
else .
iter_set = [l :m : §]
endif
if iter_set = previous_iter_set then
nsert statement; after statement;_;
else
terminate previous mask if it exists
create new mask for iter_set and insert statement; inside mask
previous_iter_set = iter_set
endif
endfor
endfor

Figure 3.6 Generating Statement Masks Using Iteration Sets
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sets are then unioned together. The result represents all the iterations on which a assignment will need to
be executed by the processor. The loop bounds are then reduced to the resulting iteration set.

Guard Introduction

In the case where all assignment statements have the same iteration set, loop bounds reduction will eliminate
any need for masks since all statements within the reduced loop bounds always execute. However, loop bound
reduction will not work in all cases. For instance, loop nests may contain multiple assignment statements
to distributed data structures. The iteration set of each statement for a processor may differ, limiting the
number of guards eliminated through bounds reduction. The compiler will need to introduce masks for the
statements that are conditionally executed.

Figure 3.6 presents a simple algorithm to generate masks for statements in a loop nest. Each statement
is examined in turn and its iteration set calculated. If it is equivalent to the iteration set of the previous
statement, then the two statements may be guarded by the same mask. Otherwise, any previous masks must
be terminated and a new mask created. We assume the existence of functions to generate the appropriate
guard/mask for each statement based on its iteration set.

3.3.6 Communication Generation

Once guards have been introduced, the Fortran D compiler must generate communications for nonlocal
accesses to preserve the meaning of the original program. This can be accomplished by calculating SEND
and RECEIVE iteration sets. For simple loop nests which do not contain loop-carried (inter-iteration) true
dependences [10], These iteration sets may also be used to generate IN and OUT array index sets that combine
messages to a single processor into one message. We describe the formation and use of these sets in more
detail in the following sections.

Locar, SEND, and RECEIVE Iteration Sets

We describe as regular computations those computations which can be accurately characterized at compile-
time. In these cases the compiler can exactly calculate all communications and synchronization required
without any run-time information. The first step is to calculate the following iteration sets for each reference
R in the loop with respect to the local processor ,:

e LocAL — Set of iterations in which R results in an access to data local to ¢,.

e SEND — Set of iterations in which R results in an access to data local to ?,, but the statement containing
R is executed on a different processor.

e RECEIVE — Set of iterations in which the statement containing R is executed on ?,, but R results in
an access to data not local to 2.

The LocAL, SEND, and RECEIVE iteration sets can be generated using the owner computes rule. Figure 3.7
shows the algorithm for regular computations. It starts by first calculating the iteration set for the lhs of
each assignment statement with respect to the local processor #,; this determines the LOCAL iteration set.

for each statement; with lhs = X;(g;(k)) in loop nest k = [ to m by 5 do
local_iter_settfl = g7 H(imagex, (t,)) N [[:m : 5]
for each rhs reference to a distributed array Y;(h;(k)) do
local_iter_seti,’; = hy Y(imagey, (t,)) N [ :m: 3]

. . t . t . 13
recetve_iter_sety = local_iter_sety — local_iter_sety
. t . t . t
send_iter_sety = localater_sety — local_iter_sety
endfor
endfor

Figure 3.7 Generating SEND/RECEIVE Iteration Sets (for Regular Computations)
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The iteration sets for each rhs of the statement are then constructed with respect to the ¢,. Any element
of the LocAL iteration set that does not also belong to the iteration set for the rhs will need to access
nonlocal data; it is put in the RECEIVE iteration set. Conversely, any elements in the iteration set for the
rhs not also in the LoCAL iteration are needed by some other processor; it is put into the SEND iteration
set. These iteration sets complete specify all communications that must be performed.

IN and Out Index Sets

For loop nests which do not contain loop-carried true dependences, communications may be moved entirely
outside of the loop nest and blocked together. In addition, messages to the same processor may also be
combined to form a single message. These steps are desirable when communication costs are high, as is the
case for most MIMD distributed-memory machines. The following array index sets are utilized for these
optimizations:

e IN — Set of array indices that correspond to nonlocal data accesses. These data elements must be
received from other processors in order to perform local computations.

e OQUT — Set of array indices that correspond to local data accessed by other processors. These data
elements must be sent to other processors in order to permit them to perform their computations.

The calculation of IN and OUT index set for regular computations is depicted in Figure 3.8. The algorithm
works as follows. Each element in the SEND and RECEIVE iteration sets is examined. Some combination of
the subscript, mapping, alignment, and distribution functions and their inverses are applied to the element
to determine the source or recipient of each message. The message to that processor is then stored in the
appropriate IN or OUT index set, effectively combining it with all other messages to the same processor.

More complicated algorithms are needed for loops with loop-carried dependences, since not all commu-
nication can be moved outside of the entire loop nest. To handle loop-carried dependences, IN and OuT
index sets need to be constructed at each loop level. Dependence information may be used to calculate the
appropriate loop level for each message, using the algorithms described by Balasundaram et al. and Gerndt
[16, 80]. Messages in SEND and RECEIVE sets can then be inserted in the IN or OUT set at that loop level.

for each statement; with lhs = XZ(gZ(E)) in loop nest k=1tom by 5 do
for each rhs reference to a distributed array Y;(h;(k)) do
{* initialize IN and OUT index sets *}
for proc = 1 to numprocs do
in_indea@_set%p Proe) — 0
out_inde:v_setgff”pmc) =0
endfor
{* compute OUT index sets *}
for each jE send_iter_set;’; do
sendy = 6x,(gi(hi* (ny, (tp, v, (hi(7))))))

out_index_setgﬁf”send") = out_indem_set%"’send’) U {Oéyl(hi(;))}

endfor
{* compute IN index sets *}

for each EE recei've_iter_setg}’; do

recvp = by, (hi(J))

in_inder_setgfl’”recv”) = in_indem_set%”’réw”) U {ay,(hi(4))}
endfor

endfor
endfor

Figure 3.8 Generating IN/OUT Index Sets (for Regular Computations)
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) inloopnestngtoﬁbygdo

for each statement; with ths = X;( (/; )
)N [l s

9i
. ¢ 1
local iter sety = g; Y(imagex, (t,)
recei've_iter_setg,’; =0
for each rhs reference to a distributed array Yz(hz(lg)) do
{* calculate IN index sets for this processor x*}
for each j € local_iter_sett)i’ do
if (év,(hi(7))) # tp) then
receive_iter_seti,’; = receive_iter_sett}f’l U {5}
recvp = 6p,(hi(7))
in_indem_set;”’mw?) = in_inde;r_setg:”rewp) U {ay,(hi(5))}
endif
endfor
{* send IN index sets to all other processors *}

for recv, = 1 to numprocs do
if (recv, #t,) then

. . tp,recu
send(zn_mdex_setg," ”), recup)
endif
endfor

{* receive IN index sets, convert into OUT index sets *}
for send, = 1 to numprocs do

if (send, # t,) then

p,sendy)

receive(Out_indeaﬁ_set; , sendp)
endif
endfor
endfor
endfor

Figure 3.9 Inspector to Generate IN/OUT Index Sets (for Irregular Computations)

Irregular Computations

Irregular computations are computations that cannot be accurately characterized at compile-time. Note
that irregular computations are different from irregular distributions, which are irregular mappings of data
to processors. It is not possible to determine the SEND, RECEIVE, IN, and OUT sets at compile-time for
these computations. However, an inspecior [155, 125] may be constructed to preprocess the loop body at
run-time to determine what nonlocal data will be accessed. This in effect calculates the IN index set for each
processor. A global transpose operation between processors can then be used to calculate the OUT index
sets as well.

An inspector is the most general way to generate IN and OUT sets for loops without loop-carried depen-
dences. Despite the expense of additional communications, experimental evidence from several systems [127,
209] proves that it can improve performance by combining communications to access nonlocal data outside
of the loop nest. In addition it also allows multiple messages to the same processor to be combined. The
Fortran D compiler plans to automatically generate inspectors where needed for irregular computations.

The structure of an inspector loop is shown in Figure 3.9. For compatibility with our treatment of regular
computations, the Fortran D inspector also generates the LoCAL and RECEIVE iteration sets. In the first
part of the inspector, the LOCAL iteration set is calculated for each statement based on the lhs. The rhs
is examined for each element in the LocAL iteration set. Any nonlocal references cause the iteration to be
added to the RECEIVE iteration set. The owner and local index of the nonlocal reference are then calculated
and added to the IN index set.

After the local IN sets have been calculated, a global transpose is performed in the remainder of the
inspector. Each processor sends its IN index set for a given processor to that processor. Upon receipt, they
become OUT index sets for the receiving processor.
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{* original loop to be transformed into send, receive, and compute loops *}
DOk=Iltomby¥
X(g(k)) =Y (h(k))
enddo
{* send loop *}
for send, = 1 to numprocs do

if (out_indem_setgz”send”) # () then

buﬁer_values(out_value_setgj”’Send"), out_index_setgfp’send"))

send(out_value_setgf" sendy) , sendy)
endif
endfor

{* local compute loop *}
for each j € {local_iter_sett; - receive_iter_set§}"} do

-

X(aa(9(1)) = Y(ap(h(1)))
endfor
{* receive loop *}
for recv, = 1 to numprocs do

if (in_inder_setgf"’rewp) # () then
(tp,recuyp)
ty , TECUp)
t(tp,recv,,)
Y

receive(in_value_se

tgfp,recvp))

store_values(in_value_se ,in_index_se

endif
endfor
{* nonlocal compute loop *}

2 . . t
for each j € receive_iter_sety do

X(ax(9()))) = get-value(Y (h(j)))

endfor

Figure 3.10 Send, Receive, and Compute Loops Resulting from IN/OuUT Index Sets

3.3.7 Resulting Program

Once the SEND and RECEIVE sets have been calculated, the example loop nest is transformed into the loops
pictured in Figure 3.10 [125]. In the send loop, every processor sends data they own to processors that need
the data. The OUT index set for rhs of the statement in the example loop has already been calculated.
However, the function buffer_values() must be used to actually collect the values at each index and the OuT
set. The resulting values are then sent to the appropriate processor.

Next, in the local compute loop, loop iterations that assign and use only local data may be executed.
These are elements that are in the LOCAL but not RECEIVE iteration sets. These iterations are executed
immediately following the send loop to take advantage of communication latency.

In the receive loop, every processor receives nonlocal data sent from their owners in the send loop. The
values received are mapped to their designated storage locations using the function store_values(). The indices
corresponding to these values have already been calculated and stored in the IN index sets. Finally, in the
nonlocal compute loop every processor performs computations for loop iterations that also require nonlocal
data. The function get_value() is used to fetch nonlocal data from their designated storage locations.

3.4 Discussion

We have shown how the Fortran D compiler utilizes compile-time analysis to avoid the inefficiencies of
run-time resolution. Its code generation strategy is based on the owner computes rule. Fortran D data
decomposition specifications are translated into mathematical functions that determine the ownership of local
data. By composing these with subscript functions or their inverse, the Fortran D compiler can partition
the computation and determine nonlocal accesses at compile-time. This information is used to guide a
source-to-source translation that generates the SPMD output program with explicit message passing.
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Chapter 4

Basic Compilation

The basic structure of the Fortran D compiler is organized around three major functions—program analysis,
program optimization, and code generation. New analysis techniques are required to compile shared-memory
programs for distributed memory machines. Internal data structures used in the compilation process are
described. The Fortran D compiler utilizes a compilation strategy based on the concept of data dependence
that unifies and extends previous techniques.

4.1 Introduction

The chapter describes specific details of the implementation of the Fortran D compiler, including choice of
internal data structures and how they are used during compilation. The overall structure and sequence of
compilation phases of the Fortran D compiler is shown in Figure 4.1. It can be roughly divided into three
areas: program analysis, optimization, and code generation.

4.2 Program Analysis

4.2.1 Dependence Analysis

Dependence analysis is the compile-time analysis of control flow and memory accesses to determine a state-
ment execution order that preserves the meaning of the original program. A data dependence between two
references R; and R, indicates that they read or write a common memory location in a way that requires
their execution order to be maintained [130, 132]. We call Ry the source and Ry the sink of the dependence
if Ry must be executed before Ry. There are four types of data dependence:

True (flow) dependence occurs when S; writes a memory location that Sy later reads.
Anti dependence occurs when S; reads a memory location that S later writes.
Output dependence occurs when S; writes a memory location that Ss later writes.

Input dependence occurs when S; reads a memory location that Sy later reads.
Input dependences do not restrict statement order.

Dependences may be either loop-independent or loop-carried. Loop-independent dependences occur on
the same loop iteration; loop-carried dependences occur on different iterations of a particular loop. The
level of a loop-carried dependence is the depth of the loop carrying the dependence [10]. Loop-independent
dependences have infinite depth. The number of loop iterations separating the source and sink of the
loop-carried dependence may be characterized by a dependence distance or direction [205]. The level of a
dependence is determined by the first non-zero entry in its distance or direction vector.

For instance, dependence testing applied to the references in the following loop nest shows that a true
dependence exists between the definition and use of array A with distance and direction vectors of (1,0, —1)
and (<, =,>), respectively. Since the outermost loop contributes the first nonzero element, it carries the
true dependence.
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1. Program analysis
(a) Dependence analysis
(b) Array section analysis
(¢) Data decomposition analysis
(d) Partitioning analysis
(e) Communication analysis

2. Program optimization
(a) Program transformations
(b) Parallelism optimizations
(¢) Communication optimizations
(d) Run-time processing

3. Code generation
(a) Initialization insertion
(b) Program partitioning
(¢) Index translation
(d) Message generation
(e) Forall scalarization
(f) Storage management

Figure 4.1 Fortran D Compiler Structure

doi=1,n
do j =1,m
do k = 1,1
A(i+1,j,k-1) = A(i,j,k) + C
enddo
enddo

enddo

Dependence analysis is vital to shared-memory vectorizing and parallelizing compilers. We show that
it is also highly useful for guiding compiler optimizations for distributed-memory machines. The prototype
Fortran D compiler is being developed in the context of the ParaScope programming environment and
incorporates the following analysis capabilities [35, 117].

Scalar data-flow analysis

Control flow, control dependence, and live range information are computed during the scalar data-flow
analysis phase. In addition, scalar variables are labeled private with respect to a loop if their values are
used only within the current loop iteration; this is useful for eliminating unnecessary computation and
communication.

Symbolic analysis

Constant propagation, auxiliary induction variable elimination, expression folding, and loop invariant ex-
pression recognition are performed during the symbolic analysis phase of the Fortran D compiler. The goal of
symbolic analysis is to provide a simplified program representation for the Fortran D compiler that improves
program analysis and optimization. Consider the example below:

do ij = 1,1len
F(ij,n) = (F(ij,n)-TOT(ij)) / B(n)
enddo

If constant propagation is able to produce a constant value for n, or if n is identified as a loop-invariant

expression, the Fortran D compiler can communicate B(n) with an efficient broadcast preceding the loop.
Symbolic analysis also recognizes reductions, operations such as suUM, MIN, or MAX that are both com-

mutative and associative. Once identified, reductions may be executed locally in parallel and the results
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combined efficiently using collective communication routines. Reduction operations are tagged during sym-
bolic analysis for later use.

Dependence testing

Dependence testing determines the existence of data dependences between pairs of array references by ex-
amining their subscript expressions. Dependences exist only if it is possible for subscripts in corresponding
dimensions simultaneously assume the same value. All data dependences found are characterized by their
dependence level, as well as by distance and direction vectors. This information is used to guide subsequent
compiler analysis and optimization.

4.2.2 Array Section Analysis

In addition to detecting data dependences between pairs of array references, the Fortran D compiler also
performs analysis to summarize the sections accessed by each individual reference. Array sections are repre-
sented as regular sections and used to calculate array definitions and kills.

Regular section descriptors (RSDs)

Regular section descriptors (RSDs) are widely used in the Fortran D compiler as an internal representa-
tion. Originally developed to summarize array side effects across procedure boundaries, RSDs are compact
representations of rectangular or right-triangular array sections and their higher dimension analogs [18, 37,
98]. They may also possess some constant step. The union and intersection of RSDs can be calculated
inexpensively, making them highly useful for the Fortran D compiler. RSDs have also proven to be quite
precise in practice, due to the regular memory access patterns exhibited by scientific programs. Figure 4.2
shows some examples of regular section descriptors.

In this thesis RSDs will be represented as [/;:u;:s;,...], where [;, u;, and s; indicate the lower bound,
upper bound, and step of the ¢th dimension of the RSD, respectively. A default unit step is assumed if not
explicitly stated. In loop nests or multidimensional arrays, the leftmost dimension of the RSD corresponds
to the outermost loop or the leftmost array dimension. The other dimensions are listed in order.

Array Definitions

The principal use of RSDs in array section analysis is to compute the array sections defined by an assignment
statement at each loop level. This information is useful for optimizations such as vector message pipelining,
described later in Chapter 5. For instance, in the following program array section analysis builds an RSD
for reference X(j, ) at each loop level.
do i = 1,100
do j = 1,100
X(j,i) = ...
enddo
enddo

At the innermost level [j,i] is produced. At the level of the j loop the RSD [1:100,i] results. At the outermost
loop level, the compiler produces [1:100,1:100]. The RSDs are stored for use during array kill analysis and

future optimizations.
HH\Ih.

Figure 4.2 Regular Section Descriptors (RSDs)
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Array Kills

Scalar data-flow analysis can detect private scalar variables. By combining control-flow information with
array section information for array definitions, the Fortran D compiler can also calculate array kills [87].
This aids the compiler in detecting private arrays, and can significantly improve communication.

4.2.3 Data Decomposition Analysis

The Fortran D compiler requires a new type of program analysis to generate the proper program—it must
determine the data decomposition for each reference to a distributed array.

Reaching decompositions

Because data access patterns may change between program phases, Fortran D provides dynamic data de-
composition by permitting executable ALIGN and DISTRIBUTE statements to be inserted at any point in a
program. This complicates the job of the Fortran D compiler, since it must know the decomposition of each
array.

We define reaching decompositions to be the set of decomposition specifications that may reach an array
reference aligned with the decomposition; it may be calculated in a manner similar to reaching definitions.
The Fortran D compiler will apply both intra- and interprocedural analysis to calculate reaching decom-
positions for each reference to a distributed array. If multiple decompositions reach a procedure, run-time
or node splitting techniques such as cloning may be required to generate the proper code for the program.
Reaching decompositions is discussed in greater detail in Chapter 7.

4.2.4 Partitioning Analysis

After data decomposition analysis is performed, the program partitioning analysis phase of the Fortran D
compiler divides the overall data and computation among processors. This is accomplished by first parti-
tioning all arrays onto processors, then using the owner computes rule to derive the functional decomposition
of the program. We begin with some useful definitions.

Iteration & index sets, RSDs

As described in the previous chapter, an iteration set is simply a set of loop iterations—it describes a section
of the work space. An index set is a set of locations in an array—it describes a section of the data space.
For the sake of efficiency, when generating communications the Fortran D compiler represents iteration and
index sets in the form of regular section descriptors (RSDs).

Global vs. local indices

Because the Fortran D compiler creates SPMD node programs, all processors must possess the same array
declarations. This forces all processors to adopt local indices. For instance, consider the following program
and the node program produced when array A is block-distributed across four processors.

{* Original program *} {* SPMD node program #}
REAL A(100) REAL A(25)
do i = 1, 100 doi=1, 25
A(i) = 0.0 A(i) = 0.0
enddo enddo

The local indices for A on each processor are all [1:25], even though the equivalent global indices for A are
[1:25], [26:50], [51:75], and [76:100] on processors 1 through 4, respectively. A similar conversion of loop
indices may also occur, with the global loop indices [1:100] translated to the local loop indices [1:25].
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Local index sets

As the first step in partitioning analysis, the Fortran D compiler uses the Fortran D statements associated
with the reaching decomposition to calculate the local index set of each array—the local array section owned
by every processor. This creates the data partition used in the program.

We illustrate the analysis required to partition the Jacobi code in Figure 4.3. For this and all future
examples we will be compiling for a four processor machine. In the example, both arrays A and B are aligned
identically with decomposition D, so they have the same distribution as D. Because the first dimension of D
is local and the second dimension is block-distributed, the local index set for both A and B on each processor

(in local indices) is [1:100,1:25].

Local iteration sets

Once the local index set for each array has been calculated, the Fortran D compiler uses it to derive the
functional decomposition of the program. We define the local iteration set of a reference R on a processor
to be the set of loop iterations that cause R to access data owned by the processor. It can be calculated by
applying the inverse of the array subscript functions to the local index set of R, then intersecting the result
with the iteration set of the enclosing loops.

The calculation of local index and iteration sets is vital to the partitioning analysis of the Fortran D
compiler. When applying the owner computes rule, the set of loop iterations on which a processor must
execute an assignment statement is exactly the local iteration set of the left-hand side (lhs). The Fortran D
compiler can thus partition the computation by assigning iteration sets to each statement based on its lhs.

To demonstrate the algorithm, we will calculate the local iteration set for the assignment statement Sj in
the Jacobi example. Remember that the local index set of A is [1:100,1:25]. First we apply to it the inverse
of the subscript functions of the lhs, A(%, j). This yields the unbounded local iteration set [:,1:25,1:100]. The
first entry is “:” since all iterations of the k loop access local elements of A. The inverse subscript functions
cause the j and 7 loops to be mapped to [1:25] and [1:100], respectively.

Next we intersect the unbounded iteration set with the actual bounds of the enclosing loops, since
these are the only iterations that actually exist. The iteration set of the loop nest (in global indices) is
[1:time,2:99,2:99]. Converting it into local indices for each processor and performing the intersection yields
the following local iteration sets for each processor (in local indices):

Proc(l) = [1:time, 2:25,2:99]
Proc(2:3) = [l:time, 1:25, 2:99]
Proc(4) = [1:time, 1:24,2:99]

Similar analysis produces the same local iteration sets for statement Ss. Note how the local indices calculated
for the local index set of each array have been used to derive the local indices for the local iteration set,
using techniques described in Chapter 3.

Handling boundary conditions

Because alignment and distribution specifications in Fortran D are fairly simple, local index sets and their
derived iteration sets may usually be calculated at compile time. In fact, in most regular computations local
index and iteration sets are identical for every processor except for boundary conditions. When boundary
conditions for each array dimension or loop are independent, as in the Jacobi example, the Fortran D compiler
can store each boundary condition separately. This avoids the need to calculate and store a different result
for each processor.

We may summarize independent boundary conditions for iteration or index sets as pre, mid, and post
sets for each loop or array dimension. The mid set describes the interior uniform case. The pre and post
iteration sets describe the boundary conditions encountered and their positions. These sets are represented
in the Fortran D compiler by augmented iteration sets. Instead of a single section, each dimension of the
augmented iteration set contains three component sections for the pre, mid, and post sets as well as their
positions.
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REAL A(100,100), B(100,100)
DECOMPOSITION D(100,100)
ALIGN A, B with D
DISTRIBUTE D(:,BLOCK)

do k = 1,time

do j = 2,99
do i = 2,99
S A(i,j) = (B(4,j-1)+B(i-1,j)+B(i+1,j)+B(i,j+1))/4
enddo
enddo
do j = 2,99
do i = 2,99
S, B(i,j) = A(4,j)
enddo
enddo
enddo

Figure 4.3 Jacobi

Because boundary conditions for iteration and index sets can be handled in the same manner, we will
just discuss an example case for iteration sets. When partitioning the Jacobi example, the following pre,
mid, and post iteration sets are calculated by the Fortran D compiler:

pre =[2:25] @Qp;
1:time, { mid=[1: 25| ,2:99
post = [1: 24] @py

In the augmented RSD representing the pre, mid, and post iteration sets, “@” indicates the position for
each pre or post set. If an interior processor is causing a boundary condition, processors between it and the
edge will not be assigned loop iterations. A pre or post iteration set may also be empty if that boundary
condition does not exist.

The iteration set for each processor is calculated by taking the Cartesian product of the pre, mid, and post
iteration sets for each dimension of the augmented iteration set. Unfortunately not all boundary conditions
may be succinctly represented by augmented iteration sets. In the worst case the Fortran D compiler is
forced to derive and store an individual index or iteration set for each processor.

Statement Groups

Whole programs and linear algebra codes tend to possess large diverse loop nests, with many imperfectly
nested statements and triangular/trapezoidal loops. These complex loops increase the difficulty of parti-
tioning the computation and calculating appropriate local and global loop indices and bounds. We found it
useful in the Fortran D compiler to partition statements into statement groups during partitioning analysis.
Statements are put into the same group for a given loop if their iteration sets for that loop and enclosing
loops are the same. We mark a loop as uniform if all its statements belong to the same statement group.
Uniform loop nests are desirable because they may be partitioned by reducing loop bounds; no explicit
guards need to be inserted in the loop. Calculating statement groups can determine whether a loop nest is
uniform and guide code generation for non-uniform loops.

An immediate application of statement groups is for loop distribution, a program transformation that
separates independent statements inside a single loop into multiple loops with identical headers. If the
Fortran D compiler detects a nonuniform loop nest, it attempts to distribute the loop around each statement
group, producing smaller uniform loop nests. If loop distribution is prevented due to recurrences carried
by the loop, the Fortran D compiler must insert explicit guards for each statement group to ensure they
are executed only by the appropriate processor(s) on each loop iteration. Here statement groups also help
because they identify groups of statements that can share the same guard expression. Statement groups also
help guide the compiler in generating loop indices and bounds, as we later shown.
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4.2.5 Communication Analysis

Once partitioning analysis determines how data and work are partitioned across processors, communication
analysis determines which variable references cause nonlocal data accesses.

Computing nonlocal index sets

In this phase, all rhs references to distributed arrays are examined. For each rhs, the Fortran D compiler
constructs the index set accessed by each processor. The index set is computed by applying the subscript
functions of the rhs to the local iteration set assigned to the statement. The local index set is subtracted from
the resulting RSD to check whether the reference accesses nonlocal array locations. If only local accesses
occur, the rhs reference may be discarded. Otherwise the RSD representing the nonlocal index set accessed
by the rhs is retained.

If boundary conditions exist for the local iteration set of the statement, the Fortran D compiler must
compute the index set for each group of processors assigned different iteration sets. In the worst case the
index set for each processor must be calculated separately.

We show how index sets are computed for the Jacobi example. We first consider the four rhs references
to B in statement S;. The iteration set boundary conditions cause processors to be separated into three
groups. The group of interior processors, Proc(2:3), have the local iteration set [1:time,1:25,2:99]. This
derives the following index sets:

B(i,j—1) = [2:99,0:24]
B(i—1,j) = [1:98,1:25]
B(i+1,j) = [3:100,1:25]
B(i,j+1) = [2:99,2:26]

Since the local index set for B is [1:100,1:25], B(i — 1,4) and B(i + 1, j) cause only local accesses and may
be ignored. However, B(i,j — 1) and B(i,j + 1) access nonlocal locations [2:99,0] and [2:99,26], respectively.
Both references are marked and their nonlocal index sets stored. Computing the index sets using the local
iteration sets for the other two groups, Proc(1l) and Proc(4), does not yield additional nonlocal references.
Examination of the index sets for the rhs reference to A(i, j) in statement Sy show that only local accesses
occur.

4.3 Program Optimization

The program optimization phase of the Fortran D compiler utilizes the results of program analysis to improve
program performance. Its two primary goals are to exploit parallelism and reduce communication overhead.
In this section, we present message vectorization, the key communication optimization performed by the
Fortran D D compiler. Other communication and parallelism optimizations are deferred until Chapter 5.

4.3.1 Message Vectorization

A naive but workable algorithm known as run-time resolution inserts guarded send and/or recv operations
directly preceding each nonlocal reference [38, 178, 212]. Unfortunately, this simple approach generates many
small messages that prove extremely inefficient due to communication overhead [178].

The most basic communication optimization performed by the Fortran D compiler is message vectoriza-
tion. It uses the level of loop-carried data dependences to calculate whether communication may be legally
performed at outer loops. This replaces many small messages with one large message, reducing both message
startup cost and latency. Message vectorization forms the basis of our algorithm for introducing and placing
communication for nonlocal accesses.

Algorithm

We use the message vectorization algorithm developed by Balasundaram et al. and Gerndt to calculate the
appropriate loop level to insert messages for nonlocal references [16, 80]. We define the commlevel for loop-
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carried dependences to be the level of the dependence. For loop-independent dependences we define it to be
the level of the deepest loop common to both the source and sink of the dependence.

We also extend the algorithm to guide message generation by classifying messages for each reference as
one of the following message types:

e independent
o carried-all
e carried-part

The message type will determine the placement of communication, and will be discussed in greater detail in
Section 4.4.5.

To vectorize messages for a rhs reference R with a nonlocal index set, we examine all cross-processor true
dependences with R as the sink. The deepest commlevel of all such dependences determines the loop level
at which the message may be vectorized. If the deepest commlevel is for a dependence carried by loop L, we
insert a message tag for R marked carried at the header for loop L. This tag indicates that nonlocal data
accessed by R must be communicated between iterations of loop L.

Otherwise the deepest commlevel is for a loop-independent dependence with loop L as the deepest loop
enclosing both the source and sink. We insert a tag for R marked independent at the header of the next
deeper loop enclosing R at level L + 1, or at R itself if no such loop exists. This tag indicates that nonlocal
data accessed by R must be communicated at this point on each iteration of loop L. Additionally, the
Fortran D compiler may move this tag to any statement in loop L between the source and the sink of
the dependence in order to combine messages arising from different references. We illustrate the message
vectorization algorithm with three examples.

Example 1: Jacobi

First we examine the Jacobi code in Figure 4.3. In the communication analysis phase, we have already
determined that for the given data decomposition only the rhs references B(i,j — 1) and B(¢,j + 1) from Sy
access nonlocal locations. The only cross-processor true dependences incident on these references are from
the definition to B in S;. These dependences are carried on the £ loop, so we insert their tags (labeled
carried) at the header of the k loop. The code generation phase will later insert messages for those references
inside the k loop.

Example 2: Successive over-relaxation (SOR)

In the code for SOR in Figure 4.4, communication analysis discovers that the rhs references A(i + 1, j)
and A(7 — 1, j) have nonlocal index sets. Dependence analysis shows that the reference A(i + 1,5) has a
cross-processor true dependence carried on the k loop, so we insert its tag (labeled carried) at the k& loop
header. The deepest loop-carried true dependence for reference A(i — 1,7) is carried on the 7 loop, so we
insert its tag (also labeled carried) at the ¢ loop header.

REAL A(100,100)
DECOMPOSITION D(100,100)
ALIGN A, B with D
DISTRIBUTE D(BLOCK,:)
do k = 1,time
do j = 2,99
do i = 2,99
A(i,3) = (w/4)*(A(4,j-1)+A(i-1,j)+
A(i+1,3)+A(4,j+1))+(1-w)*A(1,])
enddo
enddo
enddo

Figure 4.4 Successive Over-Relaxation (SOR)
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REAL V(N,N)
DECOMPOSITION D(N,N)
ALIGN V with D
DISTRIBUTE D(BLOCK,BLOCK)
do k = 1,time

{* compute red points *}

do j = 3,N-1,2

do i = 3,N-1,2

S V(i,j) = (w/8)*(V(i,j-1)+V(i-1,j)+
V(i,j+1)+V(i+1, i)+ (1-w)*V (4, )
enddo
enddo
do j = 2,N-1,2
do i = 2,N-1,2
Sa V(i,j) = (w/4)*(V(i,j-1)+V(i-1,j)+
V(i,j+1)+V(i+1, i)+ (1-w)*V (4, )
enddo
enddo

{* compute black points *}
do j = 3,N-1,2
do i = 2,N-1,2

S3 V(i,j) = (w/4)*(V(3i,j-1)+V(i-1,j)+
V(i,j+1)+V(i+1, i)+ (1-w)*V (4, )
enddo
enddo
do j = 2,N-1,2
do i = 3,N-1,2
Sy V(i,j) = (w/4)*(V(i,j-1)+V(i-1,j)+
V(i,j+1)+V(i+1, i)+ (1-w)*V (4, )
enddo
enddo
enddo

Figure 4.5 Pointwise Red-black SOR

Example 3: Red-black SOR

In the code in Figure 4.5, communication analysis discovers that all rhs references except V (i, j) possess
nonlocal index sets. However, dependence analysis shows that the only cross-processor true dependences
incident on the rhs references for statements S; and S» are carried on the k& loop from S3 and S4. The tags
for these references (labeled as carried) are inserted at the header of the k loop. During code generation
phase they will generate messages in the k& loop.

For statements S3 and S,, dependence analysis shows that the only cross-processor true dependences
incident on their rhs references are loop-independent dependences from S; and Ss. Their commlevel is set
to the k loop because it is the deepest loop enclosing both the source and sink of these dependences. We
insert tags (labeled independent) for all rhs references in Ss at its enclosing j loop, since it is the next loop
deeper than k enclosing Ss.

Similar analysis causes us to insert tags (labeled independent) for all rhs references in Sy at its enclosing
j loop. As an additional optimization, we can move these tags to the j loop enclosing S35 to combine these
messages. This is legal since we are moving tags to a statement that is at the same loop level and between the
source and sink of the dependence. In the code generation phase these tags will cause vectorized messages
to be generated before the j loop, to be executed on each iteration of the & loop.

4.4 Code Generation

Once program analysis and optimization is complete, the code generation phase of the Fortran D com-
piler performs the source-to-source translation that actually instantiates the program partitioning and com-
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REAL A(100,25), B(100,0:26)

my$p = myproc() {*0...3 x}

{x if (my$p .eq. 0) 1lb; = 2 else 1b; = 1 x*}

{x if (my$p .eq. 3) ub; = 24 else ub; = 25 %}

1b; = max((my$p*25)+1,2)-(my$p*25)

ub; = min((my$p+1)*25,99)- (my$p*25)

do k = 1,time
if (my$p .gt. 0) send(B(2:99,1), my$p-1)
if (my$p .1t. 3) recv(B(2:99,26), my$p+1)
if (my$p .1t. 3) send(B(2:99,25), my$p+1)
if (my$p .gt. 0) recv(B(2:99,0), my$p-1)
do J = lbl,ubl

do i = 2,99
A(i,j) = (B(4i,j-1)+B(i-1,j)+B(i+1,3)+B(i,j+1))/4
enddo
enddo
do J = lbl,ubl
do i = 2,99
B(i,j) = A(4,j)
enddo
enddo
enddo

Figure 4.6 Generated Jacobi

munication. It utilizes the results of previous analysis (local index and iteration sets, RSDs, collective
communication) to transform the program text, modifying array and loop bounds, inserting guards and
communication, loop and array indices, in order to generate the actual SPMD node program with explicit
message-passing.

4.4.1 Initialization Insertion

First, the Fortran D compiler inserts a number of initialization statements that are used to gather information
at run-time. The statements initialize values for n$proc, the total number of processors; my$p, the local
processor number, from 0 to n$proc-1, etc.

4.4.2 Program Partitioning

Most optimizations increase the amount of temporary storage required by the program. Compile-time
partitioning of the data so that each processor allocates memory only for array sections owned locally is
fundamental. Otherwise the problem size is limited by the amount of data that can be place on a single
processor. The Fortran D compiler instantiates the data partition calculated during program analysis by
modifying the array declarations, reducing the size of the array on each processor.

4.4.3 Computation Partitioning

During partitioning analysis, the Fortran D compiler applied the owner computes rule to calculate the local
iteration set for each statement. One of the goals for code generation is to modify the program to ensure
that each processor only executes a statement on loop iterations in its local iteration set.

Loop bounds reduction and guard introduction are the two program transformations used to instantiate
the computation partition. Loop bounds reduction is the most common and efficient case. The Fortran D
compiler first reduces the loop bounds so that each processor only executes iterations in the unioned local
iteration sets of all statements in the loop. It then inserts code to calculate boundary conditions, as shown
the bounds generated for the j loop in Figure 4.6. In these cases the loop index variables have also been
localized.
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LowerLoopBound() UpperLoopBound()
BLOCK AX((my$p*bk)+1,L)-my$p*bk | MIN((my$p+1)*bk,U)-my$p*bk
CYCLIC $ ((L-1)/n$p)+1 ub$ = ((U-1)/n$p)+1
if (my$p < MOD(L-1,n$p)) if (my$p > MOD(U-1,n$p))
1b$1 = 1b$1 + 1 ub$1l = ub$1 -1

Table 4.1 Generating Loop Bounds

LocalLoopIndex() GlobalLoopIndex()
BLOCK i — my$p*bk i + my$p*bk
CYCLIC (i-1)/bk+1 ((i-1)*bk)+14+my$p

Table 4.2 Generating Local and Global Indices

Generating loop index variables and bounds are more complex for cyclic than block distributions. Note
that in the Fortran D compiler this process is derived from the data decomposition, so arrays with different
data distributions may require distinct local index variables. The compiler assigns the new indices and
bounds to compiler-generated variables, and places the assignments where they can be reused. Table 4.1
shows the formulae used by the Fortran D compiler to compute indices and bounds, where:

n$p = total number of processors
my$p = the local processor number (0 ... n$p-1)
bk = block size of the local array section (array size/n$p)
L,U = original lower & upper loop bounds

For simplicity, we assume that Fortran arrays begin at 1 and processor IDs start at 0.

Not all loops may be partitioned in this manner. With multiple statements in the loop, the local iteration
set of a statement may be a subset of the reduced loop bounds. For these statements the compiler needs to
add explicit guards based on membership tests for the local iteration set of the statement [38, 178, 212].

In other cases, the compiler may not be able to localize loop bounds and indices because a processors
executes some statement on all iterations of the loop. Statement groups formed during partitioning analysis
help detect this situation. To decide whether it may localize indices and bounds for a given loop, the
Fortran D compiler examines all statement groups in the loop. If any statement group is executed by all
processors, the loop indices and bounds remain global. Explicit guards and index translation will then be
necessary for the other statement groups.

4.4.4 Index Translation

After partitioning the data and computation in the output program, The compiler converts global loop indices
and loop bounds into local values where necessary so that local array sections are accessed. Occasions also
arise where both global and local indices are required. In these cases the compiler will convert from one or
the other as appropriate, using statement groups to help guide generation of loop index variables. Table 4.2
displays the formulae employed by the Fortran D compiler to convert between local and global indices.

For instance, in Figure 4.7 array B is partitioned blockwise across n$p processors. Statements S; and S
possess different iteration sets and are put into separate statement groups. In this code the ¢ loop cannot
be localized because on each iteration all processors execute Ss. The indices for the outer z loop must thus
remain global. Since B is distributed, only one processor executes S;. The compiler must insert an explicit
guard and generate a local index i$ for indexing into B. In comparison, each processor executes only some
iterations of the inner j loop. The compiler can thus localize j, reducing its bounds to 1b$1 and ub$1 so that
each processor only executes local iterations. However, since the global value of j is used by Ss, the compiler
must generate the global index value j$ from the local index j. In the following sections we examine some
cases where explicit index translation is required.
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{* Original Program *} {* Compiler Output *}
REAL B(n) REAL B(n/n$p)
do i=1L;,U; 1b$1 = LowerLoopBound(L;)
S1 B(i) = Fi (1) ub$1 = UpperLoopBound(U;)
do j =L;,U; do i =1L;,0;
Sa B(j) = F2(3) i$ = LocalLoopInder(i)
enddo if (Owner(B(i))) B(i$) = Fi (1)
enddo do j = 1b$1,ub$1

j$ = GlobalLoopIndez(j)
B(j) = F(i®)
enddo
enddo

Figure 4.7 Loop Indices and Bounds Generation

Local to Global Conversion

In most cases encountered by the Fortran D compiler, loops are localized, partitioned during compilation, and
translated into local indices. If their index variables appear in positions other than subscripts in distributed
array dimensions, they must be translated back into global indices. This is achieved by applying the inverse
of the distribution function applied to the loop. For loops iterating over block-distributed arrays, simply
adding an offset based on the processor number is sufficient.

For instance, consider how the Fortran D compiler would translate the indices in the example program
in Figure 4.8. Both arrays X and Y originally possess 256 elements. They are distributed blockwise across
four processors, assigning a contiguous block of 64 elements to each of the four processors. Both i loops
iterating over X and Y are converted to local indices as well.

At statement S, the local index variable ¢ appears outside the subscript of a distributed array. Instead, it
is used to calculate a value for X (). To convert ¢ back to its global value is simple because ¢ was derived from
a block-distributed array. Since the translation from global to local indices was subtraction of the processor
offset, the compiler can just calculate the offset and add it back to the local index value to construct the
global index value. In the program, the Fortran D compiler inserts code to calculate the offset i$off for the
given processor. This is then added to the occurrence of ¢ in the rhs expression. The result is shown in
Figure 4.9.

Global to Local Conversion

If a loop has not been localized and its index variable appears in the subscript of a distributed array
dimension, it must be explicitly converted into an local index. Another situation that requires performing
the same conversion is the presence of constant subscripts in distributed array dimensions of the lhs of an
assignment statement. Because these lhs references will not be changed into references to the message buffer,
they need to be translated into local indices. This is accomplished by applying the distribution function to
the subscript value at either compile-time or run-time. Constant subscripts in rhs array references do not
need to be checked because they will be replaced by references to some message buffer.

Consider how the Fortran D compiler translates the program in Figure 4.8. At statements S; and Ss,
constants are subscripts in the distributed dimension of Y, the lhs array reference. Because the subscripts in
the distributed dimension of the array Y are constant for S; and Ss3, the owner computes rule implies that
only one processor will execute each statement. The compiler determines which processor owns the lhs, then
converts the global index into the local index for that processor.

For Ss, processor 0 owns Y (1), so the conversion leaves the index unchanged. For Ss, processor 3 owns
Y (256), so the conversion transforms the global index 1 into the local index 64 on processor 3. The result
is shown in Figure 4.9. As can be seen, constant subscripts in the rhs may be ignored since they have been
replaced by references to message buffers.
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{x Fortran D Program x*}
REAL X(256), Y(256)
PARAMETER (n$proc = 4)
DECOMPOSITION D(256)
ALIGN X, Y with D
DISTRIBUTE D(BLOCK)
do i = 1,256
S1 X(i) = F (1)
enddo
Sy Y(1) = F2(X(2),X(256))
Ss  Y(256) = F2(X(1),X(255))
do i = 2,255
Y(i) = Fp(X(i+1),X(i-1))
enddo

Figure 4.8 Index Translation

{* Compiler Output x*}
REAL X(64), Y(0:65)
my$p = myproc() {x 0..3 }

1b; = max((my$p*25)+1,2)-(my$p*25)
ub; = min((my$p+1)*25,99)-(my$p*25)
i$off = my$p*25
do i = 1,64

X(i) = F (i+i$off)
enddo

if (my$p .eq. 3) send(X(64),0)
if (my$p .eq. 0) send(X(1),3)
if (my$p .eq. 0) then
recv(r$buf(1),3)
Y(1) = Fo(X(2),r$buf (1))
endif
if (my$p .eq. 3) then
reco(r$buf(1),3)
Y(64) = Fo(r$buf(1),X(63))
endif
do i = lbl,ubl
¥Y(i) = Fa(X(i+1),X(i-1))
enddo

Figure 4.9 Index Translation—Compiler OQutput

4.4.5 Message Generation

The Fortran D compiler uses information calculated in the communication analysis and optimization phases
to guide message generation. Non-blocking send and blocking recv are inserted for the following types of
messages:

Independent Messages

Messages for references tagged at loop headers for loop-independent cross-processor dependences are labeled
as independent. For these messages the Fortran D compiler inserts calls to send and recv primitives preceding
the loop header. For messages tagged at individual references, the Fortran D compiler inserts send and recv
in the body of the loop preceding the reference. All messages are guarded so that the owners execute send
and recipients execute recv. To calculate the data that must be sent, the Fortran D compiler builds the RSD
for the reference at the loop level that the message is generated. This represents data sent on each loop
iteration.
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{* Example Computation *} {* Communication Placement *}
do k = 1,M send & recv B(i+1)
doi=1,N dok = 1,M
boo A(i) = B(i+1) send & recv A(i+1)
O + A(i+1) recv A(i-1)
6 + A(i-1) do i = 1,N/P
enddo A(i) = B(i+1) + A(i+1) + A(i-1)
enddo enddo
send A(i-1)
enddo

Figure 4.10 Message Vectorization According To Message Type

Carried-all and Carried-part Messages

The situation is more complex for messages representing loop-carried dependences. To calculate the data
that must be communicated, we build the RSD for each rhs reference at the level of the loop L carrying
the dependence. If iterations of L are executed by all processors, the reference is labeled as carried-all. The
Fortran D compiler inserts calls to send and recv primitives inside the loop header for L, at the beginning of
the loop body.

If the iterations of L are partitioned across processors, the reference is labeled as carried-part. In this
case loop-carried messages represent data synchronization. The compiler inserts calls to recv preceding loop
L, since they occur before the local iterations of L. Similarly, calls to send are inserted after L, since they
are executed after the local iterations of L.

If both independent and carried-part messages are generated at the same loop header, send and recv
primitives for independent messages are inserted first further away from the header. Communication for
carried-part messages are inserted afterwards, immediately preceding the loop header in order to avoid
deadlock. This ordering allows communication for independent messages to take place in parallel, before
communicating data corresponding to carried-part messages.

Communication Placement

Figure 4.10 illustrates the communication generated for these three message types. Assume that A and B
are distributed block-wise, causing the iterations of the i loop to be partitioned among processors. Messages
are required for all three rhs references and classified based on the level and type of true dependences. The
message for B(i + 1) is of type independent at the k loop, causing communication to be inserted preceding
the k loop header. The message for A(i+ 1) is of type carried-all at the k loop, so communication is inserted
at the head of the loop body. Finally, the message for A(i — 1) is of type carried-part at the 7 loop, so
communication is inserted before and after the ¢ loop.

Additional Examples

We illustrate message generation for several additional examples from previous sections. First, messages are
labeled independent in Red-black SOR. They thus cause communication to be inserted preceding the loop
nests, such as the loops enclosing statements S3 and S; in Red-black SOR, displayed in Figure 4.5.

For the Jacobi code in Figure 4.3, recall that the &k loop carries true dependences for the rhs references in
S1. These messages were tagged at the k loop header as carried. We first compute RSDs for the data that
need to be communicated. Boundary conditions cause three RSDs to be generated for each rhs reference.
Below are the RSDs for the reference B(i,j + 1) at the & loop level.

Proc(l) = [2:99,3:26]
Proc(2:3) = [2:99,2:26]
Proc(4) = [2:99,2:25]
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REAL A(0:26,100)
my$p = myproc() {*0...3 x}
1b; = max((my$p*25)+1,2)-(my$p*25)
ub; = min((my$p+1)*25,99)- (my$p*25)
do k = 1,time
if (my$p .gt. 0) send(A(1,2:99), my$p-1)
if (my$p .1t. 3) recv(A(26,2:99), my$p+1)
do j = 2,99
if (my$p .gt. 0) recv(A(0,j), my$p-1)
do i = lbg, '|.1b2
A(i,3) = (w/4)*(A(4,j-1)+A(i-1,j)+
A(i+1,3)+A(4,j+1))+(1-w)*A(1,])
enddo
if (my$p .1t. 3) send(A(25,j), my$p+1)
enddo
enddo

Figure 4.11 Generated SOR

We subtract the local index set from these RSDs to determine the RSDs for the nonlocal index set. The
nonlocal RSDs for Proc(l) and Proc(2:3) are both [2:99, 26] and are therefore combined. The RSD for
Proc(4) consists of only local data and is discarded.

The sending processor is determined by computing the owners of the section [2:99,26] @ Proc(1:3),
resulting in Proc(2:4) sending data to their left processors. To compute the data that must be sent, we
translate the local indices of the receiving processors to that of the sending processors, obtaining the section
[2:99,26—25] = [2:99,1]. Since loop k is executed by all processors, the messages are inserted at the beginning
of the loop body. Messages for B(i,j — 1) are calculated in a similar manner. The communication generated
is shown in Figure 4.6.

Now consider the SOR code depicted in Figure 4.4. Dependences for A(i+1,j) are carried on the k loop,
causing vectorized messages to be inserted at the beginning of the k loop body as in Jacobi. The compilation
of A(i—1,7) is more complicated. Boundary conditions and dependences carried by the i loop cause the
following three RSDs to be generated at the level of the 7 loop.

Proc(l) = [1:24, 3]
Proc(2:3) = [0:24, 5]
Proc(4) = [0:23, 7]

The local index set is subtracted from these RSDs to determine the RSDs for the nonlocal index set, producing
the empty set for Proc(1). The nonlocal RSDs for both Proc(2:3) and Proc(4) are [0,j] and are combined.
This shows that processors 2 through 4 require data from their left neighbor. Iterations of the ¢ loop are
partitioned, alerting the Fortran D compiler to the fact that the send for A(i — 1,7) occurs after the last
local 7 loop iteration, and the recv occurs before the first local 7 loop iteration. It thus inserts the recv before
the ¢ loop and the send after the ¢ loop, resulting in the code shown in Figure 4.11.

Collective Communication

During communication optimization, opportunities for reductions and collective communication have been
marked separately. Instead of individual calls to send and recv, the Fortran D compiler inserts calls to the
appropriate collective communication routines. Additional communication is also appended following loops
containing reductions to accumulate the results of each reduction.

Run-time Processing

Run-time processing is applied to computations whose nonlocal data requirements are not known at compile
time. An inspector [155] is constructed to preprocess the loop body at run-time to determine what nonlocal
data will be accessed. This in effect calculates the receive index set for each processor. A global transpose
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operation between processors is then used to calculate the send index sets. Finally, an ezecutor is built to
actually communicate the data and perform the computation.

An inspector is the most general way to generate send and receive sets for references without loop-carried
true dependences. Despite the expense of additional communication, experimental evidence from several
systems show that it can improve performance by grouping communication to access nonlocal data outside
of the loop nest, especially if the information generated may be reused on later iterations [123, 155].

The inspector strategy is not applicable for unanalyzable references causing loop-carried true depen-
dences. In this case the Fortran D compiler inserts guards to resolve the needed communication and program
execution at run-time [38, 178, 212].

4.4.6 Forall Scalarization

Another responsibility of the Fortran D compiler is to convert FORALL loops into DO loops, inserting ad-
ditional code where necessary to maintain the semantics of the FORALL loop. This process, known as
scalarization, generally involves making temporary copies of rhs values where necessary to prevent them
from being overwritten before they are used. Optimizations known as sectioning may be used to reduce the
amount of buffering needed [8, 11]. FORALL scalarization is discussed in greater detail later in Chapter 8.

4.4.7 Storage Management

One of the major responsibilities of the Fortran D compiler is to select and manage storage for all nonlocal
array references. The simplest approach is to allocate full-sized arrays on each processor. This requires the
least change to the program, but wastes most of the available memory and limits the total problem size.
More sophisticated storage management techniques manipulate both the location and lifetimes of nonlocal
storage in order to reduce memory use and code complexity. Storage management may be separated into
two phases, selection of the desired storage types, and coordinating their usage. The Fortran D compiler
analyzes nonlocal references and selects one of the following three storage schemes.

Overlaps

Overlaps are expansions of local array sections to accommodate neighboring nonlocal elements [80]. For
regular stencil computations, overlaps are useful because they allow the generation of clear and readable
code. For other computations overlaps are inefficient, because all array elements between the local section
and the one accessed must also be part of the overlap, even if they are not used. Storing nonlocal data in
overlaps also requires more storage than other means. This is because overlaps are permanent and specific
to individual arrays, and thus cannot be reused in other parts of the computation.

Buffers

Buffers avoid the contiguous and permanent nature of overlaps. They are useful when storage for nonlocal
data must be reused, or when the nonlocal area is bounded in size but not near the local array section.
For instance, a buffer can be used to store the pivot column for Gaussian elimination with partial pivoting,
without requiring the entire array as an overlap. Buffers have the advantage that nonlocal array elements
do not have to be copied to a data array, but can be accessed directly by modifying nonlocal references in
the program. The lifetime of a buffer depends on how quickly it will be reused for different arrays or later
parts of the computation.

Hash tables

Hash tables may be used when the set of nonlocal elements accessed is sparse, as for many irregular compu-
tations. They also provide a quick lookup mechanism for arbitrary sets of nonlocal values [108, 156].
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Maintenance

Selecting storage types is fairly simple. Stencil computations that result in nonlocal accesses at boundaries
of local array sections are satisfied by providing overlaps. The compiler allocates buffers for nonstencil
computations or stencils that are result in nonlocal accesses not contiguous to the local array section. Hash
tables are selected for nonlocal accesses made by sparse computations.

Once the type of storage is chosen, the compiler needs to perform analysis to determine the total amount
of storage needed as overlaps, persistent buffers, or temporary buffers. The extent of all RSDs representing
nonlocal accesses produced during message generation are examined to select the appropriate storage type
for each array. If overlaps have been selected, array declarations are modified to take into account storage
for nonlocal data. For instance, array declarations in the generated code in Figures 4.6 and 4.11 have been
extended for overlap regions.

If buffers are used, additional buffer array declarations are inserted. Finally, all nonlocal array references
in the program are modified to reflect the actual data location selected so that they access the appropriate
buffer instead. This may require also linearizing the nonlocal reference to the buffer.

4.5 Discussion

We have presented the basic structure of the Fortran D compiler. It performs three major functions—program
analysis, program optimization, and code generation. New analysis techniques are required to compile shared-
memory programs for distributed memory machines. We also described several internal data structures used
in the compilation process. The Fortran D compiler utilizes a compilation strategy based on the concept
of data dependence that unifies and extends previous techniques. The partitioning and communication are
derived from the Fortran D data decomposition specifications via the owner computes rule. This information
is used to perform a source-to-source translation, generating an efficient message-passing SPMD Fortran 77
program for execution on the nodes of the distributed-memory machine.
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Chapter 5
Compiler Optimizations

A number of Fortran D compiler optimizations are introduced and classified. Program transformations mod-
ify the program execution order to enable optimizations. Communication optimizations can be separated
into two classes, those that reduce communication overhead by decreasing the number of messages, and those
that hide communication overhead by overlapping the cost of remaining messages with local computation.
Parallelism optimizations restructure the computation or communication to increase the amount of useful
computation that may be performed in parallel. Optimizations improve computation partitioning by elimi-
nating explicit guards. Storage requirements are reduced by partitioning data across processors and sending
messages in smaller blocks.

5.1 Introduction

The goal of the Fortran D compiler is to generate a parallel program with low communication overhead and
storage requirements for MIMD distributed-memory machines. This chapter introduces and classifies a num-
ber of advanced compiler optimizations to achieve this goal. These optimizations are shown in Figure 5.1.
Communication optimizations can reduce communication overhead by eliminating messages or hide commu-
nication overhead by overlapping communication and computation. Parallelism optimizations exploit the
parallelism in fully parallel and pipelined computations. Optimizations improve partitioning by reducing the
number of run-time tests required to partition computation. Optimization may also reduce the amount of
storage required for nonlocal data.

As the Fortran D compiler is a second generation research project, many of its optimizations have been
discussed in the literature. However, previous researchers tend to develop each optimization in isolation,
without evaluating their effectiveness or considering their interaction with other elements of the compiler.
We find that integrating these optimizations in a single compiler is difficult but feasible. In the Fortran D
compiler we design a framework for classifying an integrating optimizations, as well as adapt and extend a
number of existing optimizations. In Figure 5.1, we use o, e, and * to mark the extent of our contribution
to each optimization technique.

Shared-memory parallelizing compilers apply program transformations to expose or enhance parallelism
in scientific codes, using dependence information to determine their legality and profitability [10, 117, 132,
205]. We have found that transformations such as loop interchange, fusion, distribution, alignment, and
strip-mining to be also quite useful for optimizing Fortran D programs. The legality of each transformation
is determined in exactly the same manner as for shared-memory programs, since the same execution order
must be preserved in order to retain the meaning of the original program. However, their profitability criteria
are now totally different.

In the remainder of this chapter, we describe each optimization and provide motivating examples using
a small selection of scientific program kernels adapted from the Livermore Kernels and finite-difference al-
gorithms [151]. They contain stencil computations and reductions, techniques commonly used by scientific
programmers to solve partial differential equations (PDEs) [31, 74]. For clarity we ignore boundary condi-
tions and use constant loop bounds and machine size in the examples, though this is not required by the
optimizations. We have also equalized sizes for two dimensional problems used in our Livermore examples
(e.g., nxn instead of 7xn data arrays).
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1) Reduce Communication Overhead

e Message Vectorization o Message Coalescing
o Message Aggregation o Collective Communication
o Run-time Processing o Relax Owner Computes Rule

e Replicate Computation

2) Hide Communication Overhead
o Message Pipelining * Vector Message Pipelining
o Iteration Reordering e Unbuffered Messages
3) Exploit Parallelism
o Partition Computation e Private Variables
¢ Reductions and Scans ¢ Dynamic Data Decomposition
* Pipeline Computations
4) TImprove Partitioning
e Loop Bounds Reduction e Loop Distribution
e Loop Align
5) Reduce Storage
o Partition Data o Message Blocking

Where:
o indicates existing technique
e indicates improvement or adaptation of existing technique
* indicates new technique

Figure 5.1 Fortran D Compiler Optimizations

5.2 Reducing Communication Overhead

We begin our description of compiler optimizations with those that attempt to reduce communication over-
head. Many compiler optimizations focus on reducing communication overhead. Computer architects usually
characterize communication by latency and bandwidth. For evaluating compiler optimizations, we find it
convenient to divide communication overhead into three components:

o Tiiart, the startup time to send & receive messages.
o T,opy(n), the time to copy a message of size n into & out of the program address space.
o Tiransit(n), the transit time for a message of size n between processors.

We assume 14454 is relatively fixed with respect to message size, but that both 7..py and Tiransse grow with
n. Using this communication model we can cast latency as Tssars + Teopy (1) + Tiransiz(1) and bandwidth as
n/(Tcopy(n) + ﬂransit(n) - T‘transz't(l))~

We begin with optimizations to reduce Tjiqr¢, the startup cost incurred to access nonlocal data. For
most MIMD distributed-memory machines, the cost to send the first byte is significantly higher than the
cost for additional bytes. For instance, the Intel iPSC/860 requires approximately 95 usec to send one byte
versus .4 psec for each additional byte [26]. The following optimizations seek to reduce Tyiqr¢ by eliminating
messages, reducing the total number of messages sent. In the next section we describe optimizations that
try to hide Tiopy and Tiransis by overlapping communication with computation.

5.2.1 Message Vectorization

Message vectorization has been discussed in the previous chapter. Basically, it uses the results of data
dependence analysis [10, 132] to combine element messages into vectors. Message vectorization is a loop-



5.2. REDUCING COMMUNICATION OVERHEAD 63

based optimization. It extracts communication from within loops, replacing sending a message per loop
iteration to one vectorized message preceding the loop.

Recall that message vectorization first calculates commlevel, the level of the deepest loop-carried true
dependence or loop enclosing a loop-independent true dependence. This determines the outermost loop
where element messages resulting from the same array reference may be legally combined [16, 80]. Vectorized
nonlocal accesses are represented as RSDs and stored at the loop at commlevel. They eventually generate
messages at loop headers for loop-carried RSDs and in the loop body for loop-independent RSDs.

5.2.2 Message Coalescing

Once nonlocal accesses are vectorized at outer loops, the compiler applies message coalescing to avoid com-
municating redundant data. It compares RSDs from different references to the same array, merging RSDs
that contain overlapping or contiguous elements, if the RSDs possess the same communication type (e.g.,
shift, broadcast). If two overlapping RSDs cannot be be coalesced without loss of precision, they are split
into smaller sections in a manner that allows the overlapping regions to be merged precisely. The resulting
RSDs are aggregated.

For instance, consider the kernel in Figure 5.2. Communication analysis discovers that references
U(k+1)...U(k+6) access nonlocal data. These references do not cause loop-carried true dependences, so
their nonlocal RSDs are vectorized outside both the [ and k loops, resulting in the RSDs [26:26]. . [26:31].
These RSDs may be coalesced without loss of precision, resulting in [26:31]. Calls to copy routines are
inserted during code generation to pack noncontiguous data into message buffers, but is not needed for this
example since the data is contiguous. Finally, explicit send and recv statements are placed at loops headers
to communicate nonlocal data.

Message coalescing can also be applied across loop nests. RSDs representing nonlocal data to be com-
municated for a loop nest may be combined with RSDs at previous loop nests at the same level, if the
data represented in the RSD has not be redefined by an intervening write. During dependence analysis,
the Fortran D compiler summarizes array definitions using RSDs. During optimization, the compiler steps
backwards through the program for each RSD, seeking targets for message coalescing and aggregation. The
search halts if a merge is found, the RSD intersects an RSD representing an intervening definition, or if no
more statements exist at the appropriate loop level.

{* Fortran D Program x*}

REAL U(100), X(100), Y(100), Z(100), R, T
PARAMETER (n$proc = 4)

DECOMPOSITION D(100)

ALIGN U, X, Y, Z with D

DISTRIBUTE D(BLOCK)

do 1l = 1,time

do k = 1,94
X(k) = F(Z(k),¥(k),U(k)...U(k+6))
enddo
enddo

{* Compiler Output x*}

REAL U(31), X(25), Y(25), Z(25), R, T
my$p = myproc() {* 0...3 x}

if (my$p .gt. 0) send(U(1:6),my$p-1)
if (my$p .1t. 3) recv(U(26:31) ,my$p+1)
do 1l = 1,time

do k = 1,25
X(k) = F(Z(k),¥(k),U(k)...U(k+6))
enddo
enddo

Figure 5.2 Livermore 7T-Equation of State Fragment
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{* Fortran D Program x*}
REAL ZP(100,100), ZQ(100,100), ZM(100,100)
REAL ZR(100,100), ZZ(100,100), ZA(100,100)
REAL ZU(100,100), ZV(100,100), ZB(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN ZA, ZB, ZM, ZP, ZQ, ZR, ZU, ZV, ZZ with D
DISTRIBUTE D(BLOCK,:)
do 1l = 1,time
do k = 2,99
do j = 2,99
ZA(j,k) = F1(ZP(j-1,k),ZQ(j-1,k),ZM(j-1,k),ZR(j-1,k),...)
ZB(j,k) = F»(ZP(j-1,k),ZQ(j-1,k),...)
enddo

F3(2Z(j-1,k),2Z(j+1,k),ZA(j-1,k),...)
F4(ZR(j-1,k),ZR(j+1,k),ZA(j-1,k),...)

N

=

~~

.

=

N
I

= F5(ZR(j,k),2U(j,k))

Figure 5.3 Livermore 18—FExplicit Hydrodynamics

5.2.3 Message Aggregation

Message coalescing ensures that each data value is sent to a processor only once. In comparison, message
aggregation ensures that only one message is sent to each processor, possibly at the expense of extra buffer-
ing. After message vectorization and coalescing, the Fortran D compiler locates and aggregates all RSDs
representing data being sent to the same processor that have the same communication type. During code
generation, these array sections are copied to a single buffer so that they may be sent as one message. The
receiving processor then copies the buffered data back to the appropriate locations. Like message coalesc-
ing, message aggregation can be applied across loop nests. The compiler steps backwards in the program
comparing RSDs; stopping when the RSD is aggregated, an intervening definition is found, or no candidate
RSDs remain.

Consider the kernel in Figure 5.3. The lack of true dependences for nonlocal references to ZP, ZQ, and ZM
allows their communication to be vectorized and coalesced outside the [ loop. The compiler discovers they
are being sent one processor to the right, and aggregates them in the same message. Nonlocal references
to ZR and ZZ cause true dependences carried on the ! loop. Their nonlocal accesses are vectorized and
communications inserted inside loop ! just after the loop header, allowing values from the previous iteration
to be fetched at the beginning of each new iteration. Once RSDs are placed at the header, the compiler
easily recognizes that the messages may be coalesced and aggregated as one message each for the left and
right processors. Finally, nonlocal references to ZA cause loop-independent dependences. Communication is
vectorized and coalesced at the level of the I loop, since it is the only loop common to the endpoints of the
dependence. Messages are later inserted in front of the & loop enclosing accesses to ZA.

5.2.4 Collective Communication

Message vectorization using data dependence information can determine where communication should be
inserted. However, the Fortran D compiler also needs to select an efficient communication mechanism.
Communication selection is performed by comparing the subscript expression of each distributed dimension
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{* Compiler Output x*}
REAL ZP(0:25,100), ZQ(0:25,100), ZM(0:25,100)
REAL ZR(0:26,100), 2Z(0:26,100), ZA(0:25,100)
REAL ZU(25,100), ZV(25,100), ZB(25,100)
my$p = myproc() {* 0...3 x}
if (my$p .1t. 3) send(ZP(25,2:100),ZQ(25,2:100),ZM(25,2:100) ,my$p+1)
if (my$p .gt. 0) recw(ZP(0,2:100),2Q(0,2:100),ZM(0,2:100) ,my$p-1)
do 1l = 1,time

if (my$p .gt. 0) send(ZR(1,2:99),ZZ(1,2:99),my$p-1)

if (my$p .1t. 3) send(ZR(25,2:99),ZZ(25,2:99) ,my$p+1)

if (my$p .1t. 3) recv(ZR(26,2:99),ZZ2(26,2:99) ,my$p+1)

if (my$p .gt. 0) recv(ZR(0,2:99),2Z(0,2:99) ,my$p-1)

do k = 2,99

do j = 1,25
ZA(j,k) = F1(ZP(j-1,k),ZQ(j-1,k),ZM(j-1,k),ZR(j-1,k),...)
ZB(j,k) = F»(ZP(j-1,k),ZQ(j-1,k),...)
enddo

enddo

if (my$p .1t. 3) send(ZA(25,2:99),my$p+1)

if (my$p .gt. 0) recv(ZA(0,2:99),my$p-1)

do k = 2,99
do j =1,25
ZU(j,k) = F3(2Z(j-1,k),ZZ(j+1,k),ZA(j-1,k),...)
ZVv(j,k) = F4(ZR(j-1,k),ZR(j+1,k),ZA(j-1,k),...)
enddo
enddo
do k = 2,99
do j =1,25
ZR(j,k) = F5(ZR(j,k),Z2U(j,k))
ZZ(j,k) = Fs(2Z2(j,k),ZV(j,k))
enddo
enddo
enddo

Figure 5.4 Livermore 18—Compiler Output

{* Fortran D Program x*}
DECOMPOSITION D(N,N)
ALIGN A, B with D
DISTRIBUTE D(BLOCK,BLOCK)

do j = 2,N
do i=2,N
S A(i,j) = B(4i,j-1)+B(i-1,3)
So A(i,j) = B(e,j)+B(j,1)
Ss A(i,j) = B(f(1),3)
enddo
enddo

Figure 5.5 Communication Selection

in the rhs with the aligned dimension in the lhs reference. This determines the communication type of the
RSD representing nonlocal accesses.

Consider the example program in Figure 5.5. Message vectorization determines that communication can
be extracted from both the ¢ and j loops. The arrays A and B are aligned identically and both dimensions are
distributed, so we need to compare the first dimensions with each other, then the second. In Sy, the aligned
dimensions of both the lhs and rhs references contain constant offsets to the same loop index variable. For
these shifts resulting from stencil computations, individual calls to send and recv primitives are very efficient.
This is the case for the Jacobi, SOR, and Red-black SOR examples previously discussed.

More complicated subscript expressions indicate the need for collective communication [140]. For exam-
ple, the loop-invariant subscript for B(c, j) in S2 can be efficiently communicated using broadcast. Collective
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communication is selected because these communication patterns are not well-described by individual mes-
sages, and can be performed significantly faster using special purpose routines. The Fortran D compiler
applies techniques pioneered by Li and Chen to recognize these patterns through syntactic analysis [140].

In other words, message vectorization, coalescing, and aggregation determine the extent to which com-
munication for nonlocal accesses may be combined into a single message. For stencil computations these are
point-to-point interprocessor communication and can be performed quite efficiently by individual calls to
send and recv primitives. However, when communication takes place between groups of processors in regular
patterns, message overhead can be reduced by utilizing fast collective communication routines instead of
generating individual messages [26].

Examples of collective communication routines include broadcast, all-to-all, transpose, global concate-
nation, and global sum. Differing interdimensional alignments between lhs and rhs references point out
the need for transpose, while symbolic analysis detects reductions that can use collective communication
to accumulate partial results. Collective communication routines either rely on architectural support (e.g.,
broadcast) or special protocols (e.g., pair-wise exchange with combine) to reduce the number of messages
that must be sent. They can significantly reduce the number of messages without affecting parallelism. For
instance, computing the global sum of an array on N processors can be reduced from O(N?) to O(NlogN)
messages.

5.2.5 Run-time Processing

Irregular computations require special treatment in the Fortran D compiler. Consider the type of commu-
nication required to communicate the values needed by by B(f(¢),7) in Ss of Figure 5.5. Because f is an
irregular function (e.g., an index array), the Fortran D compiler cannot precisely determine at compile-time
what communication is required, even though message vectorization can extract the communication out of
the ¢ loop. Message coalescing and aggregation cannot be performed at compile-time because the actual array
elements accessed are unknown. However, a combination of compile-time analysis and run-time processing
can be applied to optimize communication.

As previously discussed, if no loop-carried true dependences are present, inspectors and ezecutors may be
created at compile-time during code generation to combine messages at run-time [123, 155]. The inspector
performs the equivalent of message coalescing and aggregation at run-time. The executor then utilizes
collective communication specialized for irregular computations. Special all-to-all gather and scatter routines
collect all the nonlocal data with a small number of messages.

5.2.6 Relax Owner Computes Rule

The owner computes rule provides the basic strategy of the Fortran D compiler. We may also relax this rule,
allowing processors to compute values for data they do not own. For instance, suppose multiple rhs of an
assignment statement are owned by a processor that is not the owner of the lhs. Computing the result on
the processor owning the rhs and then sending the result to the owner of the lhs could reduce the amount of
data communicated. Consider the following loop:

doi=1,n
A(i) = B(i) + C(i)
enddo

Assume that B(i) and C(7) are mapped together to a processor different from the owner of A(¢). The amount
of data communicated may be reduced by half if the computation is first performed by the processor owning
B and C, then sent to the processor owning A. This optimization is a simple application of the “owner
stores” rule proposed by Balasundaram [15].

In particular, it may be desirable for the Fortran D compiler to partition loops amongst processors so that
each loop iteration is executed on a single processor, such as in Kart and ARF [127, 209]. This technique may
improve communication and provides greater control over load balance, especially for irregular computations.
It also eliminates the need for individual statement masks and simplifies handling of control flow within the
loop body. The Fortran D compiler will detect phases of the computation where the owner computes rule
may be relaxed to improve communications or load balance.
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5.2.7 Replicate Computation

The Fortran D compiler considers scalar variables to be replicated. All processors thus perform computa-
tions involving assignments to scalar variables. This causes redundant computation to be performed, but
is profitable because it significantly reduces communication costs. A similar approach may be taken for
computations on elements of distributed arrays. It may be more efficient to replicate computation on mul-
tiple processors, rather than incur the expense of communicating the value from the owner of that element.
Consider the following loop:

doi=3,n

X(1) = f(1)
Y(i) = (X(i-1) + X(i-2)) / 2
enddo

Assume that arrays X and Y are distributed arrays aligned identically onto the same decomposition, and that
f 1s a function performing computation that does not require values from other processors. Straightforward
compilation of this loop would cause messages to be generated, communicating the new values of X (i — 1)
and X (i — 2) to the processor performing the assignment to Y (i). However, if the Fortran D compiler
replicates the computation of X (i — 1) and X (¢ — 2) on the receiving processor, it eliminates the need for
any communications.

5.3 Hiding Communication Overhead

The previous section discussed techniques to decrease communication costs by reducing Tsiqr¢. This sec-
tion presents optimizations to hide T3rqnsit, the message transit time, by overlapping communication with
computation. The same optimizations can also hide T¢,p,, the message copy time, by using unbuffered
messages.

5.3.1 Message Pipelining

Message pipelining inserts a send for each nonlocal reference as soon as it is defined [178]. The recv is placed
immediately before the value is used. Any computation performed between the definition and use of the
value can then help hide T}, 4y 5:. Unfortunately, message pipelining prevents optimizations such as message
vectorization, resulting in significantly greater total communication cost. It is thus generally undesirable for
completely parallel programs, but may be useful for exploiting parallelism for pipelined computations, as
shown in the next chapter.

5.3.2 Vector Message Pipelining

We describe a new optimization, vector message pipelining, that hides Ty, 4ns5i¢ Without increasing total
communication cost. After message vectorization, pairs of vectorized send and recv statements have been
gathered either inside or outside of loop headers. Vector message pipelining uses data dependence information
to move vector send and recv statements towards their definitions and uses respectively in order to hide
Eransit~

Vector message pipelining may be considered to be macro-instruction scheduling, where macro-instructions
consist of vectorized send, recv statements and entire inner loop nests. Since send and recv statements in-
terlock, they must be scheduled apart in order to avoid idle cycles. A simple application of vector message
pipelining is to invoke all send statements before recv when a number of messages are sent at the same time.

Figure 5.6, Red-Black successive over-relaxation (SOR), demonstrates a more complex case. Values of red
points computed by statement S; are used by Ss, corresponding to a loop-independent true dependence from
S1 to S3. Similarly, S» computes red points used by Ss. Message vectorization creates communication for S3
and Sy at the level of the [ loop, since it is the deepest loop enclosing these loop-independent dependences.
We label these messages as m$1 and m$2. Vector message pipelining then places the vector send for Ss and
Sa after the j loops enclosing S and S, respectively, using them to hide T3, 4nsit-
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{* Fortran D Program x*}
REAL V(1000,1000)
PARAMETER (n$proc = 10)
DECOMPOSITION D(1000,1000)
ALIGN V with D
DISTRIBUTE D(:,BLOCK)
do 1l = 1,time

{* compute red points *}

do j = 3,999,2

do i = 3,999,2

S V(i,j) = F(i,j-1),v(i-1,3),V(1,j+1),V(i+1,]))

enddo
enddo
do j = 2,998,2
do i = 2,998,2
Sy V(i,j) = FOV(i,j-1),V(i-1,3),V(i,j+1),V(i+1,j))
enddo
enddo

{* compute black points *}
do j = 2,998,2
do i = 3,999,2
Ss V(i,j) = F(i,j-1),v(i-1,3),V(1,j+1),V(i+1,]))

enddo
enddo
do j = 3,999,2
do i = 2,998,2
Sy V(i,j) = F(V(i,j-1),v(i-1,7),V(i,j+1),V(i+1,3))
enddo
enddo
enddo

Figure 5.6 Red-Black SOR

In addition, values of black points computed by statement S3 are used by S, corresponding to a loop-
carried true dependence from S3 to S1. Similarly, S4 computes black points used by S;. Message vectorization
creates communication for S; and Ss at the level of the [ loop, since it is the loop with the deepest loop-
carried dependences. We label these messages as m$3 and m$4. Vector message pipelining places the vector
recv for Ss just before the j loop enclosing S5, using Sy to hide Ty ansit-

Hiding transit time for the values needed by S; is more complicated, since the communication needs to
cross iterations of the [ loop. Scheduling send and recv statements across iterations of the outer time-step
loop is analogous to macro-software pipelining. Vector message pipelining places the vector send for S after
Ss, using Sy to hide Ty qpn5i:- Matching vector send and recv statements must be inserted outside the loop.
The final result is shown in Figure 5.7.

Vector Message Pipelining Algorithm

Vector message pipelining is implemented as follows in the Fortran D compiler. Message vectorization,
coalescing, and aggregation produce RSDs of several types at different loop levels. The compiler applies
vector message pipelining in a manner similar to that for inter-loop message coalescing and aggregation.

For RSDs representing loop-independent messages at loop L, the compiler inserts the recv before the
loop in the normal manner and tries to move the send back as far as possible. The compiler steps backwards
through the program starting at the loop header for L. When an assignment statement is encounted, the RSD
or RSDs representing the nonlocal data being communicated are compared against the RSD representing
the array section defined at that loop level. If the sections intersect, the send is inserted after the assignment
statement to ensure the appropriate new values are communicated. The compiler is guaranteed to reach an
intersecting statement at some point, since the array section must have been defined before L in order to
produce the loop-independent dependence.
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{* Compiler Output x*}
REAL V(1000,0:101)
my$p = myproc() {* 0...9 x}
if (my$p .1t. 9) send(m$3,V(3:999:2,100) ,my$p+1)
do 1l = 1,time
if (my$p .gt. 0) send(m$4,v(2:998:2,1) ,my$p-1)
if (my$p .gt. 0) recv(m$3,V(3:999:2,0) ,my$p-1)
do j = 1,99,2
do i = 3,999,2
Si V(i,j) = F((i,j-1),Vv(i-1,3),V(i,j+1),V(i+1,3))
enddo
enddo
if (my$p .gt. 0) send(m$1,V(3:999:2,1),my$p-1)
if (my$p .1t. 9) recv(m$4,V(2:998:2,101) ,my$p+1)
do j = 2,100,2
do i = 2,998,2
S V(i,j) = F((i,j-1),v(i-1,3),V(i,j+1),V(i+1,3))
enddo
enddo
if (my$p .1t. 9) send(m$2,V(2:998:2,100) ,my$p+1)
if (my$p .1t. 9) recv(m$1,V(3:999:2,101) ,my$p+1)
do j = 2,100,2
do i = 3,999,2
Ss V(i,j) = F((i,j-1),Vv(i-1,3),V(i,j+1),V(i+1,3))
enddo
enddo
if (my$p .1t. 9) send(m$3,V(3:999:2,100) ,my$p+1)
if (my$p .gt. 0) recv(m$2,V(2:998:2,0) ,my$p-1)
do j = 1,99,2
do i = 2,998,2
Sy V(i,j) = FO(i,j-1),V(i-1,3),V(1,j+1),V(i+1,3))
enddo
enddo
enddo
if (my$p .gt. 0) recv(m$3,V(3:999:2,0) ,my$p-1)

Figure 5.7 Red-Black SOR—Compiler Output

Two options are possible for RSDs representing loop-carried messages. If the loop L is partitioned across
processors, the recv and send serve as data synchronization and are inserted before and after L, respectively.
Vector message pipelining is not applied since it interferes with the pipeline parallelism of the computation.
A different class of parallelism optimizations are applied, described in detail later in Section 5.4.5.

However, if loop L is not partitioned, vector message pipelining is applicable. Normally, send and recv
are both inserted at the top of the loop body to communicate data at the beginning of each iteration of L.
The compiler leaves the send at the top of the loop body, then attempts to move the recv as far forward as
possible within the loop body. The compiler steps forward through the body of L, comparing RSDs in the
same manner as before for each assignment statement encountered. It is guaranteed to find an intersecting
statement within the body of loop L, since the dependence for the message is carried by L.

5.3.3 Iteration Reordering

Red-Black SOR is a computation structured so that careful placement of vector send and recv statements
using vector message pipelining can effectively hide communication costs. Where this is not the case, iteration
reordering may be applied to change the order of program execution, subject to dependence constraints. This
allows loop iterations accessing only local data to be separated and placed between send and recv statements
to hide Tiransi [124].
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{* Fortran D Program x*}
REAL A(100,100), B(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN A, B with D
DISTRIBUTE D(:,BLOCK)
do 1l = 1,time
do j = 2,99
do i = 2,99
A(i,j) = F(B(i,j-1),B(i-1,3),B(i+1,3),B(i,j+1))
enddo
enddo
do j = 1,99
do i = 2,99
B(i,j) = A(i,3)
enddo
enddo

enddo Figure 5.8 Jacobi

{* Compiler Output x*}
REAL A(100:25), B(100,0:26)
my$p = myproc() {* 0...3 x}
do 1l = 1,time
if (my$p .1t. 3) send(B(2:99,1),my$p-1)
if (my$p .gt. 0) send(B(2:99,25),my$p+1)
{* perform local iterations *}
do j = 2,24
do i = 2,99
A(i,j) = F(B(4,j-1),B(i-1,3),B(i+1,3),B(1i,j+1))
enddo
enddo
if (my$p .1t. 3) recv(B(2:99,26) ,my$p+1)
if (my$p .gt. 0) recv(B(2:99,0) ,my$p-1)
{* perform non-local iterations *}
do j = 1,25,24

do i = 2,99
A(i,j) = F(B(i,j-1),B(i-1,3),B(i+1,3),B(i,j+1))
enddo
enddo
do j = 1,25
do i = 2,99
B(i,j) = A(4,3)
enddo
enddo
enddo

Figure 5.9 Jacobi—Compiler Output

We demonstrate how the Fortran D compiler finds local loop iterations for the Jacobi algorithm in
Figure 5.8. First, communication analysis calculates [2:99,0] and [2:99,26] to represent nonlocal accesses to
array B. These accesses are caused by the references B(i-1,j) and B(i+1,j). Applying their inverse subscript
functions yields the iteration sets [1,2:99] and [25,2:99]. Subtracting these nonlocal iterations from the full
iteration set yields [2:24,2:99] as the set of local loop iterations. These iterations are placed into a separate
loop nest between the vector send and recv statements to hide Ti,q4p5it. More aggressive iteration reordering
would also extract iterations from the second j loop to be placed before the vector recv statement.
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5.3.4 Unbuffered Messages

The Fortran D compiler generally uses buffered messages, such as the csend() and crecv() routines from
the Intel NX/2 message-passing library on the Intel iPSC/860. Invoking a buffered send causes the calling
process to block until the data has been copied out of the program address space into a system buffer. Upon
return the process may overwrite the original data. This does not mean that the process must wait for
the message to be actually received by another processor, just that the content of the message is no longer
affected by the sending processor. Invoking a buffered recv causes the calling process to block until the data
has been received and copied into the program address space. The advantage of buffered messages is that
data communicated is guaranteed not to be overwritten after returning from the communication routine.

Unbuffered messages, such as the isend() and irecy() routines found in the Intel NX/2 library on the
iPSC/860, permit computation and message copying to be performed in parallel on the same processor.
A unbuffered send returns immediately, allowing computation to be performed on the sending processor
concurrently with copying the data into a system buffer. If the data to be sent is contiguous, the copy may
even be eliminated completely. A unbuffered recv posts a message destination, enabling computation to be
performed on the receiving processor while the data is being received and copied. It also avoids an extra
copy into a system buffer, since the message body may be placed directly at the posted address. To avoid
inadvertent overwrites, an additional system call must be made for each unbuffered message to block the
computation until the copy is complete.

Vector message pipelining and iteration reordering with buffered messages can only hide T}, 4n4i¢, since the
processor must remain idle while copying the data. By using unbuffered messages, the Fortran D compiler also
hides T,py, the message copy time. This is important since copying is a major component of communication
overhead for large messages. However, unbuffered messages should be utilized selectively. Message startup
time for unbuffered messages is generally higher than for buffered messages, since the number of system calls
is doubled. Unbuffered sends may also require multiple buffers for noncontiguous data. Note that in our
model the only source of savings for a unbuffered send is the time to copy data to the system buffer. After
the copy is performed, both buffered and unbuffered messages can overlap communication and computation.

5.4 Exploiting Parallelism

5.4.1 Partitioning Computation

Most scientific applications are completely parallel in either a synchronous or loosely synchronous manner
[74]. In these computations all processors execute SPMD programs in a loose lockstep, alternating between
phases of local computation and synchronous global communication. These problems achieve good load
balance because all processors are utilized during the computation phase. For instance, Jacobi and Red-
black SOR are loosely synchronous computations.

If a computation can be determined by the compiler to belong to this class of parallel programs, parti-
tioning the computation using the “owner computes” rule yields a fully parallel program. To successfully
exploit parallelism in these basic cases; the compiler must be able to intelligently partition the work at
compile-time. The Fortran D compiler achieves this through loop bounds reduction and guard introduction.

Compile-time partitioning of parallel computations is key to any reasonable compilation system, and
should not really be considered an optimization. Cross-processor dependences point out sequential compo-
nents of the computation that cross processor boundaries. These dependences disable parallel execution by
forcing processors to remain idle, waiting for their predecessors to finish computing. We show later in this
section how optimizations may extract parallelism in the presence of cross-processor dependences.

5.4.2 Private Variables

Statements performing assignments to scalar and replicated array variables present a special challenge for
the Fortran D compiler. Naive application of the owner computes rule would cause every processor to execute
the assignment on all iterations. However, often the assignment can be partitioned because its value is used
only in the current loop iteration. These cases are readily recognized, since the variable being assigned will
have been labeled private during dependence analysis.
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{* Fortran D Program x*}
REAL ZA(100,100), ZB(100,100), ZR(100,100), QA
REAL ZU(100,100), ZV(100,100), ZZ(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN ZA, ZB, ZR, ZU, ZV, ZZ with D
DISTRIBUTE D(:,BLOCK)
do 1l = 1,time
do j = 2,99
do k = 2,99
S QA = Fi(ZA(k,j+1),ZA(k,j-1),ZA(k+1,5) ,ZA(k-1,7))
Sy ZA(k,§) = Fa(ZA(k,),Q4)
enddo
enddo
enddo

Figure 5.10 Livermore 23-Implicit Hydrodynamics

To partition statement S, the Fortran D compiler calculates the union of the iteration sets of all statements
that use S. These statements can be identified by tracking all true dependence edges with S as its source.
This union becomes the iteration set for S. The process is simplified if the iteration sets are calculated in
reverse order for statements in each loop nest.

For instance, consider the loop in Figure 5.10. Because QA is a replicated scalar, the owner computes
rule would assign all loop iterations as the iteration set for statement S;. However, since the only use of
QA occurs in the same loop iteration, it is classified as a private variable. The Fortran D compiler can thus
assign 57 the same iteration set as S5, the only statement containing a true dependence with S7 as its source.

5.4.3 Reductions and Scans

Some computations with cross-processor dependences may be parallelized directly. Reductions are associative
and commutative operations that may be applied to a collection of data to return a single result. For instance,
a sum reduction would compute and return the sum of all elements of an array. Scans are similar but perform
parallel-prefix operations instead. A sum scan would return the sums of all the prefixes of an array. Scans
are used to solve a number of computations in scientific codes, including linear recurrences and tridiagonal
systems [51, 128].

The Fortran D compiler applies dependence analysis to recognize reductions and scans. If the reduction
or scan accesses data in a manner that sequentializes computation across processors, the Fortran D compiler
may parallelize it by relaxing the “owner computes” rule and providing methods to combine partial results.
This requires changing the order in which computations are performed, which is why the operations must
be both associative and commutative.

Reductions are parallelized by allowing each processor to compute in parallel, later accumulating the
partial results. Communication using individual send/recv calls can be used to calculate the global result.
Broadcast may be used in place of send for efficiency, and specialized collective communication routines such
as global-sum() can reduce communication overhead even further for common reductions. Figure 5.11 shows
how a sum reduction may be parallelized using a global-sum collective communication routine to combine
the partial sums.

Scans may also be parallelized by reordering operations. Each processor first computes its local values in
parallel, then communicates the partial results to all other processors. The global data is used to update local
results. Though extra communication and computation is introduced during parallelization, the additional
parallelism yields major performance improvements. Figure 5.12 demonstrates how a prefix sum may be
computed, using a global-concat collective communication routine to collect the partial sums from each
processor in S. The partial sums of all preceding processors are combined locally and used as a basis for
computing local prefix sums [51].
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{* Fortran D Program x*}
REAL X(100), Z(100), Q
PARAMETER (n$proc = 4)

{* Compiler Output x*}
REAL X(25), Z(25), Q
do 1l = 1,time

DECOMPOSITION D(100) Q =0.0
ALIGN X, Z with D do i=1,25
DISTRIBUTE D(BLOCK) Q = Q + Z(k)*X(k)
do 1l = 1,time enddo

Q =0.0 Q = global-sum(Q)

do k = 1,100 enddo

Q = Q + Z(k)*X(k)
enddo
enddo

Figure 5.11 Livermore 3-Inner Product

{* Fortran D Program x*}
REAL X(100), Y(100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100)
ALIGN X, Y with D

{* Compiler Output x*}
REAL X(25), Y(25), S(0:3)
my$p = myproc() {* 0...3 x}
do 1l = 1,time

S(my$p) = 0.0

DISTRIBUTE D(BLOCK) do k = 1,25
dol = 1,time S(my$p) = S(my$p) + Y(k)
X(1) = Y(1) enddo
do k = 2,100 global-concat(S)
X(k) = X(k-1) + Y(k) X(1) = Y(1)

enddo

if (my$p .ne. 0) then

enddo do k = 0,my$p-1
X(1) = X(1) + s(k)

enddo

endif

do k = 2,25
(k) = X(k-1) + Y(k)

enddo

enddo

Figure 5.12 Livermore 11-First Sum

5.4.4 Dynamic Data Decomposition

Other computations contain parallelism, but are partitioned by the “owner computes” rule in a way that
causes sequential execution. In these cases dynamic data decomposition may be used to temporarily change
the ownership of data during program execution, exposing parallelism by internalizing cross-processor
dependences [16].

For instance, consider the two substitution phases in the Alternating Direction Implicit (ADI) integration
example in Figure 5.13. The computation wavefront only crosses one spatial dimension in each phase. A
fixed column or row data distribution would result in one parallel and one sequential phase. By applying
dynamic data decomposition using collective communication routines to change the array decomposition
after each phase, the Fortran D compiler can internalize the computation wavefront in both phases, allowing
processors to execute in parallel without communication [124].

However, dynamic data decomposition is only applicable when there are full dimensions of parallelism
available in the computation. For instance, it cannot be used to exploit parallelism for SOR or Livermore 23
in Figure 5.10, because the computation wavefront crosses both spatial dimensions. Even when dynamic
data decomposition is applicable, it may not be efficient, as shown in Section 6.3.
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{* Fortran D Program x*}
REAL A(100), B(100), X(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN X with D
DISTRIBUTE D(:,BLOCK)
do 1l = 1,time
{*x Phase 1: sweep along columns *}
do j = 1, 100
do i = 2, 100
X(i,j) = F1(X(1,3),X(i-1,7),4(1),B(i))
enddo
enddo
{x Phase 2: sweep along rows *}
do j = 2, 100
do i =1, 100
X1(i,j) = Fo(X(i,j),X(i,j-1),A(i),B(i))
enddo
enddo
enddo

{* Compiler Output x*}
REAL A(100), B(100), X(25,100), X1(100,25)
EQUIVALENCE (X,X1)
do 1l = 1,time
do j =1, 25
do i =2, 100
X(i,j) = F1(X(i,3),X(i-1,3),A(1),B(i))
enddo
enddo
redistribute-row-to-col(X)
do j = 2, 100
doi=1, 25
X1(i,j) = Fo(X(i,j),X(i,j-1),A(1),B(i))
enddo
enddo
redistribute-col-to-row(X1)

enddo Figure 5.13 ADI Integration

5.4.5 Pipelined Computations

This section describes how the Fortran D compiler exploits parallelism found in pipelined computations. The
Fortran D compilation strategy presented so far is well-suited to compiling fully data-parallel programs, since
it identifies and inserts efficient vector or collective communication at appropriate points in the program.
However, a different class of computations contain loop-carried cross-processor data dependences that se-
quentialize computations over distributed array dimensions. Synchronization is required and processors are
forced to remain idle at various points in the computation, resulting in poor load balance. We call these
computations, such as SOR or ADI integration, pipelined computations.

To demonstrate the difference between parallel and pipelined computations, consider the difference in
program execution illustrated in Figure 5.14. Solid lines denote computation, and dotted arrows represent
communication from sender to recipient. For parallel computations, all processors can execute concurrently,
communicating data when necessary. In pipelined computations, a processor cannot begin execution until it
receives results computed by its predecessor.



5.4. EXPLOITING PARALLELISM

75

P1 P2 P3 P4 Pl P2

Vv

1222
124

Ps Py

Figure 5.14 Parallel & Pipelined Computations
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ALIGN X(I,J) with A(I,J)
DISTRIBUTE A(BLOCK,:)

Original Order Fine-grain Pipelining

{recv row from P.s:}

do j = 1,N
do* i = 2,N/P

{recv element from P}

do j =1,N do* i = 2,N/P
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Figure 5.15 Examples of Pipelined Computations
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InpPUT:
Loop nest {Ly, ..., L,} with index variables {I, ..., I,}
List of all loop-carried true dependences
Data decomposition of all distributed arrays in loop nest

OutpUT:
Loops = Set of cross-processor loops

ALGORITHM:
Loops —
for each loop-carried true dependence between
references A(f1,..., fm) and A(g1,...,9m) do
for each distributed dimension £ of A do
{* fr and g, are subscripts in dimension k *}
if fi # gr or fi is not of form al; + G then
for each index variable I; in either f; or g do
if L; encloses both references to A then
Loops — Loops U {L;}
endif
endfor
endif
endfor
endfor
Figure 5.16 Finding Cross-Processor Loops

Exploiting Pipeline Parallelism

Pipelined computations present opportunities for the compiler to exploit partial parallelism through pipelin-
ing, enabling processors to overlap computation with one another. By sending partial results to their suc-
cessors earlier, processors may overlap computation with one another to achieve pipeline parallelism. When
used in this fashion, messages both transmit data and serve as data synchronization. The degree of pipeline
parallelism depends on how soon each processor is able to begin work after its predecessor starts.

One method of exploiting parallelism in pipelined computations through message pipelining—sending a
message when its value is first computed, rather than waiting until its value is needed [178]. Rogers and
Pingali applied this optimization to a Gauss-Seidel computation (a special case of SOR) that is distributed
cyclically. However, more sophisticated approaches are usually required.

Figure 5.15 illustrates the tradeoffs between communication and parallelism that must be considered
when optimizing pipelined computations. It presents the program text, data space traversal order, and a
processor trace for three versions of the computation. In the processor trace, elapsed time proceeds from
left to right. The computation for each processor is represented as a solid line, and messages are shown as
dashed lines between processors.

In the original program execution order, message vectorization minimizes communication overhead but
sequentializes the computation. Applying message pipelining alone is insufficient, since only the computation
for the last row will be pipelined. The key observation is that for some pipelined computations, the program
execution order must also be changed. The following sections presents compiler techniques for recognizing
and optimizing such computations.

Cross-Processor Loops

The Fortran D compiler identifies pipelined computations using cross-processor loops. We classify loops in
numeric computations as either time-bound or space-bound. Time-bound loops correspond to time steps
in the computation, with each iteration accessing much or all of the data space. They are usually outer-
most loops that need to be executed sequentially. In comparison, space-bound loops iterate over the data
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Data Decompositions, Loop Nests, & Cross-Processor Loops

Loop 1 Loop 2 Loop 3

DECOMPOSITION A(N,N) DECOMPOSITION A(N,N) DECOMPOSITION A(N,N)
REAL X(N,N) REAL X(N,N) REAL X(N,N)
ALIGN X(I,J) with A(I,J) ALIGN X(I,J) with A(I,J) ALIGN X(I,J) with A(I,J)
DISTRIBUTE A(BLOCK,:) DISTRIBUTE A(:,BLOCK) DISTRIBUTE A(BLOCK,BLOCK)
do* i = 2,N do i = 2,N do* i = 2,N

do j =1,N do j =1,N do* j = 2,N

X(i,j) = X@-1,7) X(i,j) = X(i-1,7) X(i,j) =

enddo enddo X(i-1,3) + X(4,j-1)
enddo enddo enddo

enddo

Data Space & Cross-Processor Dependences

7 —=

1 Py
N < N,
| 2, 2 21222 P N
S et
/TN
SR B Y DYDY DY i

Figure 5.17 Examples of Cross-Processor Dependences and Loops

space, with each iteration accessing part of each array. These loops are usually parallel in data-parallel
computations, but may be sequential if they cause a computation wavefront to sweep across the data space.

The Fortran D compiler labels a loop as cross-processor if it is a sequential space-bound loop causing
computation wavefronts that cross processor boundaries (i.e., sweeps over the distributed dimensions of the
data space). The compiler finds cross-processor loops as follows. First, it considers all pairs of array refer-
ences that cause loop-carried true dependences. If non-identical subscript expressions occur in a distributed
dimension of the array, index variables appearing in the subscript expressions belong to cross-processor
loops. The algorithm is shown in Figure 5.16. In most cases, cross-processor loops are loops carrying true
dependences whose iterations have been partitioned across processors.

Consider the loop-carried true dependence between S; and Sy caused by ZA(k,j) and ZA(k,j-1) in
Figure 5.10. Since the second dimension of ZA is distributed, the compiler compares j and j—1, the
subscripts in the second dimension. These are not identical, so the j loop is labeled as cross-processor. No
other loops are cross-processor.

Figure 5.17 illustrates cross-processor dependences and loops. We denote cross-processor loops as do*. All
loops in the example are space-bound loops that sweep the data space. In Loop 1, the i loop is cross-processor
because the computation wavefront sweeps the ¢ dimension across processors. There are no cross-processor
loops in Loop 2 because the computation wavefront is internalized and does not cross processor boundaries.
In Loop 3 both the i and j loops are cross-processor because the computation wavefront sweeps across
processors in both dimensions.

These examples make it clear how cross-processor loops may be used to classify computations. The
presence of any cross-processor loop in a loop nest indicates that it is a pipelined computation. Computations
such as Loop 2 that do not possess cross-processor loops are loosely synchronous, since all processors may
execute in parallel. Computations such as Loops 1 & 3 that do possess cross-processor loops are pipelined,
since processors must wait in turn for computation to be completed.
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5.4.6 Loop Transformations

Optimizing pipelined computations may require applying loop transformations. Here we present three trans-
formations used to change the program execution order for pipelined computations. Loop interchange swaps
adjacent loop headers to alter the traversal order of the iteration space. It may be applied only if the
source and sink of each dependence are not reversed in the resulting program. This may be determined by
examining the distance or direction vector associated with each dependence [10, 205].

Strip-mining increases the step size of an existing loop and adds an additional inner loop. The legality
of applying strip-mine followed by loop interchange is determined in the same manner as for unroll-and-
jam [117]. The Fortran D compiler may apply strip-mining in order to reduce storage requirements for
computations. It may also be used with loop interchange to help exploit pipeline parallelism, as discussed
in the next section.

Loop fusion combines multiple loops with identical headers into a single loop. It is legal if the direction
of existing dependences are not reversed after fusion [132, 205]. Loop fusion can improve data locality, but
its main use in the Fortran D compiler is to fuse imperfectly nested loops in order to enable loop interchange
and strip-mine.

5.4.7 Fine-grain Pipelining

We present two optimizations to exploit pipeline parallelism. The key observation we make is that the
granularity of pipeline parallelism is determined by the amount of computation enclosed by the send and
recv primitives inserted around cross-processor loops. Unfortunately, this is also directly responsible for the
amount of communication overhead. The Fortran D compiler thus needs to balance increases in pipeline
parallelism with increases in communication overhead, choosing the degree of pipelining that results in the
most efficient execution.

Fine-grain pipelining is a compiler technique where loop interchange is used to minimize the granularity
of pipelining, maximizing both pipeline parallelism and communication overhead. To perform fine-grain
pipelining, the Fortran D compiler interchanges all cross-processor loops as deeply as possible, so that they
enclose the least amount of computation. The resulting program execution order generates values needed by
other processors as quickly as possible.

Because loop-carried true dependences are carried by the cross-processor loop, the standard message
vectorization algorithm will place calls to recv and send primitives before and after the cross-processor loop,
respectively, during code generation. This produces the maximum parallelism with the finest granularity of
pipelining. The resulting program is a major improvement over sequentialized computation, but incurs the
most communication overhead since a message is sent for every iteration accessing nonlocal data.

5.4.8 Coarse-grain Pipelining

As we have shown, the granularity of pipelining is determined by the amount of computation C enclosed by
cross-processor loops. Increasing C reduces communication, since all nonlocal data accessed by € may be
communicated in a single message. However, parallelism is also reduced since processors must wait longer
before beginning to compute. Coarse-grain pipelining attempts to balance parallelism with communication
overhead, using a combination of loop interchange and strip-mining where needed to adjust the granularity
of pipelining.

A simple heuristic for coarse-grain pipelining is implemented in the prototype Fortran D compiler. It
first interchanges all cross-processor loops inward as deeply as possible, as in fine-grain pipelining. It then
strip-mines the deepest loop enclosing the cross-processor loops. Communication is inserted outside of the
newly strip-mined loop. The granularity of pipelining is determined by the strip size. Later in this chapter
we discuss how to choose an efficient granularity for pipelining based on the ratio between computation and
communication costs.

Figure 5.18 shows examples of both fine and coarse-grained pipelining applied to the implicit hydrody-
namics kernel in Figure 5.10. Fine-grain pipelining interchanges the cross-processor loop j to the innermost
position to maximize pipelining. In comparison, coarse-grain pipelining strip-mines the k& loop by a factor
B, then interchanges the iterator loop kk outside the j loop. This allows communication for B iterations
to be vectorized at the j loop. The legality of loop interchange and strip-mine is determined exactly as
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{* Compiler Output 1: Fine-grain pipelining x*}
REAL ZA(100,0:26), ZB(100,25), ZR(100,25), QA
REAL ZU(100,25), ZV(100,25), ZZ(100,25)
my$p = myproc() {* 0...3 x}
do 1l = 1,time
if (my$p .gt. 0) send(ZA(2:99,1),my$p-1)
if (my$p .1t. 3) recv(ZA(2:99,26) ,my$p+1)
do k = 2,99
if (my$p .gt. 0) recv(ZA(k,0),my$p-1)
do j = 1,25
QA = F;(ZA(k,j+1),ZA(k,j-1),ZA(k+1,5) ,ZA(k-1,7))
enddo
if (my$p .1t. 3) send(ZA(k,25),my$p+1)
enddo
enddo

{* Compiler Output 2: Coarse-grain pipelining *}
REAL ZA(100,0:26), ZB(100,25), ZR(100,25), QA
REAL ZU(100,25), ZV(100,25), ZZ(100,25)
my$p = myproc() {* 0...3 x}
do 1l = 1,time
if (my$p .gt. 0) send(ZA(2:99,1),my$p-1)
if (my$p .1t. 3) recv(ZA(2:99,26) ,my$p+1)
do kk = 2,99,B
if (my$p .gt. 0) recv(ZA(kk:kk+B-1,0),my$p-1)
do j = 1,25
do k = kk,kk+B
QA = Fi(ZA(k,j+1),ZA(k,j-1),ZA(k+1,3),ZA(k-1,3))
Za(k,j) = F2(ZA(k,3),Q4)
enddo
enddo
if (my$p .1t. 3) send(ZA(kk:kk+B-1,25) ,my$p+1)
enddo
enddo

Figure 5.18 Livermore 23—Compiler Output

for shared-memory programs [10, 117, 132]. Because pipelining disturbs the original computation order, the
node compiler later permutes inner loops in memory order, to ensure data locality for the local computation

[116].

5.5 Improve Partitioning

One of the responsibilities of the Fortran D compiler is to partition computation across processors. As we
have seen, the compiler instantiates this partition by reducing loop bounds or introducing guards in the
program. Guards are typically inefficient, since they must be evaluated frequently at run-time. This section
describes optimizations to reduce or eliminate the need to rely on guards, reducing the cost of partitioning
computation.

5.5.1 Loop Bounds Reduction

The primary and most effective means of eliminating guards is through loop bounds reduction. The method
for doing so has already been described in previous chapters. More interestingly, additional program trans-
formations may be needed to enable loop bounds reduction.
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5.5.2 Loop Distribution

Loop distribution separates independent statements inside a single loop into multiple loops with identical
headers. Loop distribution may be applied only if the statements are not involved in a recurrence and
the direction of existing loop-carried dependences are not reversed in the resulting loops [117, 132]. It can
separate statements in loop nests with different local iteration sets, avoiding the need to evaluate guards
at run-time. Loop distribution may also separate the source and sink of loop-carried or loop-independent
cross-processor dependences, allowing individual messages to be combined into a single vector message.

When compiling for distributed-memory machines, loop distribution can be used to simplify guard in-
troduction and enable other transformations such as loop interchange. Recall that when all statements in a
loop nest possess identical iteration sets, the Fortran D compiler can instantiate the computation partition
very efficiently by reducing loop bounds. Otherwise the compiler must insert explicit guards for each group
of statements possessing different local iteration sets. This is less efficient since each guard must be evaluated
at run-time, once per iteration of the loop. To avoid this situation, the current Fortran D compiler applies
loop distribution where safe when statements in a loop nest have differing iteration sets.

For instance, consider the simplified program fragment from an ADI integration code shown in Figure 5.19.
It initializes boundary conditions for a coefficient array that is mapped as a torus. l.e., edges of the array
wrap around to join at the opposite edge. Statements S; and Ss initialize the first two rows of Y, while
statements Sz and S, initialize its last two rows. Because Y is distributed row-wise in one dimension, S;
and Sy are executed on all iterations of the j loop by the first processor, while S3 and S; are executed on
all iterations by the last processor.

Without loop distribution, the compiler is forced to insert explicit guards for S7, S2, S3 and Sy, as shown
in the first part of Figure 5.20. However, once data dependences and iteration sets are calculated, it is quite
easy for the compiler to determine that it is both legal and desirable to distribute the i and j loops so
that the two statement groups are separated. The compiler can then generate the efficient code shown in
Figure 5.20. A similar process occurs for the shallow water simulation code shown in Figures 5.21 and 5.22.

Loop distribution may also improve parallelism by converting a loop-carried cross-processor dependence
to a loop-independent dependence. For instance, distributing the ¢ loop in Figure 5.23 converts a sequential
loop into two parallel loops.

5.5.3 Loop Alignment

Loop alignment moves instances of a statement from one loop iteration to another. To align a statement S
by a distance k, the first & iterations of the loop are peeled off into a separate header. The statement S is
then aligned, moving the k copies of S in before the loop after the loop instead and adjusting the instance
of S in the loop body. Figure 5.24 presents an example where the statement assigning to Y is aligned
by one iteration of the ¢ loop. Loop alignment is used in conjunction with replication by shared-memory
parallelizing compilers to break loop-carried dependences [9, 33].

In the context of distributed-memory compilation, loop alignment may be used to change the iteration
set of a given statement. This can be used to improve guard introduction by adjusting statements in a
loop nest so that they possess the same iteration sets. For instance, after loop alignment both statements
in Figure 5.24 have the same iteration set. The Fortran D compiler can apply loop bounds reduction to
partition the computation. Guards must still be introduced for the statements extracted from the loop nest,
but these guards only need to be evaluated once for the entire loop nest, rather than once per iteration.

Loop alignment is more flexible than loop distribution in improving guard introduction for certain cases,
but is less effective in other cases. For instance, Figure 5.25 shows the code produced if loop alignment is
used to adjust the iteration set of the statement assigning to Y. Since the loop aligned is an inner loop,
imperfectly nested statements are produced whose guards must be evaluated on each outer loop iteration.
Loop distribution is able to generate cleaner code. Even when alignment can be applied cleanly, the code
generated is in general more complex than that produced by loop distribution. For this reason the Fortran D
compiler prototype relies on loop distribution instead of loop alignment. Empirical studies are necessary to
determine whether there exist cases where loop alignment is superior.
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{* Fortran D Program x}
REAL X(256,256), Y(256,256)
PARAMETER (n$proc = 4)
DECOMPOSITION D(256,256)
ALIGN X, Y with D
DISTRIBUTE D(BLOCK,:)
{* Y(i,j) = F(X(i+1,3),X(i-1,7j),X(i+2,7),X(i-2,3)) *}
do j = 1,256
S1 Y(1,j) = F(X(2,7),X(256,3),X(3,3),X(255,3))
Ss Y(2,3j) = F(X(3,7),X(1,3),X(4,j),X(256,3))
S3 Y(255,j) = F(X(256,j),X(254,j),u(1,j),X(2563,3))
Sa Y(256,3) F(X(1,3j),%X(255,3),X(2,3),X(254,3))
enddo

Figure 5.19 Circular Boundary Conditions

{* Compiler Output 1: Guard Introduction x}
my$p = myproc() {x 0...3 x}
do j = 1,256

if (my$p .eq. 0) then

Y(1,j) = F(X(2,j),X(2566,3),X(3,3),X(255,3))
Y(2,j) = F(X(3,j),X(1,3),X(4,3),X(256,3))
endif

if (my$p .eq. 3) then

Y(255,j) = F(X(256,j),X(254,j),u(1,3),X(2563,3))
Y(256,j) = F(X(1,3j),%X(255,3),X(2,3),X(254,3))
endif
enddo

{* Compiler Output 2: Loop Distribution *}
my$p = myproc() {x 0...3 *x}
if (my$p .eq. 0) then
do j = 1,256
Y(1,3) = F(X(2,3),X(256,3),X(3,3j),X(255,3))
¥Y(2,3) = F(X(3,j),%(1,j),X(4,3),X(256,3))
enddo
endif
if (my$p .eq. 3) then
do j = 1,256
Y(255,3) = F(X(256,3),X(254,3),u(1,3),X(253,3))
Y(256,3) = F(X(1,3),X(255,3),%X(2,3),X(254,3))
enddo
endif

Figure 5.20 Circular Boundary Conditions—Compiler Output
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{x Fortran D Program x}
REAL X(256,256), Y(256,256), Z(256,256)
PARAMETER (n$proc = 4)
DECOMPOSITION D(256,256)
ALIGN X, Y, Z with D
DISTRIBUTE D(BLOCK,:)
do j = 1,255
do i = 1,255
X(i+1,3j) = F1(Z(i+1,j+1),Z2(i+1,3))
Y(i,j+1) = Fo(Z(i+1,j+1),Z2(i,j+1))
enddo
enddo

Figure 5.21 Shallow—Weather Prediction

{* Compiler Output 1: Guard Introduction x}
my$p = myproc() {x 0...3 x}
{x if (my$p .eq. 0) 1b; = 1 else 1b; = O x*}
{x if (my$p .eq. 3) ub; = 24 else ub; = 25 %}
1b; = max(my$p+*64,1)-(my$p*64)
ub; = min((my$p+1)*64,255)-(my$p*64)
do j = 1,255
do i = lbl,ubl
if (i .1t. 64) X(i+1,j) = F1(2Z(i+1,j+1),Z(i+1,3))
if (i .gt. 0) Y(i,j+1) = F2(Z(i+1,3j+1),Z(i,j+1))
enddo
enddo

{* Compiler Output 2: Loop Distribution *}
my$p = myproc() {x 0...3 x}
1b; = max(my$p+*64,1)-(my$p*64)
ub; = min((my$p+1)*64,255)-(my$p*64)
do j = 1,255
do i = 1b;,63
X(i+1,3) = F1(Z(i+1,j+1),Z2(i+1,3))
enddo
enddo
do j = 1,255
do i = 1,uby
Y(i,j+1) = Fo(Z(i+1,j+1),2(4i,j+1))
enddo
enddo

Figure 5.22 Shallow—Compiler Output
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{* Fortran D Program x}
REAL X(100),Y(100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100)
ALIGN X, Y with D
DISTRIBUTE D(BLOCK)
do i = 6,100
X(i)
Y(i)
enddo

F(X(i-5))

{* Compiler Output 1: Sequentialized *}
REAL X(-4:25),Y(25)
my$p = myproc() {x 0...3 x}
1b; = max(my$p+*25,6)-(my$p*25)
if (my$p .gt. 0) recv(X(-4:0),my$p-1)
do i = 1b;,25
X(i)
Y(1)
enddo
if (my$p .1t. 3) send(X(21:25),my$p-1)

{* Compiler Output 2: Parallel %}
REAL X(-4:25),Y(25)
my$p = myproc() {x0...3 x}
1b; = max(my$p*25,6)-(my$p*25)
do i = 1by,25
X(i) = ...
enddo
if (my$p .1t. 3) send(X(21:25),my$p-1)
if (my$p .gt. 0) recv(X(-4:0),my$p-1)
do i = 1by,25
Y(i) = F(X(i-5))
enddo

F(X(i-5))

Figure 5.23 Loop Distribution—Improving Parallelism
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{* Program *} {* Loop Alignment x}
do i = 1,99 X(1) = F (1)
X(i) = F; (i) do i = 2,99
Y(i+1) = Fa(i) X(i) = F1(1)
enddo Y(i) = Fo(i-1)
enddo
¥(100) = F1(99)

Figure 5.24 Loop Alignment Example

{* Compiler Output 3: Loop Alignment *}
my$p = myproc() {x 0...3 x}
1b; = max((my$p*64)+1,2)-(my$p*64)
ub; = min((my$p+1)*64,255)-(my$p*64)
do j = 1,255
if (my$p .eq. 0) Y(1,j+1) = F2(Z(2,j+1),2(1,j+1))
do i = lbl,ubl
X(i,j) = F1(2(1,3+1),2(1,3))
Y(i,j+1) = Fo(Z(i+1,j+1),Z(i,j+1))
enddo
if (my$p .eq. 3) X(64,j) = F1(Z(64,j+1),Z(64,3))
enddo

Figure 5.25 Shallow—Loop Alignment

5.6 Reducing Storage

5.6.1 Partitioning Data

Most optimizations increase the amount of temporary storage required by the program. Storage optimizations
seek to reduce storage requirements. Compile-time partitioning of the data so that each processor allocates
memory only for array sections owned locally is fundamental. Otherwise the problem size is limited by the
amount of data that can be placed on a single processor. We view partitioning data as fundamental for any
reasonable compiler; like partitioning computation, it should not be merely viewed as an optimization.

5.6.2 Message Blocking

If insufficient storage is available, buffers must be used to store nonlocal data. Message blocking may then
be applied to reduce the buffer storage needed. A loop carrying communication is strip-mined by a block
factor B. Each vectorized message of size n is then divided into n/B messages of size B and sent inside the
strip-mined loop. This reduces the buffer space required by a factor of n/B at the expense of additional
messages.

5.7 Discussion

Techniques are presented to improve performance for both fully parallel and pipelined computations. Most
messages may be eliminated by using data dependence analysis to combine messages for nonlocal accesses
caused by the same variable reference. Some additional messages may be reduced by combining messages for
different variable references or arrays. Message placement and type allow communication cost to be hidden
by overlapping communication with computation. Parallelism optimizations recognize and exploit parallel
and pipelined computations.
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Chapter 6

Evaluation of Compiler Optimizations

Communication and parallelism optimizations are evaluated on the Intel iPSC/860, a MIMD distributed-
memory machine. Profitability formulas are derived for each optimization. Results for stencil computations
show that exploiting parallelism for pipelined computations, reductions, and scans is vital. Message vector-
ization, collective communication, and efficient coarse-grain pipelining also significantly affect performance.
Scalability of communication and parallelism optimizations are analyzed. The effect of communication opti-
mizations depends on the proportion of nonlocal data to local data, while parallelism optimizations depend
on the total problem size and number of processors. An optimization strategy is developed based on these
analyses.

6.1 Introduction

This chapter empirically evaluates the effectiveness of Fortran D compiler optimizations on a representative
MIMD distributed-memory machine. Formulas are derived that allow the compiler to estimate the profitabil-
ity of each optimization. The empirical and analytical results are used to evaluate the scalability of various
optimizations with respect to problem and machine size. An optimization strategy is derived accordingly.

6.2 Empirical Performance Evaluation

To evaluate the usefulness of each compiler optimization, we applied them where appropriate to the Livermore
and PDE kernels used as examples in the previous chapters. Table 6.1 shows the optimized versions of
each program. Message vectorization, coalescing, aggregation, and fine-grain pipelining were applied by
the prototype Fortran D compiler; other optimizations were performed by hand, simulating algorithms we
expect to implement in the mature compiler. Ne¢ is a parallel version of the program with all communication
removed. It is meant to provide a baseline for measuring communication overhead. We also use nc x P to
estimate the sequential execution time, since most problem sizes are too large for a single processor. Parallel
speedup is then simply ’;fﬂif

The experiments were performed on a 32 node Intel iPSC/860 with 8 Meg of memory per node. Each
program was compiled under -O4 using Release 2.0 of if77, the iPSC/860 compiler. All arrays are double
precision and distributed block-wise in one dimension. Timings were taken using dclock() for one iteration
of [, the time step loop. Results presented are both tabulated and plotted graphically.

In Tables 6.2, 6.3, and 6.4, results are presented in milliseconds for several machine and problem sizes.
P indicates the number of processors. N describes the total problem size and its dimensionality; N/P
yields the problem size on an individual processor. In addition to the timings, each table contains ratios of
execution times for some selected optimizations, illustrating their relative usefulness.

Figures 6.1, 6.2, 6.3 present the same timings graphically. In each figure, program execution times in
seconds are plotted logarithmically along the Y-axis. Optimizations are plotted along the X-axis, ranging
from sequential execution (no optimization) to ideal parallel execution (no communication). Dotted, dashed,
and solid lines represent execution times for 8, 16, and 32 processors, respectively. Lines are marked with o,
e, % and other symbols to represent the problem size.




86 CHAPTER 6. EVALUATION OF COMPILER OPTIMIZATIONS

Version Optimizations Performed

nc no communication

mp message pipelining (element messages)
mv message vectorization

mc mv + message coalescing

ma mc + message aggregation
vmp ma + vectorized message pipelining

ir vmp + iteration reordering

mc, vmp'ir’ | versions w/ unbuffered messages

seq sequential reduction/scan

sr accumulate using send/receive

br accumulate using broadcast/receive

cc accumulate using collective communication
dyn dynamic data decomposition

fgp fine-grain pipelining

cgp coarse-grain pipelining w/ block size B

Table 6.1 Optimized Versions of Test Kernels

6.2.1 Optimizations for Communication Overhead

We begin by measuring the effect of optimizations to reduce and hide communication overhead. We found
that the nature of the computation and data partition significantly affects the utility of each optimization.
For instance, we omitted execution times for Livermore 7, a 1D stencil computation, since data movement
is limited and optimizations have little effect for reasonable problem sizes. The three kernels for which we
present results are 2D stencil computations with 1D data distributions. Enough communication is required
to make optimizations significant.

Table 6.2 presents the performance of communication optimizations for parallel stencil kernels. The
timings are also depicted in Figure 6.1. For parallel computations, message vectorization is clearly the most
important optimization. The numbers computed for 5 (2.1-8.9) demonstrate that message vectorization
significantly improves execution compared to sending element messages. Message aggregation provides a
small fixed gain. Vector message pipelining and iteration reordering help, but are most effective when used
in tandem with unbuffered messages. Unbuffered messages alone are insufficient, since the original program
may not provide enough computation to hide all copying costs. Optimizations to hide communication
lose effectiveness for small problem sizes, since insufficient computation exists to hide all message copy and
transit overhead. Optimizations should not be applied in all cases. For instance, iteration reordering actually
degraded performance for Livermore 18.

To evaluate the profitability of optimizations beyond message vectorization, we compute ;777, where best
is defined as the best time among all optimizations. The results show that other optimizations can improve
somewhat on message vectorization (1.1-2.6), but the differences are less dramatic and drop quickly with

best

increasing problem size. From =2* we see that optimizations can reduce communication overhead to a small

percentage of total computation cost as problem size increases (5.3 to 1.01). This translates into close to
linear speedup for larger problem sizes, as shown by the speedup values calculated for %.

These timings lead us to conclude that for parallel computations, communication optimizations can
significantly reduce communication overhead, depending on the amount and nature of computation performed
by each processor. The number of processors appears to have little effect, except indirectly by changing the
amount of computation per processor. For larger problem sizes, message vectorization seems to yield most

of the available improvement.

6.2.2 Optimizations for Reductions and Scans

Table 6.3 illustrates the performance of optimizations for parallelizing reductions and scans. In seg, the
computation is sequentialized by requiring each processor to wait for the partial result from the previous
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Kernel| P N nc | mp | mv | mc| ma| vmp | Ir mc |vmp'| ir I % n;;;f
32x32 1.2 | 621 9.7 | 74| 57| 57 5.7 5.3 4.1 4.3 | 6.40 | 2.37 | 3.58 | 4.7
64x64 3.9 | 62.7 | 16.2 |12.7|11.4| 11.0 | 11.6 | 11.1 | 8.7 9.8 | 3.87 | 1.86 | 2.23 | 7.2
16 | 128x128 | 14.4 | 137 | 35.5 |29.7|27.5| 25.6 | 28.0 | 26.5 | 22.5 | 24.9 | 3.86 | 1.58 | 1.57 | 10.2
256x256 | 54.3 | 317 | 90.2 (80.9(77.6| 77.8 | 79.3 | 76.6 | 69.7 | 73.6 | 3.51 | 1.29 | 1.30 | 12.5
Liv 18 512x512 | 211 732 | 277 | 260 | 257 | 255 262 | 253 | 239 | 248 | 2.64 | 1.15 | 1.13 | 14.1
32x32 0.7 | 625 9.5 | 7.1 55| 5.4 5.5 5.0 3.7 4.3 | 6.58 | 2.57 | 5.29 | 6.1
64x64 2.5 | 60.5 | 14.7 |11.11 9.9 | 9.9 9.9 9.9 7.3 7.5 | 4.12 | 2.01 | 2.92 | 11.0
32 | 128x128 | 8.0 128 | 29.3 |23.6(21.3| 20.7 | 21.7 | 20.6 | 16.5 | 18.3 | 4.37 | 1.76 | 1.50 | 15.5
256x256 | 28.8 | 287 | 64.8 [55.4(53.8| 51.6 | 53.9 | 52.8 | 43.7 | 48.1 | 4.43 | 1.48 | 1.52 | 21.1
512x512 | 109 | 630 177 [ 159 1156 | 155 160 152 | 137 | 146 | 3.56 | 1.29 | 1.25 | 25.5
128x128 | 1.3 | 29.3 | 4.1 - - 3.9 3.7 3.8 3.6 2.9 | 7.15 | 141 | 2.23 | 7.2
256x256 | 5.3 | 64.0 | 9.8 - - 8.9 9.2 9.0 8.7 6.2 | 6.53 | 1.58 | 1.16 | 13.7
16 | 512x512 | 20.7 | 145 | 28.3 - - 29.0 | 27.6 | 27.4 | 27.3 | 23.2 | 5.18 | 1.22 | 1.10 | 14.3
1Kx1K | 96.9 | 349 110 - - 107 112 109 | 109 | 99.1 | 3.17 | 1.11 | 1.02 | 15.6
Jacobi 2Kx2K 385 | 889 | 412 - - 417 | 411 | 410 | 410 | 391 | 2.16 | 1.05 | 1.02 | 15.8
128x128 | 0.7 | 29.9 | 3.5 - - 3.1 3.1 3.4 3.2 3.0 | 854 | 1.17 | 4.29 | 7.5
256x256 | 2.7 | 64.2 | 7.2 - - 7.2 6.6 7.2 7.1 4.9 | 892 | 1.47 | 1.81 | 17.6
32 | 512x512 | 10.4 | 136 | 18.2 - - 18.7 | 18.2 | 18.7 | 18.5 | 12.3 | 7.56 | 1.48 | 1.20 | 27.1
1Kx1K | 48.5 | 296 | 64.1 - - 64.2 | 64.0 | 61.0 | 60.9 | 51.8 | 4.63 | 1.24 | 1.08 | 30.0
2Kx2K 193 | 693 | 220 - - 224 224 | 217 | 217 | 198 | 3.15 | 1.11 | 1.03 | 31.2
128x128 | 1.7 | 29.8 | 4.8 - - 4.9 5.1 4.8 3.9 3.6 | 6.21 | 1.33 | 2.12 | 7.6
256x256 | 6.7 | 66.7 | 11.8 - - 10.5 | 10.6 | 11.4 | 9.7 9.3 | 5.65 | 1.27 | 1.39 | 11.5
16 | 512x512 | 26.3 | 158 | 33.9 - - 31.5 | 31.8 | 33.9 | 30.8 | 29.7 | 4.65 | 1.14 | 1.15 | 14.2
Red- 1Kx1K 109 | 397 | 122 - - 118 118 122 | 116 | 114 | 3.25 | 1.07 | 1.05 | 15.3
Black 2Kx2K 437 | 971 | 462 - - 453 454 | 457 | 448 | 442 | 2.10 | 1.04 | 1.01 | 15.8
SOR 128x128 | 0.8 | 30.5 | 4.1 - - 4.0 4.2 4.1 3.3 3.1 | 7.44 | 1.32 | 3.88 | 8.3
256x256 | 3.3 | 63.6 | 8.6 - - 7.3 7.4 8.0 6.3 5.8 | 7.40 | 1.48 | 1.76 | 18.2
32 | 512x512 | 13.2 | 148 | 21.0 - - 18.5 | 18.9 | 20.8 | 17.7 | 16.6 | 7.05 | 1.26 | 1.30 | 25.4
1Kx1K | 54.3 | 342 | 68.3 - - 63.9 | 64.7 | 67.3 | 62.2 | 59.5 | 5.03 | 1.15 | 1.11 | 29.2
2Kx2K 217 | 766 | 245 - - 236 238 | 241 | 231 | 226 | 3.13 | 1.09 | 1.04 | 30.7

Table 6.2 Performance of Optimizations to Reduce and
Hide Communication Overhead (in milliseconds)

processor before performing the local computation. In sr, br, and cc the partial results are computed in
parallel by each processor, then accumulated using individual send/receives, broadcast/receives; or collective
communication, respectively. These timings are also plotted in Figure 6.2.

The largest improvements (4-22) were measured for =21, making discovering and extracting parallelism
the most important optimization for reduction and scan operations. As expected, the benefit of exploiting
parallelism increases with both the problem size and number of processors. Timings show that broadcasts can
accumulate partial results quicker than sending individual messages, and specialized collective communication
is even more efficient.

The values for 3£ (1-3.3) show that collective communication can provide large improvements over simple
messages. Unlike other communication overhead optimizations, the impact of collective communication
increases with the number of processors, even when the amount of computation per processor remains
constant. From the values for =2 (1-3.7) we conclude that communication overhead can become a major
component of execution time for reductions and scans, especially when employing large numbers of processors.
The values calculated for % show that close to linear speedups were measured for reductions. Scans

achieved only about half of linear speedup, because computation is doubled in the parallel scan.

6.2.3 Optimizations for Pipelined Computations

Timings for pipelined computations are tabulated in Table 6.4 and graphically displayed in Figure 6.3. In
all three kernels, the original loop structure and data distribution is such that message pipelining (mp)
yields parallelism only for the last outer loop iteration, and message vectorization (mwv) sequentializes the
computation. Loop interchange is needed in order to enable fine-grain pipelining (fgp) in these kernels.
We present measurements for these worst-case examples of mv and mp to illustrate potential pitfalls if the
compiler cannot reorder computation through loop interchange. Results for unbuffered messages are not
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q ST cc ncX P

Kernel P N nc seq sr br cc e

ST cc nc cc

64K 2.6 22 3.5 3.3 3.3 | 6.29 | 1.08 | 1.27 | 6.3
8 256K | 10.0 | 86 11.0 | 11.0 | 11.0 | 7.82 | 1.03 | 1.10 | 7.3
1024K | 43.5 | 348 | 44.5 | 44.1 | 44.2 | 7.82 | 1.01 | 1.02 | 7.9
Liv 3 64K 1.3 23 3.4 2.5 2.1 | 6.76 | 1.59 | 1.62 | 9.9

Inner Product | 16 | 256K 5.3 86 7.4 6.6 6.1 11.6 | 1.21 | 1.15 | 13.9
1024K | 21.7 | 347 | 23.8 | 22.9 | 22.6 | 14.6 | 1.05 | 1.04 | 15.3

64K 0.7 24 5.5 3.1 1.6 | 4.36 | 3.33 | 2.29 | 14.0

32 | 256K 2.6 86 5.0 3.6 | 11.5 | 2.07 | 1.38 | 23.1

1024K | 10.7 | 345
64K 2.3 19

5.5
7.5

15.6 | 13.1 | 11.7 | 22.1 | 1.33 | 1.09 | 29.3

4.6 4.3 4.2 | 413 | 1.10 | 1.82 | 4.4

8 256K 8.9 73 15.5 | 15.4 | 15.1 | 4.71 | 1.03 | 1.70 | 4.7

1024K | 35.6 | 286 | 59.0 | 58.9 | 58.8 | 4.85 | 1.00 | 1.65 | 4.8

Liv 11 64K 1.2 20 4.2 3.1 2.7 | 476 | 1.54 | 2.25 | 7.1
9.5
31.2
5.8
8.6

3

First Sum 16 | 256K 4.5 74 8.6 81 | 7.79 | 1.31 | 1.80 | 8.9
1024K | 17.9 | 287 30.5 | 30.0 | 9.20 | 1.08 | 1.68 | 9.5
64K 0.6 21 3.4 2.2 | 3.62 | 2.66 | 3.67 | 8.7
32 | 256K 2.3 75 . 6.1 4.8 | 8.72 | 1.77 | 2.09 | 15.3
1024K | 8.9 | 290 | 19. 17.2 |1 15.9 | 15.0 | 1.22 | 1.79 | 19.0

Table 6.3 Performance of Optimizations to Parallelize Reductions and Scans (in milliseconds)

Kernel | P N nc mp mv |dyn| fgp | cg cg cgp | cgp % bfegft % "bce)fj
B=4 | B=8 |B=12|B=16

256x256 | 24 613 395 - 86 51 49 52 63 4.59 | 1.76 | 2.04 | 7.8

16 | 512x512 | 96 1990 | 1550 - 222 156 148 152 171 | 6.98 | 1.50 | 1.54 | 10.4

Liv 23 1Kx1K | 383 | 7190 | 6160 - 677 537 507 508 539 |1 9.10 | 1.34 | 1.32 | 12.1
256x256 | 12 847 412 - 78 40 39 43 55 5.28 |1 2.00 | 3.25 | 9.8

32 | 512x512 | 48 2480 | 1580 - 171 102 99 105 129 | 9.24 | 1.72 | 2.06 | 15.5

1Kx1K | 191 | 8280 | 6210 - 441 311 298 308 348 | 14.1 | 1.48 | 1.56 | 20.5

512x512 | 23 834 400 - 146 60 49 48 59 2.74 | 3.04 | 2.09 | 7.7

16 | 1Kx1K | 107 | 2730 | 1750 - 330 177 150 143 167 | 5.30 | 2.31 | 1.34 | 12.0

SOR 2Kx2K | 429 | 9280 | 6950 - 947 598 519 493 534 | 7.34 | 1.92 | 1.14 | 13.9
512x512 | 12 431 135 - 145 50 40 39 52 2.97 1 3.72 1 3.25 | 9.8

32 | 1Kx1K 53 1800 382 - 321 121 99 96 123 | 5.61 | 3.34 | 1.81 | 17.7

2Kx2K | 213 | 7010 | 1180 - 806 360 308 288 340 | 8.70 | 2.80 | 1.35 | 23.7

512x512 | 51 933 496 | 288 | 175 95 79 77 90 2.83 | 2.27 | 1.51 | 10.6

16 | 1Kx1K | 204 | 2920 | 1960 |1110| 475 315 270 261 285 | 4.13 | 1.82 | 1.28 | 12.5

ADI 2Kx2K | 817 | 10100 | 7710 [4820| 1520 | 1140 | 991 959 | 1000 | 5.07 | 1.59 | 1.17 | 13.6
512x512 | 26 1440 515 | 166 | 162 70 56 55 69 3.18 | 295 | 2.12 | 15.1

32 | 1Kx1K | 102 | 4020 | 1970 | 614 | 383 196 163 158 183 | 5.14 | 2.42 | 1.55 | 20.7

2Kx2K | 408 | 12500 | 7630 [2530| 1100 | 644 547 531 573 | 6.94 | 2.07 | 1.30 | 24.6

Table 6.4 Performance of Optimizations to Exploit Pipeline Parallelism (in milliseconds)

displayed. They degraded the performance of both fine and coarse-grain pipelining since message sizes are
too small to compensate for increased startup costs.

The values for % (2.7-14) show that it is essential to exploit parallelism for pipelined computations,
particularly as the number of processors increases. The best overall timings, best, were achieved using
coarse-grain pipelining. A block size of eight resulted in the best times for Livermore 23; a block size of
twelve proved best for SOR and ADI integration. Results for % (1.3-3.7) show that coarse-grain pipelining
can significantly improve performance when compared to fine-grain pipelining. Values for "bceif
coarse-grain pipelining can achieve respectable speedup for pipelined computations.

The performance of dynamic data decomposition displays almost linear speedup with respect to the num-
ber of processors (speedup of 1.7-1.9 going from 16 to 32 processors), at least for the problem sizes tested.
However, applying dynamic data decomposition to redistribute arrays in ADI proved to be undesirable and
required significantly more time than pipelining, especially as problem size increases. Dynamic data decom-
position should prove to be a profitable optimization on machines employing larger numbers of processors,

but more experimentation is needed.

indicate
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Opt | Resulting Communication Overhead (For n Elements)

none n(Tstart + Tcopy(l) + Zrtransit(l))
mp n(Tstart + Tcopy(l) + pOS(Eransit(l) - Tcomp))
mv | Tsars + Tcopy(n) + Eransit(n) [+ Tbuf(n) ]
ma | Tsars + Tcopy(mn) + Zrtransit(Tnn) + meuf(n)
vip Tstart + Tcopy(n) + pos(ﬂransit(n) - Tcomp)
jr Tstart + Tcopy(n) + pos(ﬂransit(n) - Tclomp) + Ajjcomp
mv Ts/tart + 71transit(n)
Vmpl Ts/tart + pos(zrtransit(n) - Tcomp)
ir' Ts/tart + pos(irtransit(n) - Tclomp) + ATCOmp

Table 6.5 Effect of Compiler Optimizations

6.3 Analysis of Optimizations

This section presents analysis and decision algorithms to evaluate the cost and effectiveness of the communi-
cation and parallelism optimizations presented in the previous chapter. They may be used by the Fortran D
to determine when an optimization may be profitably applied. The success of these decision algorithms
depends on how accurately we can estimate the cost of different computation and communication operations
for the underlying machine.

6.3.1 Communication Optimizations

We begin by analyzing the effects of communication optimizations on communication overhead. Table 6.5
provides the cost of sending one message with n elements for each optimization (the cost for message ag-
gregation (ma) represents m messages). These formulas for communication overhead are presented using
Tistart, Teopy, Tiransit and some new terms. Tyyp(n) describes the cost of buffering n noncontiguous data
elements for message vectorization (mwv). It is placed in square brackets [ ] because it is only incurred if data
is noncontiguous. 7, may also be be ignored if the underlying architecture can efficiently communicate
noncontiguous data. We assume it is not needed for optimizations that include message vectorization.
Pos() is a function that returns the value of its argument if it is positive, zero otherwise. T¢,m,p represents
the amount of computation between a pair of calls to send and recv that may be used to hide communication

cost. Tc’omp includes the computation available after applying iteration reordering. AT,y describes the
increase in computation time caused by iteration reordering. T,,.; is the startup cost of using unbuffered
messages.

The Fortran D compiler always applies message coalescing, vector message pipelining, and collective
communication where applicable, since these optimizations improve performance in all cases. In the following
sections, we describe profitability criteria for other communication optimizations. These criteria are derived
directly from Table 6.5, but are simplified where possible. These formulas can also be used to calculate the
expected savings of each optimization. For simplicity we regard copy time as linear, treating T.,py(n) and
nT,opy(1) as equal quantities.

Message vectorization

To send n elements, message vectorization is profitable over message pipelining (assuming mp can hide
Eransit) when:
mp > mv
U
(n - 1)Tstart > Ttransit(n) [+ Tbuf(n)]
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The compiler thus needs to compare the reduction in startup time against the transit time and cost of
buffering noncontiguous data. When startup costs are high, as on the iPSC/860, message vectorization will
significantly outperform message pipelining for large values of n.

Message aggregation

To send m messages of size n, message aggregation is profitable over message vectorization when:

mv > ma

U
('ITL - 1)Tstart + mTtTansit('n) > Tt'r‘ansit(mn) [+ meuf (n) ]

If the transit time for m messages of size n is similar to that for one message of size mn, the primary overhead
of message aggregation is the cost of copying all messages to a single buffer. If the individual messages are
not contiguous, then message aggregation is always profitable since message vectorization performs buffering
in any case. Otherwise it is profitable only if the reduction in startup time is greater than the extra buffering
cost.

Unbuffered messages

Using unbuffered messages eliminates 7.,p, by eliminating copying on the sending and receiving processors.
However, the resulting program incurs a higher startup cost T7,,,,. It is profitable to use unbuffered messages
with vector message pipelining when:

vmp > vmp'

U
Tcomp Z Tcopy('n) > (Ts,tart - Tstart)

The compiler will use unbuffered messages if sufficient local computation exists to hide copy cost, and
the copy cost is greater than the increased startup cost. Since the savings in copy time increases with n,
unbuffered messages become more useful as message size increases.

Iteration reordering

Iteration reordering makes additional local computation available, but may also affect code size, data reuse,
and conventional scalar optimizations, increasing the total computation time. For instance, empirical results
show that iteration reordering does not affect computation costs for Jacobi and Red-Black SOR, but slightly
degrades performance for Livermore 18, a kernel that contains significant amounts of computation and data
reuse. With buffered messages, iteration reordering can profitably enhance vector message pipelining when
the following conditions hold:

vmp > ir

U
Téomp 2 Ttransit(n) > Tcomp

Ttransit(n) - Tcomp > ATcomp

Iteration reordering should thus be applied if the message transit time is not completely hidden by vector
message pipelining, and iteration reordering can extract sufficient local computation to hide the remaining
transit time. In addition, the savings in transit time must be greater than the increased computation time.
Iteration reordering using unbuffered messages is profitable when:

vmp' > ir'
U
T on > Teopy(n) + Teransic(n) > Teomp
Teopy(n) + Tiransit(n) — Teomp > AT comp + Tiars — Tstart
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The criteria are similar to that of buffered messages, except that both copy and transit times are considered.

The usefulness of iteration reordering hinges on the value of AT.,,,,, which is quite difficult to predict.
Our strategy is to simply estimate AT, as some small fixed percentage of the total computation time. It
can then be compared against the message copy and transit times to determine whether iteration reordering
is worthwhile.

6.3.2 Parallelism Optimizations

In this section we analyze optimizations to exploit parallelism. It is essential that computation be partitioned,
even for private variables. Reductions and scans should always be identified and parallelized, using collective
communication to accumulate results. Dynamic data decomposition may extract parallelism, but usually
with high cost. We show analytically that exploiting pipeline parallelism through either fine-grain or coarse-
grain pipelining is both effective and scalable.

Dynamic Data Decomposition

The previous sections show how parallel computation time can be estimated for pipelined computations. The
compiler needs to compare it with the estimated cost for dynamic data decomposition (based on training
sets) to determine whether it is more profitable than applying pipelining. Dynamic data decomposition is
likely to be profitable only for small problems, because communication to redistribute data becomes less
efficient as problem size increases. In comparison, the efficiency of pipelining improves with larger problem
sizes.

Fine-grain Pipelining

Consider the simple examples presented in Figure 6.4. We define n as the number of elements along one
dimension, p as the number of processors, and C' as the communication overhead for each message. We
normalize all costs by the cost required to compute one element, so the sequential computation time is equal
to the number of data elements.

For simplicity we restrict our analysis to cases where we can interchange cross-processor loops to the
mmnermost position, allowing program execution to first proceed along the distributed dimensions. This
enables both fine-grain and coarse-grain pipelining. Fortunately, most if not all pipelined computations
meet this requirement. For instance, loop interchange of cross-processor loops is legal for both SOR and
ADI integration.

Using these assumptions, we can now calculate the time required to compute an nxn data array distributed
block-wise in one dimension. Each processor begins execution exactly 2 4+ C units later than its predecessor,
where 2 is the time for its predecessor to compute one column and C' is the communication overhead. The
time it takes each processor to finish its computation is %2, the total computation time, plus nC', the time
spent to send and receive n messages. The total parallel execution time is (p — 1)(% + C), the delay before
the last processor begins, plus n? 4 nC', the time required by the processor to finish computing.

Similar calculations for the nx2n, 2nxn, and nxnxn example arrays result in the formulas shown in
Figure 6.4. Examining the expressions, we see that the dominating term in the parallel execution time is
simply (sequential time)/p. Pipeline parallelism under these conditions thus approaches perfect speedup for
large problem sizes.

Coarse-grain Pipelining

The same model may also be used to calculate an efficient buffered factor for coarse-grain pipelining. Assume
we strip-mine and interchange the outer loop in the pipelined computation of an n xn array by a constant
block factor B, as in Figure 5.10. The delay between processors increases to % + C, since B columns
each costing % are computed before sending a message. However, the total communication overhead for one

processor drops from nC' to %. The total parallel execution time is thus %2 + % +(p— 1)(% + (). The
times for other examples are shown in Figure 6.4.
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Figure 6.4 Effectiveness of Pipelining

As we can see, the asymptotic speedup is unchanged by B, but the total communication overhead can
be significantly decreased at the expense of some parallelism. To determine the minimal cost while holding
n and p constant, we differentiate the expression for parallel execution time with respect to B and set the
result to zero. This yields the following equation and solution for B:

_nC _ np—1) _
B2 P a

B pC ~ VT = block communicat.ion cost
p—1 element computation cost

Since C' has been normalized by the computation required to calculate one array element, it is actually
the ratio of communication to computation cost. As expected, the results show that larger block sizes are
preferred when the ratio of communication to computation cost is high; smaller blocks are desirable when
communication cost is relatively low. More importantly, these formulas allow the compiler to calculate
efficient block sizes and estimated execution times for pipelined computations.

Our analysis for pipelined computations is somewhat imprecise since it assumes that communication

0

cost is fixed as the message size increases. Fortunately this is relatively true for the small block sizes that
are selected. More accurate analytical models can be developed, but may be hindered by unpredictable
system discontinuities. For instance, communication cost increases abruptly past 100 bytes on the iPSC/860
[26]. The Fortran D compiler will employ a flexible and precise approach using training sets to estimate
communication and computation costs [17, 103, 113, 114]. Accurate static estimates of communication and
computation are also needed by the compiler to calculate block sizes for coarse-grain pipelining.

6.4 Scalability

The scalability of an optimization describes whether its effectiveness increases, decreases, or remains constant
in proportion to some characteristic. In this section we use scalability to summarize our insights concern-
ing the usefulness of communication and parallelism optimizations. Our conclusions are derived from the
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Figure 6.5 Effect on Communication Overhead
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Figure 6.6 Effect on Program Execution Time

empirical and analytical results presented in the previous sections. In the following discussion we define
Neomm to be the number of elements communicated by each processor and N;y:q1 to be the total number of
elements. For convenience, we also use Ni,.q; to describe the number of elements on each processor. It is
simply Nioiq1/ P, where P is the number of processors.

6.4.1 Communication overhead

Figure 6.5 shows the scalability of optimizations in eliminating communication overhead. The effectiveness
of message vectorization (mv) is displayed as improvement over message pipelining. Collective communi-
cation (cc) and broadcast/receive (br) are shown as gains over send/receive (sr). The effectiveness of other
optimizations are displayed as improvement compared with message vectorization. All improvements are
shown as percentages.

We first consider how communication optimizations scale with respect to Niomm, the amount of data
communicated by each processor. When we increase N omm for a fixed number of processors, message vector-
ization (mv) improves most rapidly because it eliminates entire messages. Other optimizations (vmp,ir,...)
improve less quickly since they only affect message transit and copy times. The effectiveness of collective
communication (cc) and broadcast/receive (br) remains unchanged at a level determined by the number of
processors. The percentage improvement for message aggregation (ma) decreases because its usefulness is
set by the number of arrays communicated to the same processor.

In comparison, when N omm is fixed, most communication optimizations (mv, vmp, ...) are not enhanced
by increasing the number of processors. Only collective communication (cc) and broadcast (br) improve in
their ability to eliminate communication cost as P grows.

6.4.2 Program execution

Figure 6.6 displays the scalability of optimizations in reducing total execution time. We assume that com-
putation cost is proportional to Niotqr. Optimizations to exploit parallelism (sr, fgp, cgp) are expressed as
improvements relative to the sequential execution time. For a fixed number of processors P, they increase in
effectiveness as Nioiq; grows, reaching a plateau at the number of processors. In comparison, communication
optimizations (mwv, cc, ...) shrink in relative usefulness because Neomm grows slowly compared to Nyptq for
stencil computations.

The situation is more complex when a problem with fixed size is parallelized using an increasing number
of processors. Initially the amount of communication is small relative to the local problem size (Neomm <
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Niocar) so parallelism optimizations achieve excellent speedup, increasing linearly with P. At this stage com-
munication optimizations only attain modest improvements, though collective communication and broad-
cast/receive improve more quickly.

As we show in the next section, eventually the problem is divided among enough processors that Neomm
becomes a large percentage of Nj,cq;. When this point is reached, communication overhead begins to have a
significant impact on execution time. Growth in the effectiveness of parallelism optimizations slows because
of communication costs, while communication optimizations quickly increase in importance. How soon this
point is reached depends on the communication overhead relative to computation costs.

6.4.3 Communication vs. computation

We have seen that parallelism optimizations are critical for improving overall program execution time,
regardless of the problem or machine size. In comparison, the effectiveness of communication optimizations
is dependent on N;omm , the amount of data that must be communicated. Understanding the relationship
between Neomm, Niotar, and Nigeqr is thus crucial to determining the impact of communication optimizations.

Simple geometric analysis shows that the growth of N.ymm relative to Nygiqr varies for different data
distributions. For instance, when a 2D array with n elements is distributed 1D block-wise across p pro-

vn
p . .
accesses boundary elements, a processor needs to send \/n array elements to each neighboring processor,

cessors, each processor owns a /n x section of the array. Assuming a stencil computation that only

communicating 21/n elements. Similar analyses for other examples result in the formulas for calculating
Neomm displayed in Table 6.6.

Table 6.6 also presents relative values of N; o for three different problem sizes on a machine with eight
processors. Though it varies depending on the problem and machine dimensionality, Neomm always grows
less rapidly than Ni,.q;. This implies that communication optimizations become less important as problem
size grows. For large problems, message vectorization and collective communication are likely to yield most
of the available benefits.

On the other hand, consider the situation when we attempt to speed up a problem of size Ni,q1 by
increasing the number of processors. Similar analysis makes it clear that N;ymm becomes an increasingly
large percentage of Njyeqr- Eventually communication overhead becomes the limiting factor, and all of the
communication optimizations discussed become important for achieving good speedup.

6.5 Optimization Algorithm

The overall Fortran D compiler optimization algorithm is shown in Figure 6.7. It is intended only to provide a
rough outline of how optimizations are organized. The compiler will decide at each point which optimizations
are actually worth performing.

Problem |Dimensions Neomm Neomm [Niocar for p =8 &
Dimension | Distributed n=10°|n=10*|n =10°
3D 1D 2v/n? 1.0 74 .35
3D 2D 4V/n2/\/p | 1.0 .52 24
2D 1D Zﬁ .50 .16 .05
2D 2D 4\/g .36 11 .04
3D 3D 63 % .24 .05 .01
1D 1D 2 .016 .0016 .00016

Table 6.6 Data Communication Requirements
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partition data across processors
partition computation using “owner computes” rule
detect and parallelize reductions & scans
compute cross-processor loops
for each loop nest L do
if L is fully parallel (i.e., no cross-processor loops) then
vectorize, coalesce, and aggregate messages
select and insert collective communications
if sufficient 1%,mp exists to hide 1ropy, Tiransi: then
apply vector message pipelining
insert unbuffered messages
else if 77,,,, can be profitably created & used then
reorder iterations
apply vector message pipelining
insert unbuffered messages
else
insert buffered messages
endif
else {* must be pipelined computation x*}
select efficient granularity for pipelining
apply strip-mining & loop iterchange
vectorize, coalesce, and aggregate messages
insert buffered messages
endif
if insufficient storage is available then
apply storage optimizations
endif
enddo
Figure 6.7 Fortran D Optimization Algorithm

6.6 Discussion

Empirically measured results for stencil computations show that exploiting parallelism for pipelined compu-
tations, reductions, and scans is vital. Message vectorization, coarse-grain pipelining, and collective com-
munication also significantly affect performance by eliminating large numbers of messages. The remaining
optimizations yield less dramatic results, but are still important when the proportion of nonlocal to local
data is high. This is the case when attempting to speed up a problem with fixed size. Profitability formulas
enable the Fortran D compiler to intelligently choose between optimization options, but rely on accurate
measurements of machine parameters through the use of training sets.
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Chapter 7

Interprocedural Compilation

Algorithms exist for compiling Fortran D for MIMD distributed-memory machines; but are significantly
restricted in the presence of procedure calls. This chapter presents interprocedural analysis, optimization,
and code generation algorithms for Fortran D that limit compilation to only one pass over each proce-
dure. This is accomplished by collecting summary information after edits, then compiling procedures in
reverse topological order to propagate necessary information. Delaying instantiation of the computation
partition, communication, and dynamic data decomposition is key to enabling interprocedural optimiza-
tion. Recompilation analysis preserves the benefits of separate compilation. Empirical results show that
interprocedural optimization is crucial in achieving acceptable performance for a common application.

7.1 Introduction

As we have seen the Fortran D compiler requires deep analysis because it must know both when a computation
may be performed and where the data and computation is located. The compiler is thus severely restricted
by the limited program context available at procedures. This limitation is unfortunate since procedures are
desirable for programming style, modularity, readability, code reuse, and maintainability.

Interprocedural analysis and optimization algorithms have been developed for scalar and parallelizing
compilers; but are seldom implemented. We show that interprocedural analysis and optimization can no
longer be considered a luxury, since the cost of making conservative assumptions at procedure boundaries is
unacceptably high when compiling data-placement languages such as Fortran D. The major contribution of
this chapter is to demonstrate efficient interprocedural Fortran D compilation techniques. We have begun
implementing these techniques in the current compiler prototype.

In the remainder of this chapter, we illustrate the need for interprocedural compilation and show how
the Fortran D compiler is integrated into the ParaScope interprocedural framework. We present analysis,
optimization, and code generation algorithms in detail for a number of interprocedural problems, then
provide the overall interprocedural compilation algorithm. Recompilation tests are described that preserve
the benefits of separate compilation. A case study of DGEFA is used to demonstrate the effectiveness of
interprocedural analysis and optimization.

7.2 Interprocedural Support in ParaScope

ParaScope is a programming environment for scientific Fortran programmers. It has fostered research on
aggressive optimization of scientific codes for both scalar and shared-memory machines [35]. Its pioneering
work on incorporating interprocedural optimization in an efficient compilation system has also contributed
the development of the Convex Applications compiler [146]. Through careful design, the compilation process
in ParaScope preserves separate compilation of procedures to a large extent. Tools in the environment
cooperate so that a procedure only needs to be examined once during compilation. Additional passes over the
code can be added if necessary, but should be avoided since experience has shown that examination of source
code dominates analysis time. The existing compilation system uses the following 3-phase approach [35, 62,

92]:
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1. Local Analysis. At the end of an editing session, ParaScope calculates and stores summary informa-
tion concerning all local interprocedural effects for each procedure. This information includes details on
call sites, formal parameters, scalar and array section uses and definitions, local constants, symbolics,
loops and index variables. Since the initial summary information for each procedure does not depend
on interprocedural effects, it only needs to be collected after an editing session, even if the program is
compiled multiple times or if the procedure is part of several programs.

2. Interprocedural Propagation. The compiler collects local summary information from each pro-
cedure in the program to build an augmented call graph containing loop information [94]. It then
propagates the initial information on the call graph to compute interprocedural solutions.

3. Interprocedural Code Generation. The compiler directs compilation of all procedures in the
program based on the results of interprocedural analysis.

Another important aspect of the compilation system is what happens on subsequent compilations. In an
interprocedural system, a module that has not been edited since the last compile may require recompilation
if it has been indirectly affected by changes to some other module. Rather than recompiling the entire
program after each change, ParaScope performs recompilation analysis to pinpoint modules that may have
been affected by program changes, thus reducing recompilation costs [32, 63]. This process is described in
greater detail in Section 7.6.

ParaScope computes interprocedural REF, MOD, ALIAS and CONSTANTS. Implementations are underway
to solve a number of other important interprocedural problems, including interprocedural symbolic and RSD
analysis. ParaScope also contains support for inlining and cloning, two interprocedural transformations that
increase the context available for optimization. Inlining merges the body of the called procedure into the
caller. Cloning creates a new version of a procedure for specific interprocedural information [60, 62].

Existing interprocedural analysis in ParaScope is useful for the Fortran D compiler, but it is not sufficient.
The compiler must also incorporate analysis to understand the partitioning of data & computation, and to
apply communication optimizations. In order to use the above 3-phase approach, additional interprocedural
information is collected during code generation and propagated to other procedures in the program. These
extensions are described in the rest of the chapter.

7.3 Interprocedural Compilation

As we have seen, interprocedural compilation of Fortran D is needed to generate efficient code in the presence
of procedure calls. The Fortran D compilation process is complex. The list of interprocedural data-flow
problems that must be solved by the Fortran D compiler is shown in Table 7.1. Each problem is labeled |,
1, or | depending on whether it is computed top-down, bottom-up, or bidirectional, respectively. We have
carefully structured the Fortran D compiler to perform compilation in a single pass over each procedure for
programs without recursion. It has three key points. The first two support compilation in a single pass, the
third improves the effectiveness of interprocedural optimization:

e Certain interprocedural data-flow problems are computed first because their solutions are needed to
enable code generation. In particular, reaching decompositions information is needed to determine the
data partition, the initial step in compiling Fortran D. These problems are solved by gathering local
information during editing and computing solutions during interprocedural propagation.

e Other interprocedural data-flow problems depend on data produced only during code generation. For
instance, local iteration and nonlocal index sets required for optimizations are calculated as part of
local Fortran D compilation. While we could introduce additional local analysis and interprocedural
propagation phases to solve these problems; it is much more efficient to combine their calculation with
code generation. This approach is possible because the set of problems we want to compute during
interprocedural code generation are all bottom-up. By visiting procedures in reverse topological order,
the results of analysis for each procedure are available when compiling its callers. Only overlaps need
to be handled separately.
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Interprocedural Propagation Code Generation
Call graph | Local iteration sets |
Loop structure | Nonlocal index sets |
Array aliasing & reshaping | Overlaps |
Scalar & array side effects | Buffers |
Symbolics & constants | Live decompositions |
Reaching decompositions | | Loop-invariant decomps |

Table 7.1 Interprocedural Fortran D Data-flow Problems

e Delayed instantiation of the computation partition, communication, and dynamic data decomposition
enables optimization across procedure boundaries. In other words, guards, messages, and calls to data
remapping routines are not inserted immediately when compiling a procedure. Instead, where legal
they are stored and passed to the procedure’s callers; delaying their insertion. This technique provides
the flexibility needed to perform interprocedural optimization.

The remainder of this section presents interprocedural solutions required by the Fortran D compiler and
shows how interprocedural information is used during code generation. Section 7.4 describes additional
interprocedural analysis and optimization for efficiently supporting dynamic data decomposition. The overall
algorithm is then presented. For clarity, each problem and solution is described separately, even though the
compilation process uses the 3-phase ParaScope approach described in the previous section.

7.3.1 Augmented Call Graph

Most interprocedural problems are solved on the call graph, where nodes represent procedures and edges
represent call sites. Since the Fortran D compiler also requires information about interprocedural loop
nesting, it uses the augmented call graph (ACG) [94]. Conceptually, the ACG is simply a call graph plus
loop nodes that contain the bounds, step, and index variable for each loop, plus nesting edges that indicate
which nodes directly encompass other nodes.

For instance, the Fortran D program in Figure 7.1 produces the ACG shown in Figure 7.2. The ACG
shows that program P1 has two loops, ¢ and j, both of which contain calls to F1. F1 calls F2, which in turn
contains loop k. Annotations stored in the ACG show that the formal parameter 7 in F1 and F2 is actually
the index variable for a loop in P1 that iterates from 1 to 100 with a step of 1.

The ACG also contains representations of the formal and actual parameters and their dimensions asso-
ciated with each procedure and call site. This information is used by interprocedural analysis to translate
data-flow sets across calls, mapping formals to actuals and vice versa. An example of this translation is the
Translate function in Figure 7.3. Translation must also deal with array reshaping across procedure bound-
aries. Interprocedural symbolic analysis used in conjunction with linearization and delinearization of array
references can discover standard reference patterns that may be compiled efficiently [30, 92, 98].

The augmented call graph construction algorithm has a local and interprocedural phase. During local
analysis, a node is created for each procedure and augmented with loop information. Loops nodes are created
for each loop. For each procedure or loop node X, nesting edges are added to loops directly contained in X.
Call sites contained directly in X are also recorded. Loop bounds and step are stored as constants or jump
functions, functions that describe the value of a variable as a function of input variables to the procedure
(i.e., formal parameters and global variables that may have constant values) [36].

During interprocedural propagation call edges are added to the call graph for each call site. Straightforward
examination of recorded information is usually sufficient. If a procedure-valued formal parameter is invoked,
further analysis is required to determine all procedure names that could be bound to it [92]. For greater
precision, jump functions for loop information are evaluated using results from interprocedural constant and
symbolic analysis.



102 CHAPTER 7. INTERPROCEDURAL COMPILATION

PROGRAM P1 SUBROUTINE F1(Z,1i)
REAL X(100,100),Y(100,100) REAL Z(100,100)
PARAMETER (n$proc = 4) S3  call F2(Z,i)
ALIGN Y(i,j) with X(j,1) end
DISTRIBUTE X(BLOCK,:)
do i = 1,100 SUBROUTINE F2(Z,1i)
S1 call F1(X,1) REAL Z(100,100)

enddo do k = 1,100

do j = 1,100 Z(k,i) = F(Z(k+5,1))
Ss call F1(Y,j) enddo

enddo end
end

Figure 7.1 Example Fortran D Program

Q Procedure

D@ -0 O
—_—  Call Edge

Nesting Edge

Figure 7.2 Augmented Call Graph

{* Local analysis phase *}
for each procedure P do
initialize decomposition of all variables to T
for each call site C in P do
calculate LoCALREACHING(C)
endfor
endfor
{* Interprocedural propagation phase *}
for each procedure P do (in topological order)
calculate REACHING(P) =

P invoked at o Iranslate(LOCALREACHING(C'))

clone P if multiple decompositions found
for each call site C in P do
for each element (T,X) € LocaALREACHING(C') do
replace with (D, X'} € REACHING(P)
endfor
endfor
endfor
{* Interprocedural code generation phase %}
for each procedure P do (in reverse topological order)
calculate LOCALREACHING for all variables in P
endfor

Figure 7.3 Reaching Decompositions Algorithm
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7.3.2 Reaching Decompositions

To effectively compile Fortran D programs, it is vital to know the data decomposition of a variable at every
point it is referenced in the program. In Fortran D, procedures inherit the data decompositions of their
callers. For each call to a procedure, formal parameters inherit the decompositions of the corresponding
actual parameters passed at the call, and global variables retain their decomposition from the caller. A
variable’s decomposition may also be changed at any point in the program, but the effects of decomposition
specifications are limited to the scope of the current procedure and its descendants in the call graph.

Reaching Decompositions Calculation. To determine the decomposition of distributed arrays at each
point in the program, the compiler calculates reaching decompositions. Locally, it is computed in the same
manner as reaching definitions, with each decomposition treated as a “definition” [4]. Interprocedural reach-
ing decompositions is a flow-sensitive data-flow problem [20, 61] since dynamic data decomposition is affected
by control flow. However, the restriction on the scope of dynamic data decomposition in Fortran D means
that reaching decompositions for a procedure is only dependent on control flow in its callers, not its callees.
The effect of data decomposition changes in a procedure can be ignored by its callers, since it is “undone”
upon procedure return.

By taking advantage of this restriction, interprocedural reaching decompositions may be solved in one
top-down pass over the call graph using the algorithm in Figure 7.3. During local analysis, we calculate the
decompositions that reach each call site C'. Formally,

LocALREACHING(X) = { (D, V) | D is the set of decomposition specifications reaching actual
parameter or global variable V' at point X }.

LocALREACHING may include elements of the form (T, V) if V may be reached by a decomposition inherited
from a caller. T serves as a placeholder. During interprocedural propagation, we use the call graph and
LocALREACHING to calculate REACHING(P), the set of decompositions reaching a procedure P from its
callers. Formally,

REACHING(P) = {(D, V)| D is the set of decomposition specifications reaching formal parameter
or global variable V' at procedure P }.

The function Translate maps actual parameters in the LOCALREACHING set of a call to formal parameters
in the called procedure. Global variables are simply copied, and actual parameters are replaced by the cor-
responding formal parameters. REACHING(P) is computed as the union of the translated LOCALREACHING
sets for all calls to P. We then update all LOCALREACHING sets in P that contain T. Each element (T, V)
is expanded to (D, V), where D is the set of decompositions for variable V' in REACHING(P). This step
propagates decompositions along paths in the call graph. During code generation the compiler needs to de-
termine which decomposition reaches each variable reference. It repeats the calculation of LOCALREACHING
for each procedure, taking REACHING into account.

Reaching Decompositions Example. Figure 7.4 illustrates the reaching decomposition calculation for
the program in Figure 7.1. During the local analysis phase, LOCALREACHING sets are computed for the call
sites 51, S3 and S3. The results for S; and S contain the decompositions that reach the actual parameter at
the call site. At the first call site S1, the actual parameter X is distributed row-wise. At the second call site
Sa2, Y is distributed column-wise. LOCALREACHING(S3) is set to the element (T, Z) since the decomposition
inherited by procedure F1 reaches 7.

During the interprocedural propagation phase, the call graph is constructed and REACHING sets are
computed top-down for program Pl and procedures F1 and F2. REACHING(P1) is the empty set, since
P1 has no callers. REACHING(F1) is calculated as the union of LOCALREACHING for the call sites Sy and
Ss. The Translate function maps the decomposition of the actual parameters X and Y at the call sites
to the formal 7, resulting in ({(:, block), (block,:)}, Z). T for Z in LOCALREACHING(S3) is replaced with
these column and row distributions from REACHING(F1). Since Ss is the only call site invoking F2, the
resulting data decompositions are also assigned to REACHING(F2). Finally, during local code generation the
interprocedural reaching decompositions in REACHING are used to calculate the decomposition for each local
variable.
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LocaLREACHING(S:) = { ((block,:), X ) }

LocaALREACHING(S2) = { ((:,block),Y ) }

S1 Ss
LocaLREACHING(S3) = {(T,Z) }
REAcHING(P1) = 0)
Ss REACHING(F1) = LoCALREACHING(S:) U
LoCALREACHING(S?)
@ REACHING(F2) = LoCALREACHING(S3)

Figure 7.4 Reaching Decompositions

partition calls C' invoking P into {m ...m,} such that
Filter( Translate(LOCALREACHING(C')), APPEAR(P))
is equal FORALL calls C' in each partition 7;
if n > 1 then {x multiple partitions created x}
for each m; € {71 ... 7, } do
create clone P; of P
calculate REACHING(P;) =
Uc in «, Translate(LocALREACHING(C))

for each call C in 7; do
replace P with P; as endpoint of edge
representing C' in call graph
endfor
endfor

endif Figure 7.5 Procedure Cloning Algorithm

7.3.3 Procedure Cloning

The Fortran D compiler can generate much more efficient code if there is only a single decomposition reaching
an array. We assume that cloning or run-time techniques will be applied locally to ensure that each array has
a unique decomposition within each procedure. Procedure cloning may still be necessary if calls to procedure
P provide different decompositions for variables that appear in P or its descendants. The procedure cloning
algorithm is presented in Figure 7.5. We define APPEAR(P) to be the set of formal parameters and global
variables appearing in procedure P or its descendants. Formally,

APPEAR(P) = GMOD(P) U GREF(P).

GMoD and GREF represent the variables modified or referenced by a procedure or its descendants [61]. The
value of APPEAR is readily available from interprocedural scalar side-effect analysis [20, 62]. We also define
a function Fulter(R,V) that removes from R all decompositions elements (D, X) where X ¢ V, returning
the remaining decomposition elements.

In the algorithm we partition the calls to P so that calls providing the same decompositions can share
the same clone. We use Filter to remove reaching decompositions that are not in ApPEAR. This step avoids
unnecessary cloning that would expose decompositions for unreferenced variables. A clone of P is produced
for each partition, resulting in a unique decomposition for each variable accessed. For instance, the compiler
creates two copies of procedure F1 and F2 because they possess two different reaching decompositions for
Z. Edges in the call graph are updated appropriately for the clone. In pathological cases, cloning can result
in an exponential growth in program size [60]. Under these circumstances, cloning may be disabled when a
threshold program growth has been exceeded, forcing run-time resolution instead.
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{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
for each variable V in P do
calculate local index set for V'
endfor
for each assignment statement S in P do
construct iteration set for S
endfor
for each call to @ at site C'in P do
assign iteration set of @) to C
endfor
instantiate local data and computation partitions
collect union of all iteration sets in P for callers
endfor

Figure 7.6 Data and Computation Partitioning Algorithm

7.3.4 Partitioning Data and Computation

Recall that a major responsibility of the Fortran D compiler is to partition the data and computation
across processors. Reaching decompositions calculated in LOCALREACHING are translated into distribution
functions that compute the data partition for each variable. Once the data partition is calculated, it is used
with loop information in the ACG to derive the computation partition via the owner computes rule. In
the Fortran D compiler, the data and computation partition are represented by local index and iteration
sets, respectively. The computation partition is instantiated by modifying the program text to reduce loop
bounds and/or introduce explicit guards.

When compiling a procedure, the Fortran D compiler delays local instantiation of the computation par-
tition as much as possible. It first forms the union of all iteration sets for statements in the procedure.
Bounds are reduced for loops local to the procedure. Guards are introduced for loops outside the proce-
dure only if local statements have different iteration sets for those loops. Otherwise the compiler simply
saves the unioned iteration set, using it to instantiate the computation partition later when compiling the
callers. Delayed instantiation enables the compiler to reduce computation partitioning costs by using loop
bounds reduction or by merging guards across procedure boundaries. The partitioning algorithm is shown
in Figure 7.6.

Computation Partitioning Example. We illustrate the partitioning process for the code in Figure 7.1.
For simplicity, we assume that procedure F1 contains the k£ loop. Cloning has already been applied to F1,
producing F1$row and F1$col as shown in Figure 7.7. The compiler computes the local index set for Z to
be [1:25,1:100] in F1$row and [1:100,1:25] in F1$col. Disregarding boundary conditions, applying the owner
computes rule results in the local iteration sets [1:25,1:100] and [1:95,1:25] for the assignments to Z(k,1)
at S3 and Sy, respectively. Since these are the only computation statements in Fl$row and Fl1$col, they
become the iteration sets for the entire procedures as well.

During code generation, the bounds of local loop k are reduced in F1$row, but not for F1$col. The
iteration sets for F1$row and Fl1$col are stored and assigned to the call sites at S; and Sy when compiling
P1. This causes the bounds of the j loop enclosing Sz to be reduced from [1:100] to [1:25], based on the
iteration set calculated for F1$col. The result is shown in Figure 7.7.

7.3.5 Communication Analysis and Optimization

Once they are calculated, local iteration sets (representing the computation partition) may be used to
compute nonlocal accesses. Communication is generated only for nonlocal references in procedure P that
cause true dependences carried by loops within P. This may be determined from RSDs and local code.
Messages for other nonlocal references will be added when P’s callers are later compiled. Communication is
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PROGRAM P1
REAL X(30,100), Y(100,25)
my$p = myproc() {* 0...3 x}
if (my$p .GT. 0) send X(1:5,1:100) to my$p-1
if (my$p .LT. 3) recv X(26:30,1:100) from my$p+1
do i =1,100
S1 call Fi$row(X,1i)

enddo
do j =1,25
Ss call Fi$col(Y, )
enddo
end

SUBROUTINE Fi$row(Z,1i)
REAL Z(30,100)

ub$1l = min((my$p+1)#25,99) - (my$p*25)
do k = 1,ub$1
Sa Z(k,i) = F(Z(k+5,1i))
enddo
end

SUBROUTINE F1$col(Z,1)
REAL Z(100,25)

do k = 1,95
S Z(k,i) = F(Z(k+5,i))
enddo
end

Figure 7.7 Interprocedural Fortran D Compiler Output

instantiated by modifying the text of the program to insert send and recvroutines or collective communication
primitives.

To see how this strategy works, first recall from Chapter 4 that message vectorization uses the level of the
deepest loop-carried true dependence to combine messages at outer loop levels [16, 212]. Communication for
loop-carried dependences is inserted at the beginning of the loop that carries the dependence. Communication
for loop-independent dependences is inserted in the body of the loop enclosing both the source and sink of
the dependence. If both loop-carried and loop-independent dependences exist at the same level, the loop-
independent dependence takes priority.

Because the program is compiled in reverse topological order, local dependence analysis augmented
with interprocedural RSDs representing array uses and definitions can precisely detect all loop-independent
dependences and dependences carried by loops within the procedure, but not all dependences carried on loops
outside the procedure. This imprecision is not a problem since the Fortran D compiler delays instantiation
of communication for nonlocal references in any case to take advantage of additional opportunities to apply
message vectorization, coalescing, aggregation, and other communication optimizations.

For interprocedural compilation, the Fortran D compiler first performs interprocedural dependence anal-
ysis. References within a procedure are put into RSD form, but merged only if no loss of precision will result.
The resulting RSDs may be propagated to calling procedures and translated as definitions or uses to actual
parameters and global variables [98]. During code generation, the Fortran D compiler uses intraprocedural
algorithms to calculate nonlocal index sets, using the deepest true dependence to determine the loop level for
vectorizing communication. If a nonlocal reference is the sink of a true dependence carried by a loop in the
current procedure, communication must be generated within the procedure. Otherwise the nonlocal index
set is marked and passed to the calling procedure, where its level and location may be determined more
accurately and optimizations applied. The algorithm for optimizing communication is shown in Figure 7.8.

Communication Optimization Example. We illustrate the analysis and optimization techniques used
to generate communication for Figure 7.7. First, the Fortran D compiler uses the local iteration sets calcu-
lated for statements Sz and Sy to determine the nonlocal index sets for the rhs Z(k + 5,¢). In procedure
F1Scol, the local iteration set [1:95,1:25] yields the accesses [6:100,1:25]. Since the local index set for Z is
[1:100,1:25], all accesses are local and no communication is required.
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{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
for each rhs reference V in P do
compare with lhs to determine type of communication
if communication is needed then
use dependence information to calculate commlevel
build RSD representing data to be communicated
insert RSD at loop at commlevel if local
endif
endfor
for each call site in P do
insert RSDs from call at commlevel if local to P
endfor
for each loop in P do
merge RSDs at loop if no precision is lost
aggregate RSDs for messages to the same processor
endfor
instantiate communication for RSDs at local loops
collect remaining RSDs for callers
endfor

Figure 7.8 Communication Analysis and Optimization

In procedure F1$row, the local iteration set [1:25,1:100] yields the accesses [6:30,1:100]. Subtracting the
local index set produces the nonlocal index set [26:30,1:100]. The compiler determines that communication
does not need to generated locally because Z(k + 5,%) has no true dependences carried by the local k loop.
Instead, it computes the nonlocal index set [26:30,i] for Z and saves it for use when compiling the caller.

When compiling P1, the Fortran D compiler translates the nonlocal index set for Z into a reference to
X, the actual parameter for the call to procedure F1$row at S;. Interprocedural dependence analysis based
on RSDs shows that it has no true dependence carried on the ¢ loop either. The compiler thus vectorizes the
message outside the i loop, resulting in the nonlocal index set [26:30,1:100]. Guarded messages are generated
to communicate this data between processors.

7.3.6 Optimization vs. Language Extensions

An important point demonstrated in the previous sections is how delayed instantiation of the computa-
tion partition and communication is key to interprocedural optimization. For instance, consider the code
generated for Figure 7.1 if the compiler cannot delay instantiation across procedure boundaries, but must
immediately instantiate both the computation and communication partition. For simplicity, again assume
that procedure F1 contains the k loop. When compiling F1$row, the Fortran D compiler would need to insert
messages inside the procedure to communicate nonlocal data accessed. This code would result in a hundred
messages for X[26:30,i], one for each invocation of F1$row, rather than a single message for X[26:30,1:100] in
P1. In addition, the compiler would need to introduce explicit guards in F1$col to partition the computation,
rather than simply reducing the bounds of the j loop in P1. The resulting program, shown in Figure 7.9, is
much less efficient than the code in Figure 7.7.

This example also points out limitations for language extensions designed to avoid interprocedural anal-
ysis. Language features such as interface blocks [196] require the user to specify information at proce-
dure boundaries. These features impose additional burdens on the programmer, but can reduce or elimi-
nate the need for interprocedural analysis. However, current language extensions are insufficient for inter-
procedural optimizations. This may significantly impact performance for certain computations, as we show
in Section 7.7.
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PROGRAM P1
REAL X(30,100), Y(100,25)
do i = 1,100
S1 call Fi$row(X,1i)
enddo
do j = 1,100
Ss call Fi$col(Y,j)
enddo
end

SUBROUTINE Fi$row(Z,i)
REAL Z(30,100)
my$p = myproc() {* 0...3 x}
if (my$p .GT. 0) send X(1:5,i) to my$p-1
if (my$p .LT. 3) recv X(26:30,i) from my$p+1
ub$1l = min((my$p+1)#25,99) - (my$p*25)
do k = 1,ub$1

Sa Z(k,i) = F(Z(k+5,1))

enddo

end

SUBROUTINE F1$col(Z,1)

REAL Z(100,25)
if ((i .GT. 0) .AND. (i .LT. 25)) then

do k = 1,95
Sy Z(k,i) = F(Z(k+5,1))
enddo
endif

end

Figure 7.9 Program with Immediate Instantiation

7.3.7 Overlap Calculation

The Fortran D compiler uses overlaps and buffers to store nonlocal data fetched from other processors. The
number and sizes of temporary buffers required may be propagated up the call graph during code generation
as each procedure is compiled. At the top level, the total number and size of buffers is known and can
be allocated. Calculating the overlap regions needed for each array is more difficult. The problem is that
multidimensional arrays must be declared to have consistent sizes in all but the last dimension, or else
inadvertent array reshaping will result. Since using overlaps changes the size of array dimensions, the size of
an overlap region must be the same across all procedures. This restriction prevents the use of any single-pass
algorithms.

A simple algorithm can compile all procedures and record overlaps used, then perform a second pass over
procedures in order to make overlap declarations uniform. To eliminate a second pass over the program,
the Fortran D compiler tries to estimate the number and sizes of overlaps by storing constant offsets that
appear in array variable subscripts during local analysis. These offsets are propagated in the interprocedural
analysis phase to estimate the maximal overlaps needed for each array. Code generation then determines
what overlaps are actually needed. The estimate may be updated incrementally if it has not been used
in previously compiled procedures. Otherwise the compiler may choose to either utilize buffers or go back
and modify array declarations in those procedures. The algorithm for calculating overlaps is described in
Figure 7.10.

Overlap Example. For instance, the overlaps required for X and Y in Figure 7.7 are calculated as follows.
In the local analysis phase, the reference Z(k + 5, ¢) results in the overlap offset Z({+5},0). Interprocedural
propagation of overlap offsets translates these offsets for the formal parameter Z to the actual parameters
X and Y, discovering that this is the maximum offset for both arrays. Using the results of reaching decom-
position analysis, the compiler determines that the first dimension of X and the second dimension of Y are
distributed. The overlap offset ({+5},0) yields for X the estimated overlap region [26:30,100]. No overlap
is needed for Y since the offset in the distributed dimension is zero. During code generation these overlaps
are discovered to be both necessary and sufficient.
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{* Local analysis phase *}
for each procedure P do
for each array reference R to variable V do
mark overlap offset in each dimension
endfor
endfor
{* Interprocedural propagation phase *}
calculate reaching decompositions
for each procedure P do (in reverse topological order)
for each array variable V in P do
merge local overlap offsets and those from calls
propagate overlap offset to callers
endfor
endfor
propagate resulting overlap offset estimates down ACG
{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
for each array variable V in P do
determine actual overlap needed for V
if actual overlap is greater than estimated then
use buffer instead, or modify previous procedures
endif
mark overlap estimate as used by P
endfor
instantiate local overlaps
collect actual overlap offsets for callers

endfor
Figure 7.10 Overlap Calculation Algorithm
PROGRAM P1 SUBROUTINE F1(X,Xlo,Xhi)
REAL X(30) REAL X(Xlo:Xhi)
call F1(X,1,30) do i=1,25
end X(1) = F(X(i+5))
enddo
end

Figure 7.11 Parameterized Overlaps

Overlap Alternatives. The overlap estimation algorithm is not very precise, but unfortunately is hard to
improve without significantly more effort during local analysis. Empirical results will be needed to establish
its accuracy in practice. The difficulty posed by overlaps may motivate other storage methods altogether.
When analysis is known to be imprecise, the Fortran D compiler may choose to store nonlocal data in
buffers instead of overlaps. Using buffers requires additional work by the compiler to separate loop iterations
accessing nonlocal data, but this is necessary in any case to perform iteration reordering, a communication
optimization designed to overlap communication with computation. If the overlap region is noncontiguous,
using buffers also has the advantage of eliminating the need to unpack nonlocal data.

Alternatively, the Fortran D compiler can rely on Fortran’s ability to specify array dimensions at run time.
By adding additional arguments to a procedure, the compiler can produce parameterized overlaps for array
parameters. Since the extent of all overlaps are known after compiling the main program, they may simply
be specified as compile-time constants and passed as arguments to procedures. For instance, Figure 7.11
shows how parameterized overlaps may be generated for the program in Figure 7.1. Unfortunately only
overlaps for array formal parameters may be parameterized. Overlaps for global arrays found in Fortran
common blocks must be determined statically at compile time using the algorithm previously described.
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7.4 Optimizing Dynamic Data Decomposition

As stated previously, users can dynamically change data decompositions in Fortran D. This feature is desir-
able because phases of a computation may require different data decompositions to reduce data movement
or load imbalance. Fortran D assumes the existence of a collection of library routines that can be invoked
to remap arrays for different data decompositions. It is the task of the compiler to determine where calls
to these mapping routines must be inserted to map affected arrays when executable ALIGN and DISTRIBUTE
statements are encountered.

We show that straightforward placement of mapping routines may produce highly inefficient code. In
comparison, an interprocedural approach can yield significant improvements. Additional language support is
insufficient, because optimization must be performed across procedure boundaries. As with communication
and partitioning optimizations, the key to enabling interprocedural optimization is delayed instantiation of
dynamic data decomposition. In other words, the Fortran D compiler waits to insert data mapping routines
in the callers rather than in the callee.

7.4.1 Live Decompositions

Because the cost of remapping data can be very high, we would like to recognize and eliminate unnecessary
remapping where possible. For instance, consider the calls to procedure F1 at S; and S5 in Figure 7.12.
Array X is originally distributed block-wise, but is redistributed cyclically in F1. If no optimizations are
performed, the compiler inserts mapping routines before each call to F1, as displayed in Figure 7.13a. This
code causes array X to be mapped four times for each iteration of loop k. The same problems result if delayed
instantiation is not used, because calls to mapping routines are inserted in F1 instead of P1. Analysis can
show that the mapping routine for X at S5 is dead, because X is not referenced before it is remapped at Ss.
A more efficient version of the program would map array X just twice, before and after the calls to F1, as
in Figure 7.13b.

We pose a new flow-sensitive data-flow problem to detect and eliminate such redundant mappings. We
define live decompositions to be the set of data decomposition specifications that may reach some array ref-
erence aligned with the decomposition. The Fortran D compiler treats each ALIGN or DISTRIBUTE statement
as a number of definitions, one for each array affected by the statement. A reference to one of these arrays
constitutes a use of the definition for that array. With this model, the Fortran D compiler can calculate
live decompositions in the same manner as live variables [4]. Array mapping calls that are not live may be
eliminated.

One approach would be to calculate live decompositions during interprocedural propagation. During local
analysis, we would collect summary information representing control flow and the placement of data decom-
position specifications. We would then need to compute the solution on the supergraph formed by combining
local control flow graphs with the call graph, taking care to avoid paths that do not correspond to possi-
ble execution sequences [158]. To avoid this complexity, we choose instead to compute live decompositions
during code generation, when control flow information is available.

Live Decompositions Calculation. Interprocedural live variable analysis has been proven Co-NP-complete
in the presence of aliasing [158]. Even without aliasing, interprocedural live variable analysis can be expen-
sive since it requires bidirectional propagation, causing a procedure to be analyzed multiple times. We rely
on two restrictions to make the live decompositions problem tractable for the Fortran D compiler. First,
the scope of dynamic data decomposition is limited to the current procedure and its descendants. Second,
Fortran D disallows dynamic data decomposition for aliased variables, as discussed in Section 7.4.4.

By inserting mapping routines in the callers rather than in the callee, we can solve live decompositions
in one pass by compiling in reverse topological order during the interprocedural code generation phase. The
key insight is that due to Fortran D scoping rules, we know all local dynamic data decompositions are dead
at procedure exit. To determine whether they are live within a procedure, we only need information about
the procedure’s descendants. The compiler cannot determine locally whether calls to mapping routines to
restore inherited data decompositions are live, but these mapping calls may be collected and passed to the
callers. By delaying their instantiation, we eliminate the need for information about the procedure’s callers.
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PROGRAM P1
REAL X(100)
DISTRIBUTE X (BLOCK)
do k = 1,T
S1 call F1(X)
Ss call F1(X)

SUBROUTINE F1(X)
REAL X(100)
DISTRIBUTE X(CYCLIC)
.= X))
end
SUBROUTINE F2(X)

enddo REAL X(100)
call F2(X) S; X(...) = ...
end end

Figure 7.12 Dynamic Data Decomposition Example

{* No Optimization *}

{* Live Decompositions *}

do k = 1,T do k = 1,T
Sy map-block-to-cyclic(X) Ss  map-block-to-cyclic(X)
call F1(X) call F1(X)
Sy map-cyclic-to-block(X) call F1(X)
Se  map-block-to-cyclic(X) Se  map-cyclic-to-block(X)
call F1(X) enddo
Sz map-cyclic-to-block(X) call F2(X)
enddo
call F2(X)
(7.13a) (7.13b)
{* Loop-invariant Decomps *} {* Array Kills *}
map-block-to-cyclic(X) map-block-to-cyclic(X)
do k = 1,T do k = 1,T
call F1(X) call F1(X)
call F1(X) call F1(X)
enddo enddo
map-cyclic-to-block(X) mark-as-block(X)
call F2(X) call F2(X)
(7.13¢) (7.13d)

Figure 7.13 Dynamic Data Decomposition Optimizations

The basic live decompositions algorithm works as follows. We calculate during code generation the
following summary sets for each procedure:

e DEcoMPUSE(P) = { X | X € ApPEAR(P) and may use some decomposition reaching P }
e DECOMPKILL(P) = { X | X € APPEAR(P) and must be dynamically remapped when P is invoked }

e DEcOMPBEFORE(P) = { (D, X) | X € ApPPEAR(P) and must be mapped to decomposition D before
P}

e DECOMPAFTER(P) = { (D, X) | X € APPEAR(P) and must be mapped to decomposition D after P }

DecoMPUSE and DEcoMPKILL are calculated through local data-flow analysis. They provide interprocedural
information for computing live decompositions. DECOMPBEFORE consists of all variables X that need to
be mapped before invoking P. DECOMPAFTER consists of all variables X that are mapped in P to some
new decomposition, and thus must be remapped when returning from P. Together DECOMPBEFORE and
DEcoMPAFTER represent dynamic data decompositions from P whose instantiation have been delayed.
We calculate live decompositions by simply propagating uses backwards through the local control flow
graph for each procedure [4]. A data decomposition statement is live with respect to a variable X only if there
is some path between it and a reference to X that is not killed by another decomposition statement or by
DEcoMPKILL of an intervening call. Summary sets describe the effect of each procedure call encountered.
Formal parameters of P in DEcoMPUSE and DECOMPKILL are translated and treated as references to
actual parameters. DECOMPBEFORE and DECOMPAFTER are translated and treated as decompositions
affecting variables in P. Decompositions that are dead may be removed. In addition, we can coalesce live
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decompositions if they are identical and their live ranges overlap. All live decompositions except the first
may then be eliminated. The live decomposition algorithm is presented in Figure 7.14.

Live Decompositions Example. Consider how live decompositions are calculated in Figure 7.12. The
Fortran D compiler proceeds in reverse topological order, so we begin with either F1 or F2. For procedure F1,
local live and reaching decomposition analysis shows that no incoming decompositions are used. The local
redistribution of X to cyclic kills the incoming decomposition for X, and requires that X be distributed
to cyclic before F1 and back to block after F1. Since there are no local data decompositions for F2, the
incoming decomposition is used for the reference to X. No decompositions are killed in F2 or needed before
or after F2. The resulting information is produced:

DecompUse(F1) = 0
DecompKILL(F1) = {X}
DecoMPBEFORE(F1) = { ((eyclic),X) }
DecoMPAFTER(F1) = { ((block), X) }
DecompUsg(F2) = {X}
DecompKiLL(F2) = 0
DecompBEFORE(F2) =
DecomPAFTER(F2) =

When we compile the main program body P1, we translate all summary sets in terms of local variables. The
DeEcoMPBEFORE and DECOMPAFTER sets correspond to potential calls to mapping routines, equivalent to
the program shown in Figure 7.13a. Local live decomposition analysis discovers that there are no uses of
the block decomposition for X at Ss, allowing it to be eliminated. Local reaching decomposition analysis
can then determine that the cyclic decompositions for X at S, and Sg are identical. They may then be
coalesced, eliminating Sg to achieve the program shown in Figure 7.13b.

7.4.2 Loop-invariant Decompositions

In addition to eliminating non-live decompositions and coalescing identical live decompositions, we can also
hoist loop-invariant decompositions out of loops to reduce remapping. For instance, consider the mapping
routines remaining in Figure 7.13b. If we can hoist the mapping routines, each remapping then occurs
once rather than on each iteration of the loop. There are two situations where a decomposition that is live
and loop-invariant with respect to variable X may be hoisted out of a loop. They vary slightly from the
requirements for loop-invariant code motion [4]:

e If the decomposition is not used within the loop for X, it may be moved after the loop. We verify this
condition by comparing LOCALREACHING and DEcoMpPUSE for all statements in the loop.

e If the decomposition is the only one used within the loop for X, it may be moved prior to the loop.
We verify this condition by checking that no other decompositions reach any occurrences of X.

In the program in Figure 7.13b, the mapping routine at Sy is not used within the loop and can be moved after
the loop. Now the mapping routine at Sg is the only decomposition reaching all references to X in the loop,
so it can be hoisted to a point preceding the loop, producing the desired program shown in Figure 7.13c.

7.4.3 Array Kills

Array kill analysis may be used to determine when the values of an array are live. An array whose values
are not live does not need to be remapped by physically copying values between processors. Instead, it may
be remapped in place by simply marking it as possessing the new decomposition. For instance, suppose
that array kill analysis determines that statement S5 in Figure 7.12 kills all values in array X. We can then
eliminate the cyclic-to-block mapping routine preceding the call to F2, notifying the run-time system instead
if necessary. This optimization results in the program shown in Figure 7.13d.



7.5. INTERPROCEDURAL COMPILATION ALGORITHM 113

{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
for each call site in P do
Translate DECOMPAFTER, DECOMPBEFORE,
DecomMpPUSE, DECOMPKILL to actual parameters
endfor
calculate local live decompositions
eliminate dead decompositions
coalesce identical decompositions
for each variable X € ApPEAR(P) do
if original decomposition may reach X then
add X to DEcomMPUSE
if X must be assigned a decomposition then
add X to DEcomMpPKILL
if X is assigned a decomposition D before
it uses its inherited decomposition then
add (D, X} to DECOMPBEFORE
if X is locally assigned a decomposition D that
differs from the inherited decomposition D’ then
add (D', X} to DECOMPAFTER
endfor
endfor

Figure 7.14 Live Decompositions Algorithm

7.4.4 Aliasing

Two variables X and Y are aliased at some point in the program if X and Y may refer to the same memory
location [20]. In Fortran 77, aliases arise through parameter passing, either between reference parameters of
a procedure if the same memory location is passed to both formals, or between a global and formal to which
it is passed.

Aliasing affects dynamic data decomposition because a variable may be remapped indirectly through
one of its aliases. Unfortunately, precise alias analysis is computationally intractable [158]. As a result, the
compiler cannot efficiently prove that a decomposition that has been applied to a variable holds for a possible
alias. The compiler would have to evaluate reaching decompositions for a variable and all of its potential
aliases, reverting to run-time resolution if multiple decompositions reach an access to the variable.

To eliminate the efficiency problems and avoid certain confusing program semantics associated with
aliasing, Fortran D requires that a variable and its alias cannot have different reaching decompositions that
are live at the same point in the program. This requirement is similar to the specification in the Fortran 77
standard that makes it illegal to write to aliased variables. As a result, the compiler can ignore aliasing
when analyzing decompositions since it is illegal to construct a program where remapping a variable’s alias
changes the decomposition reaching an access to the variable.

Since it is possible to construct a syntactically correct but illegal program, the compiler should warn
the programmer of situations where aliasing might cause undefined behavior. We can test the reaching
decompositions for each possible alias of a variable at a decomposition statement, warning the programmer
if the alias has a different decomposition that is live. Only a warning is produced since the imprecision of
alias and live analysis may signal problems in a legal program.

7.5 Interprocedural Compilation Algorithm

The full interprocedural Fortran D compilation algorithm is shown in Figure 7.15. It integrates Fortran D
compilation techniques with the interprocedural analysis and optimization framework of ParaScope.
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{* Local analysis phase *}
for each procedure P do
calculate information for: augmented call graph,
scalar and array side effects, symbolics,
reaching decompositions, overlap offsets
endfor
{* Interprocedural propagation phase *}
construct call graph, augment with loop information,
calculate aliasing, symbolics, scalar and array
side effects, reaching decompositions, cloning,
overlap offsets
{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
translate information from call sites in P
update local loop and subscript information
perform scalar data-flow analysis, symbolic analysis,
dependence testing, variable classification
partition data and computation
analyze and optimize communication
calculate number, size, and type of overlaps & buffers
calculate live, loop-invariant decompositions
generate code, collect information for callers
endfor

Figure 7.15 Interprocedural Compilation of Fortran D

7.6 Recompilation Analysis

The Fortran D compiler will follow the ParaScope approach for limiting recompilation in the presence of
interprocedural optimization [32, 63]. Recompilation analysis is used to limit recompilation of a program
following changes, an important component to maintaining the advantages of separate compilation. Briefly
stated, modules only need to be recompiled if they have been edited or if they have been optimized using
interprocedural information that is no longer valid.

To determine whether recompilation is needed, the compiler records the interprocedural information used
by a compilation. In subsequent compilations, it compares interprocedural information used in the previous
compilation with what has been computed in the current compilation. The Fortran D compiler needs to
record scalar data-flow analysis results and array side-effects, as well as reaching and live decompositions,
overlap offsets, local iteration sets, and nonlocal index sets. The complete list of problems is shown in
Table 7.1 in Section 7.3.

Recompilation mimics the interprocedural compilation algorithm presented in Figure 7.15. Local analysis
is applied to edited procedures, then interprocedural propagation is performed. Following an initial test to
discover which modules have been edited since the previous compilation, we apply recompilation tests to
interprocedural data-flow information for each module and its call sites. The compiler must also ensure that
cloning applied to expose reaching decompositions is still valid; it may decide to form more clones at this
time. Alternatively, changes in interprocedural information may make some clones obsolete, causing their
retraction. As soon as one recompilation test fails, the module is marked as needing recompilation.

In the bottom-up pass over the program, if the current node has not been marked for recompilation, the
compiler applies recompilation tests on the iteration sets, nonlocal index sets and RSDs at each call site.
Depending on the results, some procedures are marked for recompilation. If the current procedure has been
marked, it is compiled in the usual manner, producing new interprocedural information to be tested.
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7.6.1 Recompilation Tests

Recompilation tests ensure that interprocedural information used to compile a procedure conservatively
approximates the current information. A simple test just verifies that the old information is equal to the
new information. However, safe tests that generate less recompilation are possible if we consider how the
information will be used. Improved recompilation tests for many scalar data-flow problems are described
by Burke and Torczon [32]. To give the flavor of the recompilation tests, we describe the test for reaching
decompositions. Let oldP be the representation of P from the previous compilation. The procedures needing
recompilation are those for which the following is true:

Filter(REACHING (0ldP),APPEAR(P)) # Filter(REACHING(P),APPEAR(P))

Filter and APPEAR are described in Section 7.3.2. They are used to determine whether differences in reaching
decompositions actually affect optimization. The test thus marks a procedure P for recompilation only if
the decomposition reaching a variable appearing in P or its descendants changes.

Recompilation tests for other Fortran D interprocedural data-flow problems are simpler. Callers must
be recompiled if the local iteration or nonlocal index sets of a procedure have changed, since the callers’
guards, loop bounds, or communication may be affected. Similarly, modifications to live or loop-invariant
decomposition information requires recompilation of the caller. Changes in array section analysis may affect
array kill information, requiring recompilation if array remapping routines were affected in the caller. If
overlap offsets for a procedure change but do not exceed the original assigned overlaps, recompilation is not
necessary. However, if the new overlap offset is greater than the overlap allocated during code generation,
every procedure referencing the array will need to be recompiled to reflect the new overlap offset, not just
the callers.

A little more work is needed to calculate the extent of recompilation in the presence of cloning based on
reaching decompositions [32, 92]. The compiler maintains a mapping from procedures in the call graph to
the list of compiled clones for that procedure. For a procedure that has been cloned, the recompilation test
can be applied to all the clones in order to find a match for the procedure. It must also pass recompilation
tests for other interprocedural problems.

7.7 Empirical Results
7.7.1 Compilation Strategies for DGEFA

This section demonstrates the effectiveness of interprocedural optimization using the routine DGEFA from
Linpack, a linear algebra library [67]. DGEFA is also a major component in Linpackd, the Linpack Benchmark
Program. DGEFA uses Gaussian elimination with partial pivoting to factor a double-precision floating-point
array. A simplified version is shown in Figure 7.16. DGEFA relies on three other Linpack routines: IDAMAX,
DSCAL, and DAXPY. Since arrays are stored in column-major order in Fortran, DGEFA performs operations
column-wise to provide data locality.

To reduce both communication and load imbalance, we choose a column-wise cyclic distribution of array
A. We focus on DAXPY because it performs the majority of the computation. Because the techniques
discussed in this paper have not yet been implemented in the Fortran D compiler, we applied them by
hand, generating three versions of the program. In the run-time resolution version shown in Figure 7.17,
lack of decomposition information implies that processors must determine ownership and communication for
individual array elements. In the interprocedural analysis program displayed in Figure 7.18, we assume that
reaching decomposition information is provided for DAXPY through analysis or language extensions. This
information allows us to vectorize messages inside the procedure.

Finally, in the version created by interprocedural optimization, interprocedural array section analysis can
determine that DAXPY reads a column of A starting at A(k + 1, k) and defines a column of A starting at
A(k 4+ 1,7). Dependence analysis discovers that the two columns never intersect, since k < j < n, proving
that no true dependences are carried by the j loop. Message vectorization can then insert communication
outside the j loop altogether, avoiding redundant communication. In addition, we utilize broadcast rather
than send, since the same column is required by all processors. The resulting program is shown in Figure 7.19.
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{* Gaussian Elimination w/ Partial Pivoting *}
SUBROUTINE DGEFA(n,a,IPVT)
INTEGER n,IPVT(n),j,k,1
DOUBLE PRECISION A(n,n), t
dok =1, n-1
1 = IDAMAX(n-k+1,A(k,k),1) + k - 1
IPVT(k) = 1
if (1 .NE. k) then

t = A(l,k)
A(1,k) = A(k,k)
A(k,k) = t
endif

t = -1.040/A(k,k)
call DSCAL(n-k,t,A(k+1,k))
do j =k+1, n
t = A(1,j)
if (1 .NE. k) then
AC1,j) = A(k,]j)
A(k,j) =t
endif
call DAXPY(n-k,t,A(k+1,k),A(k+1,5))
enddo
enddo
IPVT(n) = n
end

{* Find Maximum Element in Vector *}
INTEGER FUNCTION IDAMAX(n,DX)
DOUBLE PRECISION DX(n),dmax
INTEGER i,ix,n
dmax = DABS(DX(1))
do i=2,n
if (DABS(DX(i)) .GT. dmax) then
idamax = i
dmax = DABS(DX(i))
endif
enddo
end

{* Scale a Vector by a Constant *}
SUBROUTINE DSCAL(n,da,DX)
DOUBLE PRECISION da,DX(n)
INTEGER i,n

do i=1,n

DX(i) = da*DX(i)

enddo
end

{* Constant times Vector plus Vector *}
SUBROUTINE DAXPY(n,da,DX,DY)
DOUBLE PRECISION DX(n),DY(n),da
INTEGER i,n

do i=1,n

DY(i) = DY(i) + da*DX(i)

enddo
end

Figure 7.16 Simplified Sequential Version of DGEFA

SUBROUTINE DAXPY(n,da,DX,DY)
do i=1,n

if (Cown(DX(i)) .AND. .NOT. own(DY(i))) then

send DX(i) to owner(DY(i)))
endif

if (Cown(DY(i)) .AND. .NOT. own(DX(i))) then

recv DX(i) from owner(DX(i)))
endif
if (own(DY(i))) then
DY(i) = DY(i) + da*DX(i)
endif
enddo

end Figure 7.17 DGEFA: Run-time Resolution
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SUBROUTINE DAXPY(n,da,DX,DY)

if (own(DX(1)) .AND. .NOT. own(DY(1))) then
send DX(1:n) to owner(DY(1)))

endif

if (own(DY(1)) .AND. .NOT. own(DX(1))) then
recv DX(1:n) from owner(DX(1)))

endif

if (own(DY(1))) then
do i =1,n

DY(i) = DY(i) + da*DX(i)

enddo

endif

end Figure 7.18 DGEFA: Interprocedural Analysis

SUBROUTINE DGEFA(n,a,IPVT)
do k =1, n-1
if (own(A(k+1,k))) then
broadcast A(k+1:n,k)
else
recv A(k+1:n,k) from owner(A(k+1,k))
endif
do j =k+1, n
call DAXPY(n-k,t,A(k+1,k),A(k+1,j))
enddo
enddo
end
SUBROUTINE DAXPY(n,da,DX,DY)
do i=1,n
DY(i) = DY(i) + da*DX(i)
enddo
end

Figure 7.19 DGEFA: Interprocedural Optimization

7.7.2 Measured Execution Times

For our measurements we used a 32 node Intel iPSC/860 with 8 Meg of memory per node. Each program
was compiled under -O4 using Release 2.0 of if77, the iPSC/860 compiler. We timed the program for several
problem sizes and numbers of processors using delock().

Results are tabulated in Table 7.2. Execution time is presented in seconds. We define speedup in the
table as follows, given parallel execution time 7,4, and sequential execution time Ty.q. If Tpar < Tiey,
speedup is Tseq/Tpar. Otherwise speedup is calculated as —Tpqr/Tseq. In some cases programs using run-
time resolution sent more messages than could be handled by the iPSC/860, causing the program to deadlock.
These programs are marked with “x”.

These timings are also shown in Figure 7.20. Each graph represents a single problem size. Execution
times are plotted logarithmically along the Y-axis in seconds. The number of processors is plotted along the
X-axis. Results for perfect or ideal speedup are included for purposes of comparison.

We make several observations. First, run-time resolution produces code that is over a hundred times
slower than the sequential program. Its performance is not affected by problem size, and degrades as
the number of processors increases. Run-time resolution is thus too expensive to employ except for very
infrequently executed sections of the program.

Surprisingly, the code produced with interprocedural analysis is five to ten times more expensive than
the sequential program, worsening as the number of processors increases. Unlike run-time resolution, its
performance improves for larger problem sizes. However, even for an 800 x 800 array, approximately the
largest double-precision array possible on a single processor, the resulting code is still five times slower than
the equivalent sequential program. Only interprocedural optimization produces positive speedups. After
interprocedural optimization we observe a speedup of 8§ on 32 processors. Further speedup is limited by the
small problem sizes.
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Run-time Interprocedural | Interprocedural
Problem Resolution Analysis Optimization
Size P | time |speedup| time | speedup | time | speedup
1 sequential tetme = 0.84 seconds
200 2 125 —149 8.7 —10.4 57 1.47
X 4 104 —124 7.8 —-9.3 45 1.87
200 8 129 —154 9.0 —10.7 43 1.95
16| 144 —171 9.6 —11.4 .46 1.83
32| 152 —181 9.4 —11.2 .52 1.62
1 sequential time = 7.16 seconds
400 2| 1050 | —147 53 —T7.4 4.0 1.79
X 4 841 —117 54 7.5 2.6 2.75
400 8 | 1047 | —146 63 —8.8 2.0 3.58
16| 1177 | —164 67 —-9.4 1.8 3.98
32| 1256 | =175 68 —9.5 1.9 3.77
1 sequential time = 64.5 seconds
800 2| 8394 | —130 358 —5.6 32.8 1.97
X 4 * * 400 —6.2 18.4 3.51
800 8 * * 467 —7.2 11.7 5.51
16 * * 499 7.7 9.0 717
32 * * 511 —-7.9 8.1 7.96

Table 7.2 Performance of DGEFA for Intel iPSC/860

Our empirical results show that interprocedural compilation can improve performance by several orders
of magnitude for an important application. We do not expect interprocedural optimization to be required
in all cases, but for many computations it can make a significant difference.

7.8 Discussion

This chapter shows that interprocedural compilation is needed to fully exploit the benefits of data-placement
languages such as Fortran D. Efficient interprocedural analysis, optimization, and code generation techniques
can be designed that require only one pass over the program. Delaying instantiation of the computation
partition, communication, and dynamic data decomposition is key to improving interprocedural optimiza-
tion. Recompilation analysis preserves the benefits of separate compilation. Experiments indicate that
interprocedural communication optimization is essential for at least one important program. For DGEFA, a
version of Gaussian elimination with partial pivoting from Linpack, extracting communication across proce-
dure boundaries improves performance by orders of magnitude.
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Figure 7.20 Interprocedural Optimization Results (Intel iPSC/860)
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Chapter 8
Compiling Fortran 77D and 90D

We present an integrated approach to compiling Fortran 77D and Fortran 90D programs for efficient execution
on MIMD distributed-memory machines. The integrated Fortran D compiler relies on two key observations.
First, array constructs may be scalarized into FORALL loops without loss of information. Second, loop fusion,
partitioning, and sectioning optimizations are essential for both Fortran D dialects. This chapter describes
the Fortran 90D and 77D front ends and the common Fortran D back end. The design of the run-time
library is discussed, and an example is used to illustrate the compilation process.

8.1 Introduction

Fortran D provides data decomposition specifications that can be applied to Fortran 77 and Fortran 90 [13]
to produce Fortran 77D and Fortran 90D, respectively. In this chapter, we describe a unified strategy for
compiling both Fortran 77D and Fortran 90D into efficient SPMD message-passing programs. We demon-
strate how to integrate partitioning with scalarization, and show that an efficient portable run-time library
can ease the task of compiling Fortran D.

8.2 Compilation Strategy

8.2.1 Overall Approach

Our approach to parallelizing Fortran D programs for distributed-memory MIMD computers is illustrated
in Figure 8.1. In brief, we transform both Fortran 77D and Fortran 90D to a common intermediate form,
which is then compiled to code for the individual nodes of the machine. We have several pragmatic and
philosophical reasons for this strategy:

e Sharing a common back end for both the Fortran 77D and Fortran 90D avoids duplication of effort.
e Decoupling the Fortran 77D and Fortran 90D front ends allows them to become machine independent.

e Providing a common intermediate form helps us experiment with defining an efficient compiler/programmer
interface for programming the nodes of a massively parallel machine.

8.2.2 Intermediate Form

To compile both dialects of Fortran D using a single back end, we must select an appropriate intermediate
form. In addition to standard computation and control flow information, the intermediate form must capture
three important aspects of the program:

e Data decomposition information, telling how data is aligned and distributed among processors.
o Parallelization information, telling when operations in the code are independent.

e Communication information, telling what data must be transferred between processors.

In addition, we believe that the primitive operations of the intermediate form should be relatively low-level
operations that can be translated simply for single-processor execution.

We have chosen Fortran 77 with data decompositions, FORALL, and intrinsic functions to be the interme-
diate form for the Fortran D compiler. We show later that this form preserves all of the information available
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in a Fortran 90 program, but maintains the flexibility of Fortran 77. Parallelism and communication can be
determined by the compiler for simple computations, and specified by the user using FORALL and intrinsic
functions for complex computations.

8.2.3 Node Interface

Another topic of interest in the overall strategy is the node interface—the node program produced by the
Fortran D compiler. It must be both portable and efficient. In addition, the level of the node interface
should be neither so high that efficient translation to object code is impossible, nor so low that its workings
are completely opaque to the user. We have selected Fortran 77 with calls to communication and run-
time libraries based on Express, a collection of portable message-passing primitives [167]. Evaluating our
experiences with this node interface is the first step towards defining an “optimal” level of support for
programming individual nodes of a parallel machine.

8.3 Unified Compiler

The Fortran D compiler thus consists of three parts. The Fortran 90D and 77D front ends process input
programs into the common intermediate form. The Fortran D back end then compiles this to the SPMD
message-passing node program. The Fortran D compiler is implemented in the context of the ParaScope
programming environment [35].

8.3.1 Fortran 90D Front End

The function of the Fortran 90D front end is to scalarize the Fortran 90D program, translating it to an
equivalent Fortran 77D program. This is necessary because the underlying machine executes computations
sequentially, rather than on entire arrays at once as specified in Fortran 90. For the Fortran D compiler we
find it useful to view scalarization as three separate tasks:

e Scalarizing Fortran 90 Constructs. Many Fortran 90 features are not present in our intermediate
form. They must be translated into equivalent Fortran 77D statements.

e Fusing Loops. Simple scalarization results in many small loop nests. Fusing these loop nests can
improve the locality of data accesses, simplify partitioning, and enable other program transformations.

e Sectioning. Fortran 90 array operations allow the programmer to access and modify entire arrays
atomically, even if the underlying machine lacks this capability. The Fortran D compiler must divide
array operations into sections that fit the hardware of the target machine [8, 11].

We defer both loop fusion and sectioning to the Fortran D back end. Loop fusion is deferred because even
hand-written Fortran 77 programs can benefit significantly [116, 150]. Sectioning is needed in the back end
because FORALL loops may also be present in Fortran 77D.

We assign to the Fortran 90D front end the remaining task, scalarizing Fortran 90 constructs that have
no equivalent in the Fortran 77D intermediate form. There are three principal Fortran 90 language features
that must be scalarized: array constructs, WHERE statements, and intrinsic functions [13].

Array Constructs

Fortran 90 array constructs allow entire arrays to be manipulated atomically. Array sections may also be
specified using triplet notation. This enhances the clarity and conciseness of the program, and has the
advantage of making parallelism explicit. It is the responsibility of the compiler to efficiently implement
array constructs for scalar machines. Previous research has shown that this is a difficult problem [8, 11].

One problem is that when Fortran 90 array constructs are used in assignment statements, the entire right-
hand side (rhs) must be evaluated before storing the results in the left-hand side (lhs). If an assignment
statement utilizing array constructs is translated naively without adequate analysis, rhs array elements
would need to be stored in temporary buffers to ensure that they are not overwritten before their values are
used.
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Figure 8.1 Fortran D Compilation Strategy
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The Fortran 90 front end can defer this problem by relying on a key observation—the FORALL loop pos-
sesses copy-in/copy-out semantics identical to Fortran 90 assignment statements utilizing array constructs.
Such statements may thus be translated into equivalent FORALL loops with no loss of information.

However, since FORALL loops specify individual element operations, indices are introduced. For simplicity,
the index calculation is performed with respect to the lhs. In general, an array construct of the form:

ACly :up :s1) = By :usg:s9)
where A and B are one dimensional arrays, is converted into:

forall i = l;, uj, s
A(i) = By + ((1 - [1)/s1) * s2)

endfor

Of course, the expression in the rhs is simplified as much as possible at compile time.

WHERE Statement

Another Fortran 90 feature that has no Fortran 77 equivalent is the WHERE statement. It takes a boolean
argument that is used to mask array operations, inhibiting assignments to array elements whose matching
boolean flag has the value false. The boolean argument to the WHERE statement must be completely
evaluated before the body of the statement may be executed.

Fortunately, the WHERE statement may be easily translated into equivalent 1F and FORALL statements.
Consider the following example where A is assumed to be an 1D N-element array. Because of FORALL copy-
in/copy-out semantics, it is unnecessary at this point to explicitly store the value of the boolean argument
to prevent it from being overwritten.

where (A .eq. 0) forall i = 1,N
A=1.0 if (A(i) .eq. 0) then
elsewhere — A(i) = 1.0
A =0.0 else
endwhere A(i) = 0.0
endif
endfor

Intrinsic Functions

Intrinsic functions are fundamental to Fortran 90. They not only provide a concise means of expressing
operations on arrays, but also identify parallel computation patterns that may be difficult to detect au-
tomatically. Fortran 90 provides intrinsic functions for operations such as shift, reduction, transpose, and
matrix multiplication. Additional intrinsics are described in Table 8.1. To avoid excessive complexity and
machine-dependence in the Fortran D compiler, we convert most Fortran 90 intrinsics into calls to customized
run-time library functions.

The strategy used by the Fortran 90D front end is thus to preserve all intrinsic functions, passing them to
the Fortran D compiler back end. However, some processing is necessary. Like the WHERE statement, some
intrinsic functions accept a mask expression that restricts execution of the computation. The Fortran 90D

Data Reductions Irregular Special
Movement Operations | Routines
CSHIFT DOTPRODUCT PACK MATMUL

EOSHIFT ALL, ANY, COUNT | UNPACK

SPREAD MAXVAL, MINVAL

RESHAPE SUM, PRODUCT
TRANSPOSE | MAXLOC, MINLOC

Table 8.1 Representative Intrinsic Functions of Fortran 90D
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front end may need to evaluate the expression and store it in a temporary boolean array before performing
the computation, so the mask can be passed as an argument to the run-time library.
For example, consider the following reduction operation, where X is a scalar and A, B are arrays:

X = MAXVAL(A, A .eq. B)

It should return the value of the element of A that is the maximum of all elements for which element of A
is equal to the corresponding element of B. The Fortran 90D front end translates this to:

forall i = 1,N

TMP(i) = A(i) .eq. B(i)
endfor
X = MAXVAL(A, TMP)

TMP can then be passed as an argument to the run-time routine MAXVAL. Temporary arrays may also be
introduced when intrinsic functions return a value that is part of a Fortran 90 expression.

Temporary Arrays

When the Fortran 90D front end needs to create temporary arrays, it must also generate appropriate
Fortran D data decomposition statements. A temporary array is usually aligned and distributed in the
same manner as its master array. For example, in the previous example the temporary logical array TMP
is aligned and distributed in the same manner as A and B. If A and B are distributed differently, then the
temporary array is assigned the distribution of A, the first argument.

8.3.2 Fortran 77D Front End

The Fortran 77D front end does not need to perform much work since Fortran 77D is very close to the
intermediate form. Its only task is to detect complex high-level parallel computations, replacing or annotating
them by their equivalent Fortran 90 intrinsics. These intrinsic functions help the compiler recognize complex
computations such as reductions and scans that are supported by the run-time library. With advanced
program analysis, some operations such as DOTPRODUCT, SUM, TRANSPOSE, or MATMUL can be detected
automatically with ease. Others computations such as COUNT or PACK may require user assistance.

8.3.3 Fortran D Back End

The Fortran D back end performs two main functions—it partitions the program onto the nodes of the
parallel machine and completes the scalarization of Fortran D into Fortran 77. We find that the desired
order for compilation phases is to apply loop fusion first, followed by partitioning and sectioning.

Loop fusion is performed first because it simplifies partitioning by reducing the need to consider inter-
loop interactions. It also enables optimizations such as strip-mining and loop interchange [10,205]. In
addition, loop fusion does not increase the difficulty of later compiler phases. On the other hand, sectioning
is performed last because it can significantly disrupt the existing program structure, increasing the difficulty
of partitioning analysis and optimization.

Loop Fusion

Loop fusion is particularly important for the Fortran D back end because scalarized Fortran 90 programs
present many single-statement loop nests. Fusing such loops simplifies the partitioning process and enables
additional optimizations.

Data dependence is a concept developed for vectorizing and parallelizing compilers to characterize memory
access patterns at compile time [10, 132, 205]. A true dependence indicates definition followed by use, while
an anti-dependence shows use before definition. Data dependences may be either loop-carried or loop-
independent. Loop fusion is legal if it does not reverse the direction of any data dependence between two
loop nests [8, 202, 205].

The current Fortran D back end fuses all adjacent loop nests where legal, if no loop-carried true depen-
dences are introduced. This heuristic does not adversely affect the parallelism or communication overhead
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of the resulting program, and should perform well for the simple cases found in practice. More sophisticated
algorithms are discussed elsewhere [9, 84, 115, 150, 202].

Loop fusion also has the added advantage of being able to improve memory reuse in the resulting program.
Modern high-performance processors are so fast that memory latency and bandwidth limitations become the
performance bottlenecks for most scientific programs. Transformations such as loop fusion promote memory
reuse and can significantly improve program efficiency for both scalar and vector machines [1, 8, 11, 40, 77,
132, 150, 189, 202]. For instance, consider the following example.

forall i = 1,N forall i = 1,N
A(L) = 1 A(i) = i
endfor - B(i) = A(i)*A(1)
forall i = 1,N endfor
B(i) = A(1)*A(1)
endfor

The occurrences of A(4) in separate loops means that the memory location referenced by A(7) in the first
loop is likely to have been flushed from the cache by the reference in the second loop. If the two loops are
fused, all accesses to A(¢) occur in the same loop iteration, allowing the value to be reused in a register or
cache. For this example, we measured improvements of up to 30% for some problem sizes on an Intel 1860, as
shown in Figure 8.2. Additional transformations to enhance memory reuse and increase unit-stride memory
accesses are also quite important; they are described elsewhere [116, 150].

Program Partitioning

The major step in compiling Fortran D for MIMD distributed-memory machines is to partition the data and
computation across processors, introducing communication where needed. This process has been discussed
in previous chapters. Two extensions are needed in the Fortran D back end to handle FORALL loops and
intrinsics. During communication optimization, the Fortran D compiler treats all true dependences carried
by FORALL loops as anti-dependences. This reflects the semantics of the FORALL loop and ensures that
the message vectorization algorithm will place all communication outside the loop. During code generation
intrinsic functions are translated into calls to the run-time library. Parameters are added where necessary
to provide necessary data partitioning information.

Sectioning

The final phase of the Fortran D back end completes the scalarization process. After partitioning is per-
formed, the compiler applies sectioning to convert FORALL loops into DO loops [8, 11] in the node program.
The Fortran D back end detects cases where temporary storage may be needed using data dependence anal-
ysis. True dependences carried on the FORALL loop represent instances where values are defined in the loop
and used on later iterations; they point out where the copy-in/copy-out semantics of the FORALL loop is
being violated.
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During simple translation of Fortran 90 array constructs or FORALL loops, arrays involved in loop-carried
true dependences must be saved in temporary buffers to preserve their old values. For instance, consider the
translation of the following concise Fortran 90 formulation of the Jacobi algorithm:

A(2:N-1) = 0.5 * (A(1:N-2) + A(3:N))

forall i = 2,N-1

A(i) = 0.5 * (A(i-1) + A(i+1))
endfor

J

do i =1,N-2

TMP(i) = A(i-1)
enddo
do i = 2,N-1

A(i) = 0.5 * (TMP(i) + A(i+1))
enddo

A loop-carried true dependence exists between the definition to A(¢) and the use of A(i — 1). A temporary
array TMP is needed so that the old values of A(i— 1) are not overwritten before they are used. The values
of A(i+ 1) do not need to be buffered since they are used before being redefined.

The previous example is problematic because temporary storage is required for the values of A(i—1). In
some cases, the Fortran D compiler can eliminate buffering through program transformations such as loop
reversal. In other cases, the compiler can reduce the amount of temporary storage required through data
prefetching [11]. For instance, in the Jacobi example a more efficient translation would result in:

X = A(1)
do i = 2,8-1
Y = 0.5 % (X + A(i+1))

X = A(1)
A(L) = Y
endfor

This reduces the temporary memory required significantly, from an entire array to two scalars. For this
version of Jacobi, we measured improvements of up to 50% for certain problem sizes on an Intel 1860, as
shown in Figure 8.2.

8.4 Run-time Library

Fortran 90 intrinsic functions represent computations (such as TRANSPOSE and MATMUL) that may have
complex communication patterns. It is possible to support these functions at compile time, but we have
chosen to implement these functions in the run-time library instead to reduce the complexity and machine-
dependence of the compiler. The Fortran D compiler translates intrinsics into calls to run-time library
routines using a standard interface. Additional information is passed describing bounds, overlaps, and

Time (milliseconds)
Proc ALL ANY MAXVAL | PRODUCT TRANSPOSE
1K x1K | 1K x1K 1K x 1K 256 K 256 x 256 | 512 x 512 | 1K x 1K
1 580.6 606.2 658.8 90.1 58 299 -
2 291.0 303.7 330.4 50.0 118 575 -
4 146.2 152.6 166.1 25.1 87 395 -
8 73.84 77.1 84.1 13.1 61 224 1039
16 37.9 39.4 43.4 7.2 41 140 539
32 19.9 20.7 23.2 4.2 36 85 316

Table 8.2 Performance of Some Fortran 90 Intrinsic Functions
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Figure 8.3 Performance of Run-time Library

partitioning for each array dimension. The run-time library is built on top of the Express communication
package to ensure portability across different architectures [167].

Table 8.2 presents some sample performance numbers for a subset of the intrinsic functions on an
iPSC/860, details are presented elsewhere [3]. The times in the table include both the computation and
communication times for each function. These measurements are also displayed in Figure 8.3. Timings in
seconds are plotted logarithmically along the Y-axis. The number of processors is plotted along the X-axis.
Different lines in the graph correspond to timings of individual functions in the run-time library for different
problem sizes.

We observe excellent performance for routines in the run-time library. For large problem sizes, we
were able to obtain almost linear speedups for most intrinsics. An exception occurs in the case of the
TRANSPOSE function, where going from one processor to two or four degrades execution time due to increased
communication. However, speedup improves as the number of processors increases.

8.5 Fortran 90D Compilation Example

In this section we demonstrate how an example Fortran 90D program is compiled into message-passing
Fortran 77, then measure its performance.

8.5.1 Compilation

Figure 8.4 shows a code fragment implementing one sweep of ADI integration on a 2D mesh, a typical (if
short) numerical algorithm. Conceptually, the code is solving a tridiagonal system (represented by the arrays
A and B) along each row of the matrix X. The tridiagonal systems are solved by a sequential method, but
separate columns are independent and may be solved in parallel. The full version of ADI integration sweeps
each dimension of the mesh, preventing completely parallel execution for any static data decomposition.

In the example, Fortran D data decomposition statements are used to partition the 2D array into blocks
of columns. For clarity, we declare the number of processors (NSPROC) to be 32 at compile time. The
Fortran 90D example is concise and convenient for the user, since it can be written for a single address
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PARAMETER (N = 512, N$PROC = 32)
REAL X(N,N), A(N,N), B(N,N)
DECOMPOSITION D(N,N)

ALIGN X, A, B with D

DISTRIBUTE D(:,BLOCK)

doI = 2,N
X(1:N,I) = X(1:N,I) - X(1:N,I-1)*A(1:N,I)/B(1:N,I-1)
B(1:N,I) = B(1:N,I) - A(1:N,I)*A(1:N,I)/B(1:N,I-1)
enddo
X(1:N,N) = X(1:N,N) / B(1:N,N)
do J = N-1,1,-1
X(1:N,J) = (X(1:N,J)-A(1:N,J+1)*X(1:N,J+1))/B(1:N,JT)

enddo

Figure 8.4 ADI integration in Fortran 90D

PARAMETER (N = 512, N$PROC = 32)
REAL X(N,N), A(N,N), B(N,N)
do I =2,N
forall K = 1,N
X(K,I) = X(K,I) - X(K,I-1)*A(K,I)/B(K,I-1)
endfor
forall K = 1,N
B(K,I) = B(K,I) - A(K,I)*A(K,I)/B(K,I-1)
endfor
enddo
forall K = 1,N
X(K,N) = X(K,N)/B(K,N)
endfor
do J = N-1,1,-1
forall K = 1,N
X(K,J) = (X(K,J)-A(K,J+1)*X(X,J+1))/B(K,J)
endfor
enddo

Figure 8.5 ADI in Intermediate Form

space without requiring explicit communication. However, additional compilation techniques are required
to generate efficient code. First, the Fortran 90D front end translates the program into intermediate form
as shown in Figure 8.5, converting all array constructs into FORALL loops. Since no true dependences are
carried on the FORALL loops, they may be directly replaced with Do loops.

The compilation process for the Fortran D back end merits closer examination. First, array bounds
are reduced to the local sections plus overlaps. The local processor number is determined using myproc(),
a library function; it is used to compute expressions for reducing loop bounds. Analysis determines that
both I and J are cross-processor loops—loops carrying true dependences that sequentialize the computation
across processors. To exploit pipeline parallelism, the Fortran D compiler interchanges such loops inward.
This fine-grain pipelining optimization is discussed in Chapter 5.

For this version of ADI integration, data dependences permit the Fortran D compiler to interchange
the J loop inwards. However, if loop fusion is not performed, the imperfectly nested K loops inhibit loop
interchange for loop I, forcing it to remain in place. During code generation, true dependences for nonlocal
references carried on the I and J loop cause calls to send and recv to be inserted to provide communication
and synchronization.

Figure 8.6 shows the resulting program. Many details in the example programs have been elided or simpli-
fied; however, they are precisely equivalent to code generated and executed on the iPSC/860. Unfortunately,
the computation in the I loop has been sequentialized, since each processor has to wait for its predecessor
to complete. Note that this is not due to communication placement; the values needed by the succeeding
processor are simply computed last.
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REAL X(512,0:17), A(512,17), B(512,0:16)

my$p = myproc() {x 0...31 %}

1b; = max((my$p*16)+1,2) - my$p*16

ub; = min((my$p+1)*16,511) - my$p*16

if (my$p .gt. 0) recv(X(1:N,0),B(1:N,0),my$p-1)
do I = 1b;, 16

do K = 1,N
X(K,I) = X(K,I) - X(K,I-1)*A(K,I)/B(K,I-1)
enddo
do K = 1,N
B(K,I) = B(K,I) - A(K,I)*A(K,I)/B(K,I-1)
enddo
enddo

if (my$p .1t. 31) send(X(1:N,16),B(1:N,16) ,my$p+1)
if (my$p .eq. 31) then

do K = 1,N
X(K,16) = X(K,16)/B(K,16)
enddo
endif

if (my$p .gt. 0) send(A(1:N,1),my$p-1)
if (my$p .1t. 31) recv(A(1:N,17) ,my$p+1)
do K = 1,N
if (my$p .1t. 31) recv(X(K,17),my$p+1)
do J = uby,1,-1
X(K,J) = (X(K,J)-A(K,J+1)*X(X,J+1))/B(K,J)
enddo
if (my$p .gt. 0) send(X(K,1),my$p-1)
enddo

Figure 8.6 ADI without Loop Fusion

If loop fusion is enabled, the Fortran D back end will fuse the two inner K loops. This is legal because
the dependence between the definition and use of B is carried on the I loop and is thus unaffected. Fusion
is also conservative because it does not introduce any true dependences carried by the K loop. Fusing the
K loops promotes reuse of A and B, but its main benefit is to enable the Fortran D back end to interchange
the I and K loops, exposing pipeline parallelism. The resulting program is displayed in Figure 8.7. For
simplicity, only the first loop is shown. The remaining loops are compiled in a similar manner as before.

To reduce communication overhead, we can also apply strip-mining in conjunction with loop interchange
to adjust the granularity of pipelining. This technique is called coarse-grain pipelining in Chapter 5. In the
ADI example, we strip-mine the K loop by four (an empirically derived value), then interchange the resulting
loop outside the I loop. Messages inserted outside the K loop allow each processor to reduce communication
costs at the expense of some parallelism, resulting in Figure 8.8. All these versions of ADI integration were
generated automatically by the Fortran D compiler.

8.5.2 Performance Results

To validate these methods, we executed these codes for double precision arrays on an Intel iPSC/860. The
programs were compiled under -O4 using Release 3.0 of if77, the iPSC/860 compiler. Timings were taken
using dclock() on a 32 node Intel iPSC/860 with 8 Meg of memory per node. Results for three problem sizes
are tabulated in Table 8.3. Timings are not provided where problem size exceeds available memory.

We also graphically display the timings in Figure 8.9. Execution times in seconds are plotted logarithmi-
cally along the Y-axis. The number of processors used is plotted logarithmically along the X-axis. Numbers
for perfect or ideal speedup (assuming no communication cost) are provided for comparison.

The original version of ADI (Figure 8.6) exploits pipeline parallelism in the J loop, but shows limited
speedup, since the I loop is sequentialized. Fusing the K loops to improve memory reuse provides very little
improvement in this case, yielding nearly identical results. Applying loop interchange after fusion to enable
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REAL X(512,0:17), A(512,17), B(512,0:16)
my$p = myproc()

do K = 1,

if (my$p .gt. 0) recv(X(X,0),B(K,0),my$p-1)

do I =

N

1b,16

{x 0...31 %}
1b; = max((my$p*16)+1,2) - my$p*16

X(X,I) = X(K,I) - X(K,I-1)*A(K,I)/B(K,I-1)

B(K,I
enddo

) = BK.I) - AGK,D)*ACK,1)/B(K,1-1)

if (my$p .1t. 31) send(X(XK,16),B(X,16),my$p+1)

enddo

Figure 8.7 ADI with Fine-grain Pipelining

REAL X(512,0:17), A(512,17), B(512,0:16)
my$p = myproc()

do KK = 1

N, 4

{x 0...31 %}
1b; = max((my$p*16)+1,2) - my$p*16

if (my$p .gt. 0) recv(X(KK:KK+3,0),B(KK:KK+3,0) ,my$p-1)

do I =

do K = KK,KK+3
X(K,I) - X(K,I-1)*A(K,I)/B(K,I-1)
B(K,I) - A(K,I)*A(K,I)/B(XK,I-1)

X(K

B(K

enddo
enddo

1b,16

1)
1)

if (my$p .1t. 31) send(X(KK:KK+3,16),B(KK:KK+3,16) ,my$p+1)

enddo

Figure 8.8 ADI with Coarse-grain Pipelining

Problem ADI w/o Fine-grain | Coarse-grain Data Perfect
Size P | Loop Fusion | Pipelining Pipelining Redistribution | Speedup
1 1.22 1.45 1.32 - 1.22
256 2 1.13 0.78 0.69 1.32 0.61
X 4 1.02 0.45 0.38 0.83 0.30
256 8 0.96 0.28 0.21 0.52 0.15
16 0.93 0.20 0.12 0.32 0.08
32 0.96 0.17 0.08 0.25 0.04
1 5.44 6.26 5.93 - 5.44
512 2 4.79 3.18 2.98 6.17 2.72
X 4 4.29 1.72 1.53 3.72 1.36
512 8 4.04 0.97 0.81 2.02 0.68
16 3.94 0.59 0.44 1.18 0.34
32 3.94 0.41 0.26 0.68 0.17
1 21.74 - - - 21.74
1K 4 17.13 6.44 5.98 - 5.44
X 8 16.09 3.42 3.07 8.95 2.72
1K 16 15.61 1.91 1.62 4.59 1.36
32 15.47 1.17 0.89 2.58 0.68

Table 8.3 Performance of ADI Integration (in seconds)
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fine-grain pipelining (Figure 8.7) parallelizes the I loop as well, yielding significant speedup. Strip-mining
to apply coarse-grain pipelining can improve efficiency an additional 10-50% (Figure 8.8). Pipelining comes
closest to perfect speedup for large problems on a few processors.

We also compared the efficiency of pipelining versus dynamic data decomposition. By changing the
distribution of data at run-time from columns to rows, all dependences in each sweep of ADI may be
internalized, enabling completely parallel execution. Data must be redistributed twice, once to achieve the
desired distribution, then a second time to return it to its original configuration. The cost of redistributing
is approximated by the performance of the TRANSPOSE routine shown in Table 8.2.

Our results show that on the iPSC/860, dynamic data decomposition for this formulation of ADI integra-
tion achieves speedup. However, the resulting program is significantly slower than pipelining, even for small
problems distributed over large numbers of processors, the expected best case for dynamic data decompo-
sition. Qur experiences show that some common algorithms, such as ADI integration, require significant
amounts of optimization to compete with hand-crafted code.

8.6 Discussion

This chapter presents an integrated approach to compiling both Fortran 77D and 90D based on a few
key observations. First, using FORALL preserves information in Fortran 90 array constructs. Dividing the
scalarization process into translation, loop fusion, and sectioning allows it to be easily integrated with the
partitioning performed by the Fortran D compiler. A portable run-time library can also reduce the complexity
and machine-dependence of the compiler. All optimizations except data prefetching have been implemented
in the current Fortran D compiler prototype.
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Chapter 9

Preliminary Experiences

We use case studies to illustrate strengths and weaknesses of the prototype Fortran D compiler when
compiling linear algebra codes, large subroutines, and whole programs. We compare the performance of
compiler-generated code against hand-coded kernels and programs on the Intel iPSC/860. Acceptable per-
formance is obtained for parallel stencil computations, but improvements are needed for linear algebra and
pipelined computations. The Fortran D compiler significantly outperforms the CM Fortran compiler on the
Thinking Machines CM-5. These experiences show that the Fortran D compiler is successful for parallel
stencil computations. However, it requires symbolic analysis, greater flexibility, and improved optimization
of communication-intensive codes such as linear algebra & pipelined computations.

9.1 Introduction

In this chapter, we present some preliminary experiences with the prototype Fortran D compiler. We begin
by describing its implementation status, then point out its strengths and weaknesses using case studies of
four example programs and subroutines:

DGEFA — Gaussian elimination subroutine from LINPACK

SHALLOW — weather prediction benchmark using finite-difference
DisPER — subroutine from UTCOMP, an oil reservoir simulator
ERLEBACHER — tridiagonal solver benchmark using ADI integration

To evaluate the efficiency of the Fortran D compiler, we compare the performance of its output for these
programs and some kernels against hand-coded versions on the Intel iPSC/860. We also compare the
Fortran D and CM Fortran compilers on the Thinking Machines CM-5 by translating representative kernels
into CM Fortran. Results are discussed and used to point out directions for future research.

9.2 Fortran D Compiler Prototype

The prototype Fortran D compiler is implemented as a source-to-source Fortran translator in the context of
the ParaScope parallel programming environment [35, 59]. It utilizes existing tools for performing dependence
analysis, program transformations, and interprocedural analysis [62, 83, 117]. The design of the prototype
compiler has been described in the preceding chapters. The current implementation supports:

inter-dimensional alignments

1D BLoCK and cycLIc distributions

loop interchange, fusion, distribution, strip-mining

message vectorization, coalescing, aggregation

vector message pipelining

broadcasts, collective communications, point-to-point messages
SUM, PRODUCT, MIN, MAX, MINLOC, MAXLOC reductions
fine-grain and coarse-grain pipelining (preset granularity)
relax “owner computes rule” for reductions, private variables
nonlocal storage in overlaps, buffers

loop bounds reduction, guard introduction

global « local index conversion
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e interprocedural reaching decompositions, overlap offsets
e common blocks

e 1/0 (performed by processor 0)

e generation of calls to the Intel NX/2 message-passing library

For simplicity, the prototype compiler requires that all array sizes, loop bounds, and number of processors
in the target machine to be compile-time constants. All subscripts must also be of the form ¢ or ¢ 4 ¢, where
¢ 1s a compile-time constant and ¢ is a loop index variable. These restrictions are not due to limitations of
our compilation techniques, but reflect the immaturity of the prototype compiler.

9.3 Fortran D Compilation Case Studies

Our previous examples with the Fortran D compiler have mostly dealt with stencil computation kernels
from iterative partial difference equation (PDE) solvers. Here we illustrate the compilation process for linear
algebra kernels, large subroutines, and whole programs. For these more complex codes, we find that the
compiler must be able to:

e Partition computation in complex non-uniform loop bodies across processors.
o Provide robust translation of loop index variables and loop bounds between global and local indices.
e Relax the owner computes rule, particularly for reductions performed by replicated variables.

Section 4.2.4 described how statement groups formed during partitioning analysis may be used to guide
partitioning and loop bounds & index generation for non-uniform loops. Section 5.4.2 has discussed relaxing
the owner computes rule for reductions and private variables. We show during compilation of DGEFA and
ERLEBACHER how this technique may be extended for location reductions, multi-reductions, and replicated
variables.

9.3.1 DGEFA

DGEFA is a key subroutine in LiNPACK written by Jack Dongarra et al. at Argonne National Laboratory,
and is also the principal computation kernel in the LINPACKD benchmark program. DGEFA performs LU
decomposition through Gaussian elimination with partial pivoting. Its memory access patterns are quite
different from stencil computations, and is representative of linear algebra computations. As many linear
algebra algorithms involve factoring matrices, cycLic and BLOCK_CcYCLIC data distributions are desirable
for maintaining good load balance. These distributions and the prevalence of triangular loop nests pose
additional challenges to the Fortran D compiler.

Figure 9.1 shows the original program as well as the output produced by the prototype Fortran D compiler.
For good load balance we choose a column-cyclic distribution, scattering array columns round-robin across
processors. The Fortran D compiler then uses this data decomposition to derive the computation partition.
The most complex part of compilation is generating the proper loop bounds and indices, using methods
previously described in Chapter 4.

MIN/MAX and MINLOC/MAX Reductions

During compilation, the Fortran D compiler begins by putting statements in the body of the k& loop into
statement groups. The first group is the pivot selection step, S1...S4. The compiler recognizes it as a
MAX/MAXLOC reduction by detecting that the lhs of an assignment al at statement Ss is being compared
against its rhs in an enclosing IF statement. The level of the reduction is set to the & loop, since it is the
deepest loop enclosing a use of al. At this loop level, the reduction only examines a single column of a. Since
array a has been distributed by columns, the reduction may be computed locally by the processor owning
the column. The Fortran D compiler relaxes the owner computes rule for the reduction. It inserts a guard
to ensure the reduction is performed by the processor owning column &, then broadcasts the result.



9.3. FORTRAN D COMPILATION CASE STUDIES 135

{* Original Fortran D Program =} {* Compiler Output for 4 Processors *}
SUBROUTINE DGEFA(n,a,ipvt) SUBROUTINE DGEFA(n,a,ipvt)
INTEGER n,ipvt(n),j,k,1 INTEGER n,ipvt(n),j,k,1
DOUBLE PRECISION a(n,n),al,t DOUBLE PRECISION a(n,n/4),al,t,dp$bufl(n)
DISTRIBUTE a(:,CYCLIC) do k =1, n-1
do k = 1, n-1 k3= ((k-1) /4 +1
{* Find max element in a(k:n,k) *} {* Find max element in a(k:n kS) }
S 1=k ’ if (my$p .EQ. MOD(k - 1, 4)) then
S> al = dabs(a(k, k)) 1=k
doi=k+1,n al = dabs(a(k, k$))
if (dabs(a(i, k)) .GT. al) then doi=k+1,n
Sa al = dabs(a(i, k)) if (dabs(a(i, k$)) .GT. al) then
S4 1=1 al = dabs(a(i, k$))
endif 1 =1
enddo endif
ipvt(k) =1 enddo
if (al .NE. 0) then broadcast 1, al
if (1 .NE. k) then else
t = a(l,k) recv 1, al
a(l,k) = a(k,k) endif
a(k,k) = t ipvt(k) =1
endif if (al .NE. 0) then
{* Compute multipliers in a(k+1:nk) *} if (my$p .EQ. MOD(k - 1, 4)) then
t = -1.0d0/a(k,k) if (1 .NE. k$) then
doi=k+1,n t = a(l,k$)
a(i, k) = a(i, k) * t a(l,k$) = a(k,k$)
enddo a(k,k$) = t
{* Reduce remaining submatrix *} endif
do j = k+1, n {* Compute multipliers in a(k+1:n,k$) *}
t = a(l,j) t = -1.0d0/a(k,k$)
if (1 .NE. k) then do i = k+1, n
a(l,j) = a(k,j) a(i, k$) = a(i, k$) * t
a(k,j) = t enddo
endif endif
doi=k+1,n {* Reduce remaining submatrix *}
Sk a(i, j) = a(i, j) + t*a(i, k) if (my$p .EQ. MOD(k - 1, 4)) then
enddo buffer a(k+1:n, k$) into dp$bufi
enddo broadcast dp$bufil(1:n-k)
endif else
enddo recv dp$bufl(1l:n-k)
ipvt(n) = n endif
end 1b$1 = (k / 4) + 1

if (my$p .LT. MOD(k, 4)) 1b$1 = 1b$1+1
do j = 1b%$1, n

t = a(l,j)

if (1 .NE. k) then
a(l,j) = a(k,j)
a(k,j) =t

endif

do i = k+1, n
a(i, j) = a(i, j) + t*dp$buf1(i-k)
enddo
enddo
endif
enddo
ipvt(n) = n
end

Figure 9.1 DGEFA: Gaussian Elimination with Partial Pivoting
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For MIN/MAX and MINLOC/MAXLOC reductions, the Fortran D compiler must also search for initialization
statements for the (hs of assignment statements in the & loop, assigning them the same iteration set as the
body of the reduction. In DGEFA this identifies statements S; and S5 as initialization statements for the
MAX/MAXLOC reduction at S3. By putting them in the same statement group as the reduction, the Fortran D
compiler avoids inserting an additional broadcast to update the value of al at Ss.

Buffer Indexing

Once the reduction is processed, the Fortran D compiler inserts a guard to ensure the column of multipliers
is calculated only by the processor owning the column. Since all processors participate in the final submatrix
elimination, the processor owning the multiplier column must broadcast it to the other processors. The
Fortran D compiler uses temporary buffers to store nonlocal data communicated by broadcasts and point-to-
point messages. Because this data is packed into 1D buffers, the compiler has the responsibility of generating
the proper subscripts for indexing into the buffers. The task is made more difficult when multiple references
in the original program reference the nonlocal data. The Fortran D compiler examines the subscripts of the
original reference and linearizes those traversing the nonlocal portions. For instance, the reference to a(i, k)
in S5 of DGEFA is broadcast and received in buffer dp$bufl. Later it is accessed directly out of the buffer,
using the generated subscript dp$bufl(i — k).

9.3.2 SHALLOW

SHALLOW is a 200 line benchmark weather prediction program written by Paul Swarztrauber, National Center
for Atmospheric Research (NCAR). It is a stencil computation that applies finite-difference methods to solve
shallow-water equations. SHALLOW is representative of a large class of existing supercomputer applications.
The computation is highly data-parallel and well-suited for MIMD distributed-memory machines.

Figure 9.2 outlines the version of SHALLOW we used to test the Fortran D compiler; it was modified to
eliminate I/O. Data can be partitioned quite simply by aligning all 2D arrays identically, then distributing
the result column-wise. We chose to block distribute the second dimension, assigning a block of columns
to each processor. The prototype Fortran D compiler was able to generate message-passing code fairly
simply. The principal issues encountered during compilation were boundary conditions, loop distribution,
and inter-loop communication optimizations.

Boundary Conditions

SHALLOW contains many code fragments solving boundary conditions for periodic continuations. As a result,
the Fortran D compiler needed to insert explicit guards for many statement groups. These boundary condi-
tions also required the creation of several individual point-to-point messages between boundary processors
to transfer data required.

Loop Distribution

Because of the programming style used in writing SHALLOW, almost all loop nests were non-uniform, z.e.,
contained statements with differing iteration sets. Fortunately, none of the loops carried recurrences, so
the Fortran D compiler applies loop distribution to separate statements, creating uniform loop nests. Loop
bounds reduction is then sufficient to partition the computation during code generation, excepting boundary
conditions.

Inter-loop Message Coalescing and Aggregation

While loop distribution enables inexpensive partitioning of the program computation, it has the disadvantage
of creating a large number of loop nests. In many cases these loop nests, along with loops representing
boundary conditions, required communication with neighboring processors. The current Fortran D compiler
prototype applies message coalescing and aggregation only within a single loop nest. Its output for SHALLOW
thus missed many opportunities to coalesce or aggregate messages because the nonlocal references were
located in loop nests not enclosed by a common loop. By applying message coalescing and aggregation
manually across loop nests, we were able to eliminate about half of all calls to communication routines.
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{* Original Fortran D Program *}

PROGRAM SHALLOW
REAL u(W,N),v(N,N),p(N,N) ,unew(N,N) ,pnew(N,N) ,vnew(N,N) ,psi(N,N)
REAL pold(N,N),uold(N,N),vold(N,N),cu(N,N),cv(N,N),z(N,N) h(N,N)
DECOMPOSITION 4(N,N)
ALIGN u,v,p,unew,pnew,vnew,psi,pold,uold,vold,cu,cv,z,h WITH d
DISTRIBUTE d(:,BLOCK)
{* initial values of the stream function & velocities *}

do j = 1,N-1
do i=1,N-1
u(i+1l,j) = -(psi(i+1,j+1)-psi(i+1,j))*dy
v(i,j+1) = (psi(i+1,j+1)-psi(i,j+1))*dx
enddo
enddo

do k = 1, Time
{* periodic continuation *}

{* compute capital u, capital v, z, and h *}

do j = 1,N-1
do i = 1,N-1
cu(i+1,j) = .5%(p(i+1,j)+p(i,j))*u(i+1,j)
cv(i,j+1) = 5% (p(i,j+1)+p(i,j))*v(di,j+1)

z(i+1,j+1) = (fsdx*(v(i+1l,j+1)-v(i,j+1))-fsdy*(u(i+l,j+1)
-u(i+1,3))) / (p(i,jr+p(i+l,j) +p(i+1, j+1)+p(i,j+1))
h(i,j) = p(i,j)+.26%(u(i+1, j*u(i+l, j)+ud, j*uld, jH+v(i, j+1)
*v (1, j+1)+v(i,j)*v(i,]))
enddo
enddo
{* periodic continuation *}

{* compute new values u, v, and p *}
do j = 1,N-1
do i = 1,N-1
unew(i+1,j) = uold(i+1,j)+tdts8*(z(i+1,j+1)+z(i+1,j))*(cv(i+l,j+1)
+cv(di, j+1)+cv (i, j)+cv(i+l, j) ) -tdtsdx* (h(i+1,j)-h(i,j))
vnew(i,j+1) = vold(i,j+1)-tdts8*(z(i+1l,j+1) +z(i,j+1))*(cu(i+l,j+1)
+cu(d, j+1)+cu(i, j)+cu(i+1, j))-tdtsdy*(h(i,j+1)-h(i,j))
pnew(i,j) = pold(i,j)-tdtsdx*(cu(i+l,j)-culi,j))
-tdtsdy*(cv(i,j+1)-cv(i,j))
enddo
enddo
enddo
end

Figure 9.2 SHALLOW: Weather Prediction Benchmark

9.3.3 DISPER

DisPER is a 1000 line subroutine for computing dispersion terms. It is taken from UTcomp, a 33,000 line
oil reservoir simulator developed at the University of Texas at Austin. Like SHALLOW, DISPER is a stencil
computation that is highly data-parallel and well-suited for the Fortran D compiler. Unfortunately, UrTcomp
was originally written for a Cray vector machine. Arrays were linearized to ensure long vector lengths, then
addressed through complex subscript expressions and indirection arrays. This style of programming, while
efficient for vector machines, does not lend itself to massively-parallel machines.

To explore whether UTCOMP can be written in a machine-independent programmingstyle using Fortran D
or High Performance Fortran (HPF), researchers at Rice rewrote DISPER to have regular accesses and simple
subscripts on multidimensional arrays. Figure 9.3 shows a fragment of the rewritten form of DISPER. Its
main arrays have differing sizes and dimensionality, but have the same size in the first dimension. Arrays
were aligned along the first dimension and distributed block-wise. The resulting code was was for the most
part compiled successfully by the prototype Fortran D compiler.

Execution Conditions

The major difficulty encountered by the Fortran D compiler was the existence of execution conditions caused
by explicit guards in the input code. There are two types of execution conditions. Data-dependent execution
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{* Original Fortran D Program *}
SUBROUTINE DISPER
LOGICAL 1sat(256)
DOUBLE PRECISION ddx(256,8,8), ddy(256,8,8), ddz(256,8,8)
DOUBLE PRECISION pmfr(256,8,8,4,5), gradx(256), grady(256), gradz(256)
DECOMPOSITION d(256)
ALIGN ddx(i,j,k),ddy(i,j,k),ddz(i,j,k) WITH d(i)
ALIGN lsat(i,j,k,1),pnfr(i,j,k,1,m) WITH d(i)
ALIGN gradz,grady,gradz WITH d
DISTRIBUTE d(BLOCK)
{* compute dispersion terms *}

do j =2,4
do i3 = 1,8
do i2 = 1,8
do il = 1,256
S1 if ((i1 .NE. 1) .AND. (i1 .NE. 256)) then
So if (lsat(il-1,i2,i3,j) .AND. lsat(il+1,i2,i3,j)) then
Sa grady(il)=(pmfr(il+1,i2,i3,j,k)-pmfr(i1-1,i2,i3,j,k)) /
(.5 * (ddy(i1+1,i2,i3) + ddy(i1-1,i2,i3)) + ddy(i1,i2,i3))
endif
endif
enddo
enddo
enddo
enddo
end

Figure 9.3 DispEr: Oil Reservoir Simulation

conditions, such as the guard at Sy in Figure 9.3, were not a problem. Message vectorization moves com-
munication caused by such guarded statements out of the enclosing loops. Overcommunication may result
if the statement is not executed, but the resulting code is still much more efficient than sending individual
messages after evaluating each guard.

Execution conditions that reshape the iteration space, on the other hand, pose a significant problem. For
instance, the guard at S in Figure 9.3 restricts the execution of statement Ss on the first and last iteration
of loop #1. It has in effect changed the iteration set for the assignment S3, causing it to be executed on a
subset of the iterations. These guards are frequently used by programmers to isolate boundary conditions
in a modular manner, avoiding the need to peel off loop iterations.

Unlike data-dependent execution conditions, these execution conditions always hold and can be detected
at compile-time. If they are not considered, the compiler will generate communication for nonlocal accesses
that never occur. Future versions of the Fortran D compiler will need to examine guard expressions. If its
effects on the iteration set can be determined at compile-time, the iteration set of the guarded statements
must be modified appropriately. Because this functionality is not present in the current Fortran D compiler,
unnecessary guards and communication in the compiler output were corrected by hand.

9.3.4 ERLEBACHER

ERLEBACHER is a 800 line benchmark program written by Thomas Eidson at the Institute for Computer
Applications in Science and Engineering (ICASE). It performs 3D tridiagonal solves using Alternating-
Direction-Implicit (ADI) integration. Like Jacobi iteration and Successive-Over-Relaxation (SOR), ADI
integration is a technique frequently used to solve PDEs. However, it performs vectorized tridiagonal solves
in each dimension, resulting in computation wavefronts across all three dimensions of the data array.

Each sweep in ERLEBACHER consists of a set-up and computation phase, followed by forward and back-
ward substitutions. Figures 9.4 and 9.5 illustrate the core computation performed by ERLEBACHER during a
sweep of the Z dimension. We chose to distribute the Z dimension of all 3D arrays blockwise; all 1D and 2D
arrays are replicated. Here we relate some issues that arose during compilation of Erlebacher to a machine
with four processors, Py... Ps.
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{* Original Fortran D Program =} {* Compiler Output for 4 Processors *}
SUBROUTINE DZ3D6P SUBROUTINE DZ3D6P
REAL uud(n,n,n),uu(n,n,n) REAL uud(n,n,n),uu(n,n,-1: (n/4)+2)
DECOMPOSITION dd(n,n,n) n$ = n/4
ALIGN uud, uu with dd if (my$p .EQ. 0)
DISTRIBUTE dd(:,:,BLOCK) C; send uu(l:n,1:n,1:2) to P3
do j =1,n if (my$p .EQ. 3)
do i=1,n Cs send uu(l:n,1:n,n$-1:n%) to PO
S1 uwud(i,j,1) = if (my$p .LT. 3)
F(au(i,j,3),uul(i,j,n-1)) C3; send uu(l:n,1:n,n$-1:n$) to my$p+1
Sz wud(i,j,2) = if (my$p .GT. 0)
F(auuli,j,4),uu(i,j,n)) Cy send uu(l:n,1:n,1:2) to my$p-1
Sa uud(i,j,n-1) = if (my$p .EQ. 0) then
F(auli,j,1),uuli,j,n-3)) recv uu(l:n,1:n,n$+1:n$+2) from P3
S: uud(i,j,n) = do j =1,n
F(uu(i,j,2),uu(i,j,n-2)) doi=1,n
enddo Sy uwud(i,j,1) = F(C.)
enddo Sa uwud(i,j,2) = F(.)
do k = 3,n-2 enddo
do j =1,n enddo
doi=1,n endif
Sy uwud(i,j,k) = if (my$p .EQ. 3) then
F(auli,j,k+2) ,uuli,j,k-2)) recv uu(1:n,1:n,-1:0) from P1
enddo do j =1,n
enddo do i=1,n
enddo Sa uud(i,j,n$-1) = F(..)
end Sy uud(i,j,n$) = F(..)
enddo
enddo
endif

if (my$p .GT. 0)
recv uu(l:n,1:n,n$+1:n$+2) from my$p+1
if (my$p .LT. 3)
recv uu(l:n,1:n,-1:0) from my$p-1
do k = 1b$,ub$
do j =1,n
do i=1,n
Ss uwud(i,j,k) = F(..)
enddo
enddo
enddo
end

Figure 9.4 ERLEBACHER: Computation Phase in Z Dimension

Overlapping Communication with Computation

In ERLEBACHER, we discovered unexpected benefits for vector message pipelining, an optimization discussed
in Chapter 5 that separates matching send and recv statements to create opportunities for overlapping
communication with computation. Consider compilation of the setup phase in the Z dimension, shown in
Figure 9.4. The Fortran D compiler first distributes the loops enclosing statements S; ...S4 because they
belong to two distinct statement groups. Message vectorization then extracts all communication outside of
each loop nest. The Fortran D compiler then applies vector message pipelining.

We found vector message pipelining to be particularly effective here because it moves the sends Cs and
C4 before the recus in the first two loop nests. If C's and C4 are left in their original positions before Ss, the
computation will be idle until two message transfers complete, because the boundary processors Py and Ps
will need to first exchange messages before communicating to the interior processors. The prototype thus
saved the cost of waiting for an entire message. More advanced analysis could determine that the statements
S1...54 are simply incarnations of statement S5 created to handle periodic boundary conditions. We can
perform the reverse of index set splitting and merge the loop bodies to simplify the resulting code.
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{* Original Fortran D Program x*}
SUBROUTINE TRIDVPK

REAL a(n),b(n),c(n),d(n),e(n)
REAL tot(n,n),f(n,n,n)
DISTRIBUTE £(:,:,BLOCK)

{* perform forward substitution *}

{* perform backward substitution *}
do k = 1,n
do j =1,n
do i=1,n
S1 tot(i,j) =
tot(i,j)+d(k)*£(i,],k)

enddo
enddo
enddo
do j =1,n
do i=1,n
Sy f(i,j,n) =

1,
j.k) = £(i,j,k)-c(k)*
£(1i,j,k+t1)-e(X)*£(i,j,n)

{* Compiler Output for 4 Processors *}
SUBROUTINE TRIDVPK

REAL a(n),b(n),c(n),d(n),e(n)

REAL tot(n,n),f(n,n,0:(n/4)+1),r$buf1(n)
{* perform forward substitution *}

{* perform backward substitution *}
n$ = n/4
off$0 = my$p * n$
do k = 1,n$
k$ = k + off$0
do j =1,n
do i=1,n
tot(i,j) = tot(i,j)+d(k$)*£(i,j,k)
enddo
enddo
enddo
global-sum tot(1l:n,j:n)
if (my$p .EQ. 3) then

do j =1,n

do i=1,n
£(i,j,n$-1) = (£(i,j,n$)-tot(i,j))*b(n)
enddo

enddo

do j =1,n

do i =1,n
£(i,j,n8-1) = £(i,j,n8-1)-e(a-1)*£(i,j,n$)
enddo

enddo

buffer £(1:128, 1:128, n$) into rbuf$1l(n*n)
broadcast rbuf$1(1:n*n)

else
recv rbuf$1(1:n*n)

endif

if (my$p .LT. 3)
recv £(i$:i%up, j, n$+1) from my$p+1
do i = i$,i$+8
do k = ub$,1,-1
k$ = k + off$0
£(i,j,k) = £(i,],k)-c(k$)*£(i,j,k+1)
- e(k$)*r$bufl(j*n+i-n)
enddo
enddo
if (my$p .GT. 0)
send £(i$:i%up, j, 1) to my$p-1
enddo
enddo
end

Figure 9.5 ERLEBACHER: Solution Phase in Z Dimension

Multi-Reductions

Another problem faced by the Fortran D compiler was handling reductions on replicated variables. A
multidimensional reduction performs a reduction on multiple dimensions of an array. Finding the maximum
value in a 3D array would be a 3D MaX reduction over an n® data set. We examine a special case of
multidimensional reduction that we call a multi-reduction, where the program performs multiple reductions
simultaneously. For instance, finding the maximum value of each column in a 3D array would be a 2D MAX
multi-reduction composed of n? 1D MAX reductions. Unlike normal multidimensional reductions, multi-
reductions are directional in that they only transfer data across certain dimensions. This property allows
the compiler to determine when communication is necessary. It also allows the problem to be partitioned in
other dimensions so that no global reductions are required at the end.

The Fortran D compiler handles multi-reductions as follows. If the direction of the multi-reduction
crosses a partitioned array dimension, then compilation proceeds as normal. The compiler produces code so
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{* Original Fortran D Program *} {* Compiler Output for 4 Processors *}
SUBROUTINE TRIDVPJ SUBROUTINE TRIDVPK
REAL a(n),b(n),c(n),d(n),e(n) REAL a(n),b(n),c(n),d(n),e(n)
REAL tot(n,n),f(n,n,n) REAL tot(n,n),f(n,n,0: (n/4)+1)
DISTRIBUTE f(:,:,BLOCK) n$ = n/4
do k = 1,n off$0 = my$p * n$
do j =1,n do k = 1,n$
doi=1,n k$ = k + of£3$0
S1 tot(i,k) = do j =1,n
tot(i,k) + d(j)*£(i,j.k) doi=1,n
enddo tot(i,k$) = tot(i,k$) + d(j)*£(i,j,k)
enddo enddo
enddo enddo
do k = 1,n enddo
doi=1,n global-concat tot(1l:n,j:n)
Sa f(i,n,k) = do k = 1,n$
(f(i,n,k) - tot(i,k))*b(n) k$ = k + off$0
enddo doi=1,n
enddo f(i,n,k) = (£(i,n,k) - tot(i,k$))*b(n)
end enddo
enddo
end

Figure 9.6 ERLEBACHER: Solution Phase in Y Dimension

that each processor computes part of every reduction in the multi-reduction, then inserts a global collective
communication routine to accumulate the results. ERLEBACHER performs 2D suM multi-reductions along
each dimension of a 3D array for each of its three computation wavefronts. Consider statement S; in
Figure 9.5, which performs a SUM multi-reduction in the Z dimension. Because this dimension is distributed,
the compiler partitions the computation based on f, the distributed rhs, and inserts a call to global-sum to
accumulate the results.

If the multi-reduction does not cross any distributed dimensions, no information is transferred across
distributed dimensions. A processor can thus evaluate some of the reductions comprising the multi-reduction
using local data. This case occurs in the solution step in the X and Y dimensions in ERLEBACHER. Simple
loop bounds reduction is sufficient to partition the reduction; no communication is needed. If all results are
needed, a global concatenation routine can be called to collect the results from each processor.

Array Kills

For instance, a multi-reduction is performed in the Y dimension solution step of ERLEBACHER, shown in
Figure 9.6. Because the Y dimension of f is local, relaxing the owner computes rule allows each processor
to compute its reductions locally. Unfortunately the multi-reduction is being computed for tot, a replicated
array. The compiler thus inserts a global concatenation routine to collect values of tot from other processors.
This concatenation is the only communication inserted in the computation sweeps in the X and Y dimensions,
and turns out to be unnecessary. Array kill analysis would show that the values of tot only reach uses in the
next loop nest Ss, where it is used only on iterations executed locally. Values for tot not computed locally
are not ever used. This information can be employed to eliminate the unnecessary global concatenation.

Exploiting Pipeline Parallelism

Finally, because the computational wavefront traverses across processors in the Z dimension, the Fortran D
compiler must efficiently exploit pipeline parallelism. In Figure 9.5, the compiler detects that the k& loop
enclosing statement Sy is a cross-processor loop because it carries a true dependence whose endpoints are on
different processors. To exploit pipeline parallelism, the compiler interchanges k innermost, then strip-mines
the enclosing ¢ loop to reduce the communication overhead. Note that the nonlocal reference to f(i, j, n) has
also been converted to a vectorized broadcast. The compiler replaced the reference with r$bufl(j*xn+i—n)
to properly access data in the buffer array.
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9.4 Empirical Evaluation of the Fortran D Compiler

To evaluate the status of the current Fortran D compiler prototype, the output of the Fortran D compiler is
compared with hand-optimized programs on the Intel iPSC/860 and the output of the CM Fortran compiler
on the TMC CM-5. Our goal is to validate our compilation approach and identify directions for future
research. In many cases, problems sizes were too large to be executed sequentially on one processor. In
these cases sequential execution times are estimates, computed by projecting execution times for smaller
computations to the larger problem sizes. Empirical results are presented in both tabular and graphical
form.

9.4.1 Comparison with Hand-Coded Kernels

We begin by comparing the output of the Fortran D compiler against hand-coded stencil kernels on the Intel
iPSC/860 hypercube. Our iPSC timings were obtained on the 32 node Intel iPSC/860 at Rice University. It
has 8 Meg of memory per node and is running under Release 3.3.1 of the Intel software. Each program was
compiled under -O4 using Release 3.0 of if77, the iPSC/860 compiler. Timings were made using dclock(), a
microsecond timer.

Time Speedup Hand-Coded

Program Problem Size | Proc | FortD | Hand | FortD | Hand Fortran D
64K 16 0.002 0.002 10.4 10.4 1.0
Livermore 3 32 0.002 0.002 10.4 10.4 1.0
Inner 256 K 16 0.006 0.006 13.3 13.3 1.0
Product 32 0.004 0.004 20.0 20.0 1.0
1024 K 16 0.023 0.023 14.9 14.9 1.0
32 0.012 0.012 28.5 28.5 1.0
512 x 512 16 0.027 0.019 12.3 17.5 0.70
32 0.018 0.011 18.5 30.3 0.61
Jacobi 1K x 1K 16 0.101 0.089 15.4 17.4 0.88
Iteration 32 0.058 0.047 26.7 33.0 0.81
2K x 2K 16 0.375 0.350 16.4 17.6 0.93
32 0.198 0.177 31.1 34.8 0.89
128 x 128 16 0.027 0.023 8.53 10.0 0.85
Livermore 18 32 0.021 0.017 11.0 13.6 0.81
Explicat 256 x 256 16 0.081 0.070 10.7 12.4 0.86
Hydrodynamics 32 0.055 | 0.044 15.8 19.7 0.80
512 x 512 16 0.309 0.239 10.9 14.1 0.77
32 0.182 0.137 18.6 24.6 0.75
512 X 512 16 0.043 0.048 8.56 7.67 1.12
Successive 32 0.041 0.039 8.98 9.44 0.95
Over 1K x 1K 16 0.106 0.143 16.0 11.9 1.35
Relaxation 32 0.086 0.096 19.7 17.7 1.12
2K x 2K 16 0.305 0.493 22.3 13.8 1.62
32 0.215 0.288 31.7 23.7 1.34
256 x 256 16 0.031 0.049 12.4 7.8 1.58
Livermore 23 32 0.030 0.039 12.8 9.8 1.30
Implicit 512 x 512 16 0.085 0.148 18.1 10.4 1.74
Hydrodynamics 32 0.069 | 0.099 22.3 15.5 1.43
1K x 1K 16 0.248 0.507 24.6 12.1 2.04
32 0.168 0.298 36.4 20.5 1.77

Table 9.1 Intel iPSC/860 Execution Times for Stencil Kernels (in seconds)
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Figure 9.7 Speedups for Stencil Kernels (Intel iPSC/860)
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Figure 9.8 Comparisons for Stencil Kernels (Intel iPSC/860)
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We first measure the output of the Fortran D compiler against the hand-optimized stencil kernels studied
in Chapter 5. We selected a sum reduction (Livermore 3), two parallel kernels (Livermore 18, Jacobi),
and two pipelined kernels (Livermore 23, SOR). As before, all arrays are double precision and distributed
block-wise in one dimension.

Execution times and speedups for different problem and machine sizes are shown in Table 9.1. Figure 9.7
displays speedups graphically, with speedups plotted along the Y-axis and number of processors along the
X-axis. Solid and dashed lines correspond to speedups for hand-coded and Fortran D programs, respectively.
Each line represents the speedup for a given problem size. Figure 9.8 compares the ratio of execution times
between the hand-coded and Fortran D versions of each kernel. Each line represents the ratio for a given
problem size.

We found that the code generated for the inner product in Livermore 3 were identical to the hand-coded
versions, since the compiler recognized the sum reduction and used the appropriate collective communication
routine. For parallel kernels, the output of the Fortran D compiler was within 50% of the best hand-optimized
codes. The deficit was mainly caused by the Fortran D compiler not exploiting unbuffered messages in order
to eliminate buffering and overlap communication overhead with local computation. The compiler-generated
code actually outperformed the hand-coded pipelined codes, probably due to complications with the scalar
1860 node compiler in the parameterized hand-coded version.

9.4.2 Comparison with Hand-Coded Programs

We now turn our attention to evaluating the performance of the Fortran D compiler for large subroutines
and application codes. In the following sections, we display speedups and comparisons for SHALLOW and
the three other codes studied, both in tables and graphically.

Figure 9.9 displays speedups for each program graphically, with speedups plotted along the Y-axis and
number of processors along the X-axis. Solid and dashed lines correspond to speedups for hand-coded and
Fortran D programs, respectively. Each line represents the speedup for a given problem size. Figure 9.10
compares the ratio of execution times between the hand-coded and Fortran D versions of each program.
Each line represents the ratio for a given problem size.

Results for SHALLOW

Table 9.2 contains timings for performing one time step of SHALLOW. It presents speedups, calculated as
t?refe, as well as the ratio of execution times between hand-coded and Fortran D versions of the program.
We found the program to be ideal for distribute-memory machines. Computation is entirely data-parallel,
with nearest-neighbor communication taking place between phases of each time step. The compiler out-
put achieved excellent speedups (21-29), even for smaller problems. To evaluate potential improvements,
we performed aggressive inter-loop message coalescing and aggregation by hand, halving the total num-
ber of messages. The hand-coded versions of SHALLOW exhibited only slight improvements (1-10%) over
the compiler-generated code, except when small problems were parallelized on many processors (12-26%).
Communication costs apparently only contributed to a small percentage of total execution time, reducing

the impact and profitability of advanced communication optimizations.

Results for DISPER

Like SHALLOW, DISPER is a completely data-parallel computation that requires only nearest-neighbor com-
munications. Timings for DISPER in Table 9.3 show near-linear speedups for the output of the Fortran D
compiler, once errors introduced by execution conditions were corrected. We also created a hand-coded
version of DISPER by applying aggressive inter-loop message message aggregation. The resulting message
was large enough that it became profitable to also employ unbuffered isend and irecv messages. However,
since communication overhead is small, the hand-coded version only yielded minor improvements (1-3%) for
the single problem size tested.
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Fortran D Hand-Coded | Hand-Coded
Problem Size | Proc | time ool time L Fortran D
1 sequential time = 0.728
2 0.354 2.06 0.348 2.09 0.98
256 x 256 4 0.195 3.73 0.188 3.87 0.96
8 0.097 7.50 0.091 8.00 0.94
16 0.056 13.0 0.049 | 14.86 0.88
32 0.035 20.8 0.026 | 28.00 0.74
1 estimated sequential time = 2.9
1.529 1.90 1.521 1.91 0.99
512 x 512 4 0.707 4.10 0.698 4.15 0.99
8 0.377 7.69 0.368 7.88 0.98
16 0.201 | 14.43 | 0.191 | 15.18 0.95
32 0.107 | 27.10 | 0.095 | 30.53 0.89
1 estimated sequential time = 11.6
1K x 1K 8 1.620 7.16 1.610 7.20 0.99
16 0.755 | 15.36 | 0.739 | 15.70 0.98
32 0.397 | 29.22 | 0.380 | 30.53 0.95

Table 9.2 Intel iPSC/860 Execution Times for SHALLOW (in seconds)

Fortran D Hand-Coded Hand-Coded
Problem Size Proc | time =L time oL Fortran D
1 estimated sequential time = 39.0
4 9.971 3.91 10.222 3.81 1.03
256 x 8§ X 8§ x4 8 5.040 7.74 4.979 7.83 0.99
16 2.440 | 15.98 2.414 16.16 0.99
32 1.284 | 30.37 1.240 31.45 0.97

Table 9.3 Intel iPSC/860 Execution Times for DISPER (in seconds)
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Fortran D Hand-Coded Hand-Coded
Problem Size | Proc time oL time L Fortran D
1 sequential time = 2.151
2 1.051 2.05 1.108 1.94 1.05
256 x 256 4 0.744 2.89 0.683 3.15 0.92
8 0.670 3.21 0.551 3.90 0.82
16 0.695 3.09 0.644 3.34 0.93
32 0.782 2.75 0.758 2.84 0.97
1 sequential time = 17.53
2 7.988 2.19 7.879 2.22 0.99
512 x 512 4 4.786 3.66 4.322 4.06 0.90
8 3.373 5.20 2.601 6.74 0.77
16 2.908 6.03 2.259 7.76 0.78
32 2.916 6.01 2.619 6.69 0.90
1 estimated sequential time = 140
66.74 2.10 68.91 2.03 1.03
1K x 1K 4 36.29 3.86 35.61 3.93 0.98
8 21.83 6.41 18.93 7.40 0.87
16 15.32 9.14 10.97 12.76 0.72
32 12.96 10.80 9.654 14.50 0.74
1 estimated sequential time = 1120
2K x 2K 8 160.45 6.98 145.83 7.68 0.91
16 97.22 11.52 76.28 14.68 0.78
32 68.86 16.26 44.62 25.10 0.65

Table 9.4 Intel iPSC/860 Execution Times for DGEFA (in seconds)

Fortran D Hand-Coded
Array Kill Pipelining Memory Hand-Coded
Problem Size |Proc| time | 52t | time | ;=X | time | ;oL | time | % Fortran D
1 sequential time = 1.577
2 1.104 | 1.43 | 1.071 | 1.47 | 1.051 | 1.50 | 0.805 | 1.96 0.73
64 x 64 x 64 4 0.765 | 2.06 | 0.726 | 2.17 | 0.630 | 2.50 | 0.586 | 2.69 0.77
8 0.657 | 2.40 | 0.599 | 2.63 | 0.452 | 3.49 | 0.448 | 3.52 0.68
16 | 0.539 | 2.93 | 0.427 | 3.69 | 0.312 | 5.05 | 0.311 | 5.07 0.53
32 | 0.613 | 2.57 | 0.461 | 3.43 | 0.314 | 5.02 | 0.315 | 5.00 0.51
1 estimated sequential time = 5.3
1.677 | 3.17 | 1.590 | 3.33 | 1.311 | 4.06 | 1.151 | 4.60 0.70
96 x 96 x 96 8 1.475 | 3.61 | 1.312 | 4.04 | 0.961 | 5.54 | 0.917 | 5.78 0.62
16 1.492 | 3.57 | 1.189 | 4.46 | 0.824 | 6.46 | 0.813 | 6.52 0.54
32 1.355 | 3.93 | 1.059 | 5.00 | 0.741 | 7.15 | 0.720 | 7.36 0.54
1 estimated sequential time = 12.6
128 x 128 x 128 | 8 3.341 | 3.77 | 3.101 | 4.06 | 2.508 | 5.03 | 1.905 | 6.61 0.59
16 | 2.997 | 4.21 | 2.528 | 4.98 | 1.876 | 6.72 | 1.584 | 7.95 0.56
32 | 2.683 | 4.70 | 2.146 | 5.87 | 1.497 | 8.42 | 1.347 | 9.35 0.50

Table 9.5 Intel iPSC/860 Execution Times for ERLEBACHER (in seconds)
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Figure 9.9 Speedups for Programs (Intel iPSC/860)
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Figure 9.10 Comparisons for Programs (Intel iPSC/860)
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Results for DGEFA

Table 9.4 presents execution times and speedups for DGEFA, Gaussian elimination with partial pivoting.
Results indicate that the Fortran D compiler output, shown in Figure 9.1, provided limited speedups (3-6)
on small problems. For larger problems moderate speedups (11-16) were achieved. Due to the large number
of global broadcasts required to communicate pivot values and multipliers, performance of DGEFA actually
degrades when solving small problems on many processors.

To determine whether improved performance is attainable, we created a hand-coded version of DGEFA
based on optimizations described in the literature [78, 157]. First, we combined the two messages broadcast
on each iteration of the outermost k loop. Instead of broadcasting the pivot value immediately, we wait until
multipliers are also computed. The values can then be combined in one broadcast. Overcommunication may
result when a zero pivot is found, since messages now include multipliers even if they are not used. However,
combining broadcasts is still profitable as zero pivots occur rarely.

Second, we restructured the computation so that upon receiving the pivot for the current iteration, the
processor P41 responsible for finding the pivot for the next iteration does so immediately. Pj41 performs
row elimination on just the first column of the remaining subarray, scans that column to find a pivot and
calculates multipliers. Pg41 then broadcasts the pivot and multipliers to the other processors before perform-
ing row elimination on the remaining subarray. Since row eliminations make up most of the computation
in Gaussian elimination, each broadcast in effect takes place one iteration ahead of the matching receive,
hiding communication costs by overlapping message latency with local computation.

Results for the hand-coded version of DGEFA are presented in Table 9.4. The new algorithm showed
little or no improvement for small problems or when few processors were employed. However, it increased
performance by over 30% for large problems on many processors, yielding decent speedups (14-25). The
Fortran D compiler can thus benefit from more aggressive optimization of linear algebra routines. Experience
also indicates that programmers can achieve higher performance for linear algebra codes with block versions
of algorithms. The Fortran D compiler will need to provide BLoCK_cYycLIC data distributions to support
these block algorithms.

Results for ERLEBACHER

Unlike SHALLOW and DisPER, ERLEBACHER is not fully data-parallel. It is a more complex program that
requires global communication, and also contains computation wavefronts that sequentialize parts of the
computation. For ERLEBACHER, the Fortran D compiler first performs interprocedural reaching decomposi-
tion and overlap analysis, then invokes local code generation for each procedure. The compiler inserts global
communication for array suM reductions, and also applies coarse-grain pipelining. Timings for ERLEBACHER
in Table 9.5 show that the compiler-generated code is rather inefficient, with speedup peaking at 3-5 even
for large programs.

To determine how much improvement is attainable, we applied additional optimizations to create three
hand-coded versions. Optimizations are cumulative from left to right, so each hand-coded program contains
optimizations applied in the previous version. In the “Array Kill” version we used interprocedural array
kill analysis to eliminate global concatenation for local multi-reductions on replicated arrays in the X and
Y sweeps. In the “Pipelining” version we also experimented with the granularity of coarse-grain pipelining
performed during forward and backward substitution in the Z sweep. We found that a strip size around 16
yielded significantly better performance than the default strip size of 8 selected by the Fortran D compiler.

Finally, in the “Memory” version we also performed loop interchange to improve the data locality of
each node program during forward and backward substitution in the Z sweep. The current algorithm for
pipelining in the Fortran D compiler simply interchanges the cross-processor loop innermost, without taking
data locality into account. It thus placed the k£ loop innermost in TRIDVPK. We interchanged the strip-
mined 7 loop innermost by hand, improving data locality by restoring unit-stride memory accesses. The two
versions are shown in Figure 9.11.

Timings show that all three optimizations contribute to improved performance. Using array kill infor-
mation and adjusting pipelining granularity reduced communication costs, especially when many processors
were used. Improving data locality of the node program helped most when few processors were used and
large data sizes caused many cache misses. Together these optimizations yielded speedups of 5-9, improving
performance by up to 50% over the Fortran D compiler-generated code.
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{* Compiler Output for 4 Processors *} {* Interchange into Memory Order *}
SUBROUTINE TRIDVPK SUBROUTINE TRIDVPK
do j =1,n do j =1,n
do i$ = 1,n,8 do i$ = 1,n,8
i$up = i$+7 i$up = i$+7
if (my$p .LT. 3) if (my$p .LT. 3)
recv £(i$:i%up, j, n$+1) from my$p+1 recv £(i$:i%up, j, n$+1) from my$p+1
do i = i$,i$+8 do k = ub$,1,-1
do k = ub$,1,-1 k$ = k + off$0
k$ = k + off$0 do i = i$,i%+8
£(i,j,k) = £(i,j,kK)-ck$)*£(i,j,k+1) £(i,j,k) = £(i,],k)-c(k$)*£(di,j,k+1)
- e(k$)*r$bufl(j*n+i-n) - e(k$)*r$bufl(j*n+i-n)
enddo enddo
enddo enddo
if (my$p .GT. 0) if (my$p .GT. 0)
send £(i$:i%up, j, 1) to my$p-1 send £(i$:i%up, j, 1) to my$p-1
enddo enddo
enddo enddo
end end

Figure 9.11 ERLEBACHER: Data Locality Optimization

9.4.3 Comparison with CM Fortran Compiler

We also evaluated the performance of the Fortran D compiler against a commercial compiler. We selected the
CM Fortran compiler, the most mature and widely used compiler for MIMD distributed-memory machines,
and compared it against the Fortran D compiler on the Thinking Machines CM-5.

Our CM-5 timings were obtained on the 32 node CM-5 at Syracuse University. It has Sun Sparc processors
running SunOS 4.1.2 and vector units running CMOST 7.2 S2. CM Fortran programs were compiled using
emfversion 2.0 beta, with the -O and -vu flags. They were timed using CM_timer_read_elapsed(). CM Fortran
programs were compared against message-passing Fortran 77 programs using CMMD version 2.0 beta, the
CM message-passing library. Fortran 77 node programs were compiled using the Sun Fortran compiler f77,
version 1.4, with the -O flag. They were linked with ¢mmd version 2.0 beta. Fortran 77 node programs were
timed using CMMD_node_timer_elapsed().

Results for Kernels and Programs

The output of the Fortran D compiler was easily ported to the CM-5 by replacing calls to Intel NX/2
message-passing routines with equivalent calls to TMC CMMD message-passing routines. We converted
program kernels into CM Fortran by hand for the CM Fortran compiler, inserting the appropriate LAYOUT
directives to achieve the same data decomposition. The inner product in Livermore 3 was replaced by
DOTPRODUCT, a CM Fortran intrinsic. Jacobi and Livermore 18 can be transformed directly into CM
Fortran. Loop skew and interchange must be applied to SOR and Livermore 23 to expose parallelism in the
form of FORALL loops. A mask array indz is used to implement Gaussian elimination. The resulting CM
Fortran kernels are shown in Figure 9.12.
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{* Livermore 3 (Inner Product) =}
s = DOTPRODUCT (a,b)

{* Jacobi x}
forall (j=2:N-1,i=2,N-1)
a(i,j) = 0.25%(b(i-1,j)+b(i+1,j)+b(i,j-1)+b(i,j+1))

b a

{* Livermore 18 (Explicit Hydrodynamics) *}
forall (k=2:N-1, j=2:N-1)
za(j, k) = (zp(j-1, k+1) + zq(j-1, k+1) - zp(j-1, k) - zq(j-1, k))
* (zr(j, k) + zr(j-1, k)) / (zm(j-1, k) + zm(j-1, k+1))
forall (k=2:N-1, j=2:N-1)
zb(j, k) = (zp(j-1, k) + zq(j-1, k) - zp(j, k) - zq(j, k)
* (zr(j, k) + zr(j, k-1)) / zn(j, k) + zm(j-1, k))
forall (k=2:N-1, j=2:N-1)
zu(j, k) = zu(j, k) + s * (za(j, k) * (zz(j, k) - zz(j+1, k))
- za(j-1, kK)* (2z(j, k) - zz(j-1, k)) - zb(j, k)
* (zz(j, k) - zz(j, k-1)) + zb(j, k+1) * (zz(j, k) - zz(j, k+1)))
forall (k=2:N-1, j=2:N-1)
zv(j, k) = zv(j, k) + s * (za(j, k) * (zr(j, k) - zr(j+1, k))
- za(j-1, k) * (zr(j, k) - zr(j-1, k)) - zb(j, k+1) * (zr(j, k)
- zr(j, k-1)) + zb(j, k+1) * (zr(j, k) - zr(j, k+1)))
forall (k=2:N-1, j=2:N-1)
zr(j, k) = zr(j, k) + t * zu(j, k)
forall (k=2:N-1, j=2:N-1)
zz(j, k) = zz(j, k) + t * zv(j, k)

{x SOR *}
do j = 4,2%(N-1)
forall (i=max(2,j-N+1):min(N-1,j-2))
a(i,j-i) = 0.175%(a(i-1,j-i)+a(i+l,j-i)+a(i,j-i-1)
+ a(i, j-i+1)) + 0.3 * a(i, j-i)
enddo

{* Livermore 23 (Implicit Hydrodynamics) x}
do j = 4,2%(N-1)
forall (k=max(2,j-N+1):min(N-1,j-2))
za(k,j-k) = za(k,j-k)+.175%((za(k, j-k+1)*zr(k,j-k)
* zb(k, j-k) + za(k+1l,j-k)*zu(k,j-k)
+ za(k-1, j-k) * zv(k, j-k)) - za(k,j-k))
enddo

{* Gassian Elimination *}

indx = 0

do k = 1,N
iTmp = maxloc(abs(a(:,k)), MASK = indx .EQ. 0)
indxRow = iTmp(1)
maxNum = a(indxRow,k)
indx (indxRow) = k
fac = a(:,k) / maxNum
row = a(indxRow,:)
forall (i = 1:N, j = 1:N+1, (indx(i).EQ.0) .AND. (j.GE.k))

a(i,j) = a(i,j) - fac(i) * row(j)
enddo

Figure 9.12 CM Fortran Versions of Kernels
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Currently, only the CM Fortran compiler generates code utilizing vector units. Since the node Fortran 77
compiler is not able to utilize vector units, Fortran D message-passing programs are forced to rely on the
Sparc processor. To permit a balanced comparison, we provide timings for CM Fortran programs using
either Sparc or vector units. Table 9.6 shows the elapsed times we measured on the CM-5 for CM Fortran
and Fortran D programs, as well as the ratio of execution times between CM Fortran and Fortran D code.

In addition, we graphically present the execution times measured on the CM-5. Figure 9.13 displays
timings for stencil kernels. Execution times in seconds are plotted logarithmically along the Y-axis. The
problem size is plotted logarithmically along the X-axis. Solid, dotted, and dashed lines represent the CM
Fortran using Sparc, CM Fortran using vector units, and Fortran D using Sparc, respectively. Execution
times for sequential execution on a single Sparc processor are included for comparison. All parallel execution
times are for 32 processors. Figure 9.14 directly displays the ratio of execution times of both versions of CM
Fortran to Fortran D, plotting ratios along the Y-axis. Figure 9.15 displays similar comparisons of execution
times and ratios for SHALLOW and DGEFA.

Our measurements indicate the current CM Fortran compiler produces code that is significantly slower
than the corresponding message-passing programs generated by the Fortran D compiler. The difference is
especially pronounced for small data sizes. Even intrinsic functions such as DoTPRODUCT yield very poor
performance. The CM Fortran compiler fared best on data-parallel kernels such as Jacobi and Livermore
18. It appears to handle pipelined computations and Gaussian elimination poorly, even when expressed in a
form that contains vector parallelism.

Based on examining the assembly code output of the CM Fortran compiler, we believe the poor perfor-
mance is due to the fact that the current CM Fortran compiler generates code for executing virtual processes
on each node. This mode of execution requires extensive run-time calculation of addresses and results in
much unnecessary data movement. Improvements in an upcoming release of the CM Fortran compiler will
allow more meaningful comparisons in the future.

Sequential | Fortran D CM Fortran
Execution | + CMMD CM Fortran Fortran D

Program Problem Size Sparc Sparc Sparc | Vector | Sparc | Vector
Livermore 3 64K 0.005 0.002 0.018 0.005 9.92 3.19
Inner 256 K 0.020 0.007 0.032 0.006 4.67 0.88
Product 1024 K 0.079 0.027 0.098 0.007 3.63 0.27
Jacobi 512 x 512 0.877 0.085 0.236 0.079 2.78 0.95
Iteration 1K x 1K 3.525 0.103 0.766 0.133 7.44 1.29
2K x 2K 14.14 0.409 2.834 0.288 6.93 0.70
Livermore 18 128 x 128 0.457 0.028 0.165 0.100 5.89 3.57
Explicat 256 x 256 1.861 0.096 0.332 0.148 3.46 1.54
Hydrodynamics 512 x 512 7.554 0.251 0.994 0.243 3.96 0.97
Successive 512 x 512 0.376 0.060 17.04 8.684 284 145
Over 1K x 1K 1.519 0.130 116.1 45.42 893 349
Relaxation 2K x 2K 6.134 0.364 209.9 210.0 577 577
Livermore 23 256 X 256 0.389 0.035 3.704 3.597 106 103
Implicit 512 X 512 1.562 0.118 19.33 11.57 164 98.1
Hydrodynamics 1K x 1K 6.252 0.320 122.7 71.43 383 223
256 x 256 4.791 0.577 11.81 4.006 20.5 6.94
DGEFA 512 x 512 40.61 2.858 112.5 66.25 39.4 23.2
1K x 1K 337.1 17.13 1071 165.2 62.5 9.64
2K x 2K 6809 110.8 8449 1365 76.3 12.3
256 x 256 1.297 0.043 0.409 0.553 9.51 12.9
SHALLOW 512 x 512 5.210 0.153 2.696 0.696 17.6 4.55
1K x 1K 20.88 0.565 6.425 0.988 11.4 1.75

Table 9.6 TMC CM-5 Execution Times (for 32 processors, in seconds)
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9.5 Status of the Fortran D Compiler

Our preliminary experiences have helped us evaluate the current Fortran D compiler prototype. The initial
results, though encouraging, point out a number of areas that require additional work. We summarize our
appraisal of the Fortran D compiler with these observations:

e It has achieved considerable success in generating efficient code for stencil computations.
e It needs to improve its optimization of pipelined and linear algebra codes.

e It must become much more flexible before it can become a successful machine-independent program-
ming model. Symbolic information and run-time support must be added.

In addition, our experiences confirm that the nature of the computation is the overriding factor in determining
the success of the Fortran D compiler. We discuss each point in greater detail in the following sections.

9.5.1 Parallel Stencil Computations

By generating output for SHALLOW and DISPER that virtually matched optimized hand-coded versions, the
Fortran D compiler has demonstrated its success for parallel stencil computations. This is despite the fact
that the compiler is not producing the most efficient communication, since it does not yet support unbuffered
messages. The Fortran D compiler succeeds because it does a sufficiently good job that communication costs
become a minor part of the overall execution time. In particular, scalability is excellent because performance
improves as the problem size increases. Implementing additional optimizations is desirable for achieving
good speedup for small programs or many processors, but is not crucial. Instead, the focus should be on
improving the flexibility and robustness of the Fortran D compiler, as discussed in section 9.5.3.

9.5.2 Pipelined and Linear Algebra Computations

In comparison, there is considerable room for improvement when compiling communication-intensive codes
such as pipelined and linear algebra computations. Results for DGEFA and ERLEBACHER show that the
current Fortran D compiler prototype only attains limited speedups. It can achieve noticeable performance
gains by applying advanced communication optimizations. These optimizations are important because com-
munication is performed much more frequently than in parallel stencil computations. Their effect on overall
execution time gain in importance as the problem size and number of processors increases. In particular,
the Fortran D compiler will need to use information from training sets and static performance estimation to
select an efficient granularity for coarse-grain pipelining.

9.5.3 Increase Flexibility

Finally, when evaluating its overall performance, we find that the most serious problem facing the prototype
Fortran D compiler is its lack of flexibility. In the course of conducting our study, we were unable to apply
the Fortran D compiler to a large number of standard benchmark programs, despite the fact they contained
dense-matrix computations that should have been acceptable to the compiler. Even programs that were
written in a “clean” data-parallel manner required fairly extensive rewriting to eliminate programming
artifacts that the prototype proved unable to compile. The causes for this inflexibility can be categorized as
follows:

Immature Symbolic and Interprocedural Analysis

The lack of symbolic analysis in the current Fortran D compiler proved to be a major stumbling block. Unlike
parallelizing compilers for shared-memory machines, simply providing precise dependence information was
insufficient for the Fortran D compiler. The compiler performs deep analysis that requires knowledge of all
subscript expressions and loop bounds in the program. For most programs, constant propagation, forward
expression folding, and auxiliary induction variable substitution all need to be performed before the Fortran D
compiler can proceed.

The current prototype is also inhibited by missing pieces in interprocedural analysis. It does not under-
stand formal parameters that represent subarrays in the calling procedure, multiple entry points, or missing
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procedures representing calls to system library routines. Both symbolic and interprocedural analysis need to
be completed and integrated with the Fortran D compiler before many existing programs can be considered.

Lack of Run-time Support

Another problem with the current compiler prototype is its reliance on compile-time analysis. The only
run-time support it requires are routines for packing and unpacking non-contiguous array elements into
contiguous message buffers. The compiler attempts to calculate at compile-time all information, including
ownership, communication, and partitioning. While this approach is necessary for advanced optimizations
and generating efficient code, it limits the Fortran D compiler to computations it can completely analyze.

It turns out real programs contain many components that cannot be easily analyzed at compile-time,
such as indirect references, complex control flow, and scalar computations. These occur fairly frequently in
initializations and boundary condition calculations. In many cases the Fortran D compiler was forced to
abort, despite being able to compile the important kernel computations in the program.

What the Fortran D compiler must provide are methods of utilizing run-time support, trading perfor-
mance for greater flexibility in non-critical regions of the program. The compiler can either apply run-time
resolution or demand more support from the run-time library to calculate ownership, partitioning, and
communication at run-time. Since in most cases the code affected is executed infrequently, the expense of
run-time methods should not significantly impact overall execution time.

Immature Fortran D Compiler

A major part of the problem lies with the immaturity of the Fortran D compiler itself. There are a number of
dense-matrix computations that it is not able to analyze and compile efficiently. For instance, the prototype
compiler does not handle non-unit loop steps or subscript coefficients. It is thus unable to compile Red-Black
SOR or multigrid computations, both of which possess constant step sizes greater than one. Computations
such as Fast Fourier Transform (FFT), linear recurrences, particle-in-cell, finite-element, n-body problems,
and banded tridiagonal solvers all possess regular but specialized data access patterns that the Fortran D
compiler needs to recognize and efficiently support. In addition, run-time support for irregular and sparse
computations must also be added. Only when these obstacles are overcome can the Fortran D compiler serve
as a credible general-purpose programming model.

Dusty Decks

Finally, the Fortran D compiler cannot compile a number of “dusty deck” Fortran programs that were
originally written for sequential or vector machines. These programs contain programming constructs that
the compiler does not understand, such as linearized arrays, loops formed by backward GoTo statements,
and storing and using constants in arrays. Dusty deck programs have proven to be very challenging for
even shared-memory vectorizing and parallelizing compilers. Because of the deep analysis required, they
are even more difficult for distributed-memory compilers. It is not a goal of the Fortran D compiler to
be able to automatically parallelize these programs for distributed-memory machines. Requiring users to
program in Fortran 90 can help prevent such poor programming practices, and is the approach taken by High
Performance Fortran. However, as shown by the poor performance of the CM Fortran compiler, Fortran 90
syntax does not eliminate the need for advanced compile-time analysis and optimization.

9.5.4 Nature of Applications

We close by considering implications for future success of the Fortran D approach to data-parallel program-
ming. We believe that problems with the immaturity of symbolic analysis, interprocedural analysis, run-time
support, and the Fortran D compiler can be solved in the short term. No breakthroughs are required, simply
a major investment in development effort.

Problems with dusty deck codes will remain. Simply adding data decomposition specifications to existing
sequential, vector, or parallel programs does not ensure they will be compiled by the Fortran D compiler.
Users of massively-parallel machines will eventually recognize that current compiler technology cannot auto-
matically extract parallelism from such codes. They should be willing to rewrite important programs once in
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Data Computation Communication | Hand-Coded
Program Size Amount Type Messages | Size Fortran D
DGEFA O(n?) O(n?) Pivot O(n) O(n) 0.65-0.91
ERLEBACHER | O(n?) (n®) | Pipeline (n) O(r) | 0.50-0.59
SHALLOW O(n?) O(n?) Parallel O(1) O(n) 0.95-0.99
DISPER O(n*) (n* Parallel 0(1) O(n) 0.97-1.03

Table 9.7 Inherent Communication and Parallelism in Applications

a “clean” machine-independent form using either Fortran 77 or Fortran 90, if advanced compiler techniques
will ensure these programs can be executed efficiently across a wide range of machine architectures.

Compilation technology and dusty deck codes, however, are not the key limitations confronting the
Fortran D compiler. Instead, it is the amount of parallelism and communication present in the input
Fortran D program. Our experiences show that this is the most significant factor determining the success
of the Fortran D compiler. Because the Fortran D compiler does not change the input algorithm or data
decomposition, there is an inherent amount of communication and parallelism in a Fortran D program. The
nature of the application thus dictates the performance achievable by the Fortran D compiler.

Consider the classification of programs and their communication requirements in Table 9.7. It categorizes
the programs we examined by their data, computation, and communication requirements, then compares the
effectiveness of the Fortran D compiler against hand-coded versions for the largest problems measured. As
the amount of communication increases, the discrepancy between the Fortran D compiler and hand-optimized
codes worsens. The table thus clearly demonstrates the correlation between the amount of communication
performed and the success of the Fortran D compiler.

Our experiences with the prototype Fortran D compiler leads us to believe that within a few years,
compilers for languages such as Fortran D or High Performance Fortran can match the performance of
hand-optimized code for applications with high parallelism and low communication. However, prospects for
programs with low parallelism or high communication remain unclear. These applications are much more
sensitive to communication overhead, and it will be difficult for the compiler to automatically perform the
optimizations programmers apply by hand to achieve high performance. Much additional research will be
needed to develop automatic compilation techniques for these problems.

9.6 Discussion

This chapter describes compiler techniques developed in response to problems posed by linear algebra com-
putations, large subroutines, and whole programs. The performance of the prototype Fortran D compiler is
evaluated against hand-optimized programs on the Intel iPSC/860. Results show reasonable performance is
obtained for stencil computations, though room for improvement exists for communication-intensive codes
such as linear algebra and pipelined computations. The prototype significantly outperforms the CM Fortran
compiler on the CM-5. The compiler requires symbolic analysis, greater flexibility, and improved optimiza-
tion of pipelined and linear algebra codes. We believe the Fortran D compilation approach will be competitive
with hand-coded programs for many data-parallel computations in the near future. However, additional ef-
fort is required before the compiler will be as effective for partially parallel computations requiring large
amounts of communication.
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Chapter 10

Fortran D Programming System

This chapter presents the design of other elements of the Fortran D programming system. A static perfor-
mance estimator based on training sets provides machine-dependent details that fine-tune the compilation
process. The automatic data partitioner derives Fortran D data decomposition specifications based on the
original Fortran program. A shared-memory parallelizing and vectorizing compiler exploits multiple pro-
cessors on a single node. The data locality optimizer restructures the node program for improved use of
the memory hierarchy, backed up by an optimizing scalar compiler. A portable lightweight communication
library improves performance. The programming environment provides program profiling, performance mea-
surement and visualization, as well as support for debugging and accepting user feedback.

10.1 Introduction

The Fortran D compiler automates the complex task of translating a sequential shared-memory program into
an efficient message-passing distributed-memory program. This translation is just the first step in providing
a reasonable programming interface for MIMD distributed-memory machines. This chapter describes other
important functions provided by the Fortran D programming system:

o Integrate compilers for parallelizing and/or vectorizing the node program produced by the Fortran D
compiler, as well as scalar compilers that optimize data locality and instruction-level parallelism.

e Provide feedback on the estimated and actual performance of a Fortran D program for a given machine
and problem size.

e Support automatic and interactive data decompositions selection through local and interprocedural
analysis.

e Provide an efficient, portable run-time interface for the output of the Fortran D compiler. Utilize
lightweight communication primitives to improve performance.

o Integrate tools for performance profiling, visualization, and debugging Fortran D programs.

To provide this functionality, the Fortran D programming system incorporates a number of other tools.
Elements of the compilation system include a static performance estimator, automatic data partitioner, par-
allelizing and vectorizing compiler, data locality optimizer, and optimizing scalar compiler. Additional tools
in the programming environment perform program profiling, performance visualization, interactive program-
ming, and debugging. Other tools of the environment include standardized portable communication libraries,
lightweight communication protocols. Finally, the Fortran D programming system can be targeted for other
architectures such as distributed systems, distributed-shared memory multiprocessors, and heterogeneous
systems.

10.2 Fortran D Compilation System

The Fortran D compiler automates most of the translation process required to translate sequential programs
for execution on MIMD distributed-memory machines. The only additional information needed by the
Fortran D compiler is a specification of the data decomposition. The obvious next step is for the Fortran D
system to automatically derive the data decomposition specifications, or interactively assist the user in
partitioning the data.
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10.2.1 Static Performance Estimator

The Fortran D static performance estimator is designed to support both automatic and interactive selection
of efficient data decompositions. Comparing data decompositions without support from the Fortran D system
is an expensive process. The programmer must first insert the appropriate data decomposition specifications
in the program text, then compile and run the resulting program to determine its effectiveness. Comparing
two data decompositions thus requires implementing and running both versions of the program, a tedious
task at best. The process is prohibitively difficult without the assistance of a compiler to automatically
generate node programs based on the data decomposition.

It is clearly inefficient to use dynamic performance information to choose between data decompositions.
Instead, a static performance estimator is needed that can accurately predict the performance of a Fortran D
program on the target machine. Also required is a scheme that allows the compiler to assess the costs of
communication routines and computations. The static performance estimator in the Fortran D programming
system caters to both needs.

The performance estimator in the Fortran D system employs the notion of a training set of kernel routines
that measures the cost of various computation and communication patterns on the target machine. The
results of executing the training set on a parallel machine are summarized and used to train the performance
estimator for that machine. By utilizing training sets, the performance estimator achieves both accuracy
and portability across different machine architectures [17, 114]. As discussed in Chapter 6, the Fortran D
compiler also uses training set information to guide optimizations, particularly balancing communication
and parallelism for coarse-grain pipelining.

10.2.2 Automatic Data Partitioner

The goal of the automatic data partitioner is to choose an efficient data decomposition. Several researchers
have proposed techniques to automatically derive data decompositions based on simple machine models
[88, 89, 109, 141, 175, 193]. However, these techniques are insufficient because the efficiency of a given data
decomposition is highly dependent on both the actual node program generated by the compiler and its per-
formance on the parallel machine. “Optimal” data decompositions may prove inferior because the compiler
generates node programs with suboptimal communications or poor load balance. Similarly, marginal data
decompositions may perform well because the compiler is able to utilize collective communication primitives
to exploit special hardware on the parallel machine.
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What the programming system must do is help the user to understand the effect of a given data decom-
position and program structure on the efficiency of the compiler-generated code running on a given target
machine. The Fortran D data partitioner, shown in Figure 10.1, supports this through the use of static
performance estimation. Data decompositions are selected using standard heuristics, then evaluated using a
combination of the Fortran D compiler and static performance estimation [17, 103, 113]. The resulting data
decompositions should be efficient for both the compiler and parallel machine.

Note that even though it is desirable, to assist compilation the static performance estimator does not need
to predict absolute performance. Instead, it only needs to accurately predict the performance of a program
version relative to other versions. The prototype performance estimator has proved quite precise, especially
in predicting the relative performances of different data decompositions [17]. We believe that for regular
loosely synchronous problems written in a data-parallel programming style, the automatic data partitioner
can determine an efficient partitioning scheme without user interaction. The automatic data partitioner can
also be used to interactively suggest possible data decompositions and estimate their efficiency. This permits
the user to apply knowledge not available at compile-time.

10.2.3 Additional Compilers

To yield the best performance, the Fortran D compiler must be used in conjunction with other compilation
tools. Figure 10.2 displays the compilers in the in the Fortran D compilation system and how they interact
with the Fortran D compiler. The data partitioner and the Fortran D compiler partitions a shared-memory
program onto the nodes of a distributed-memory machine. This represents the coarsest level of parallelism.
Another level of parallelism can be exploited if each node of the machine is a shared-memory multiprocessor
and/or possesses vector units. In this case a parallelizing compiler can be used to parallelize/vectorize the
node program. By treating each send as a use and each recv as a definition, the shared-memory parallelizer
can perform program transformations while preserving the legality of the original message-passing program.

To achieve good scalar performance on a single processor, the compilation system must also pay close
attention to improving data locality in the resulting node program. Selecting the right loop permutation is
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a fundamental goal and should also be considered during the Fortran D and shared-memory parallelization
process. The remaining optimizations, tiling for cache reuse and unroll-and-jam & scalar replacement for
register usage, may be applied after previous parallel compilers have completed. Finally, an optimizing
scalar compiler can perform classical scalar optimizations, register allocation, and exploit instruction-level
parallelism for superscalar and VLIW processors through advanced instruction scheduling.

10.3 Fortran D Programming Environment

The Fortran D compilation system is designed to automatically translate input programs into highly efficient
code. The components of the Fortran D programming environment assist the user when obstacles are
encountered. Because the Fortran D compilation system may drastically change the structure of the original
program, it is important that the programming environment helps the user understand the effect of changes
to the original program.

The architecture of the Fortran D environment is shown in Figure 10.3. Information from executing
training sets on the machine is provided to the compiler and environment. The Fortran D compiler calculates
information on load imbalance and communication. The environment collects at run-time information on
program events and data values. The programming environment uses this information to provide performance
profiling, visualization, and debugging for the user.

10.3.1 Interactive Programming

Since the Fortran D programming system is built on top of ParaScope, it also provides program analysis,
transformation, and editing capabilities that allow users to restructure their programs according to a data-
parallel programming style.

The automatic data partitioner may be used as a starting point for choosing a good data decomposition.
When invoked interactively for specific program segments, it responds with a list of the best decomposition
schemes, together with their static performance estimates. If the user is not satisfied with the predicted
overall performance, he or she can use the performance estimator to locate communication and computation
intensive program segments. The Fortran D environment can then advise the user about the effects of
program changes on the choice of a good data decomposition.
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Figure 10.3 Feedback in the Fortran D Programming Environment
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10.3.2 Run-Time System

The prototype Fortran D compiler generates calls to Intel NX/2 message-passing libraries, and will soon be
extended to also target the Thinking Machines CMMD library. Future targets may include portable, efficient
communication libraries such as Express [167] or PVM [195]. Because these communication libraries have
similar message-passing interfaces, adding new targets is a straightforward task. Ongoing standardization
efforts for message-passing libraries will ease the burden of the compiler writer.

10.4 Discussion

The Fortran D compiler automates the time consuming task of deriving node programs based on the data
decomposition. Two other components of the Fortran D programmingsystem, the static performance estima-
tor and automatic data partitioner, support another important step in developing a data-parallel program—
selecting a data decomposition. The Fortran D compiler cooperates with other compilation tools, such as a
shared-memory parallelizing and vectorizing compiler, data locality optimizers, and traditional scalar com-
pilers. To be useful, it must also takes part in providing feedback to the programmer other elements of the
programming environment.
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Chapter 11
Related Work

Supporting parallel programs on architectures with physically distributed memories is a challenging problem
with potential for high payoffs. Here we briefly examine alternatives explored by other researchers, including
parallel architectures & operating systems, programming models & languages, and shared-memory paral-
lelizing compilers. We also describe other distributed-memory compilation systems in relation to Fortran D

[57, 73, 93, 104, 105, 106, 107].

11.1 Parallel Architectures and Operating Systems

Because of high interprocessor communication costs, many researchers believe efficient general-purpose par-
allel computing on distributed-memory machines requires some form of architectural and operating systems
support. Systems such as Alewife [42], April [2], DASH [137], KSR-1, and Willow [24] attempt to provide
a coherent global address space through innovations in hardware and operating systems. Early experiences
with these systems have been positive, but show that locality of reference is a major factor in determining
performance.

Researchers are also developing techniques to provide a global address space on distributed-memory
machines entirely through software. Distributed shared-memory systems such as Amber [48], Ivy [142],
Munin [23], and Platinum [64] utilize the operating system to detect and expedite interprocessor data
motion. These software-based systems incur significantly greater overhead, but have the advantage of not
requiring additional specialized hardware. Because of their wide availability, researchers in this area have
been particularly interested in targeting networks of high-performance workstations.

Both hardware and software approaches ease the task of parallel programming by eliminating separate
address spaces and explicit communications. However, many significant problems remain. First, scientists are
still required to write explicitly parallel programs that deal with synchronization and non-determinism. This
requirement is undesirable because computational scientists are interested in solving numerical applications,
not in learning the semantics of synchronization constructs or memory consistency models.

To reduce apparent memory latency, high-performance machines frequently provide data caches.
Maintaining coherent caches for distributed memory architectures is an extremely difficult problem. For
efficiency coherence is maintained at a reasonably large granularity, usually at the size of individual pages or
long cache lines. False sharing may then cause extra data movement when logically separate data are mapped
to the same memory unit. Existing distributed shared-memory systems also do not provide specialized data
movement patterns that frequently occur in scientific codes; e.g., array transposes, shift or broadcast along
one or more dimension, various gather/scatter operations, or synchronized all-to-all transfers. In comparison,
these patterns are easily recognized by the user or compiler based on program analysis.

Hardware and operating systems are fundamentally limited in that they can only react to accesses to
nonlocal memory. They cannot hide memory latency by prefetching data before it is needed, or reduce data
movement costs by fetching entire logical blocks at once. At best they can relax memory consistency, maintain
a history of past accesses, and try to guess future reference patterns [112,213]. Unlike compilers, operating
systems are incapable of arranging data layout to avoid contention, reordering computation to improve
data movement, or replicating computation to eliminate communication. Since data locality determines
performance on distributed-memory architectures, even the best designed architecture and operating system
will benefit from compiler optimizations to improve locality of reference.
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11.2 Programming Models and Languages

The proliferation of parallel architectures has focused much attention on machine-independent parallel pro-
gramming. Selecting an efficient level of parallel programming is an open research issue. Some researchers
have proposed elegant architecture-independent programming models such as Bird-Meertens formalism [192]
and the Bulk-Synchronous bridging model [201]. However, these parallel programming models are intended
to guide the development of new data-parallel algorithms; they cannot be used to help scientists write parallel
programs since no language or compiler support is provided.

High-level languages such as Delirium [147], Linda [41], PCN [71] and Strand [70] are valuable when
used to coordinate coarse-grained functional parallelism, as are graphical programming languages such as
CODE [159], HeNCE [21], and Schedule [68]. Both require the user to develop explicit parallel programs.
In comparison, declarative languages such as Jade can exploit coarse-grain parallelism at run-time, using
side effect information collected from user annotations [135]. However, all these parallel languages tend to
be inefficient or burdensome for exploiting data-parallelism. As a result, many researchers have turned to
advanced parallelizing compilers or lower-level parallel languages.

Though most parallel languages concentrate on specifying synchronization for task-level parallelism, we
found several languages constructs useful for data-parallel programming. We have adopted many such fea-
tures into Fortran D. In particular, we have been influenced by alignment specifications from CM FORTRAN
[196], distribution specifications from KAaLI [127, 153], and structures to handle irregular distributions from
PARTI [188]. We also incorporated the FORALL statement from Myrias [22] and CM Fortran [6]. The REDUCE
statement in Fortran D is patterned after equivalent reduction functions in Fortran 90 [13].

11.3 Shared-Memory Compilers

Data-parallelism can usually be utilized as loop-level functional parallelism; it comprises most of the usable
parallelism in scientific codes when synchronization costs are considered [52]. Shared-memory parallelizing
compilers such as Parafrase [131, 171], Prc [9, 10], PTRAN [7], ParaScope [35, 59], and Suir [197] use data
dependence [130, 132] to detect and exploit parallel loops on MIMD shared-memory machines. Precise
program analysis is needed to handle symbolics [91], procedure calls [62, 98, 143], and array reference aliases
[19, 83, 133, 208]. Program transformations based on dependences may also be used to expose additional
parallelism [117, 118, 119, 164].

Shared-memory parallelizing compilers can aid the programming process on distributed shared-memory
machines, but possess several shortcomings. First, the main goal of parallelization techniques for shared-
memory machines is to exploit parallelism. However, on distributed-memory machines data movement costs
are much higher and must be taken into account when applying optimizations.

Compilation techniques have been developed to improve data locality on scalar and shared-memory ma-
chines. Program transformations can enhance temporal and spatiallocality of scientific codes, improving the
usage of higher levels of the memory hierarchy such as registers and cache [34, 40, 116, 173, 204]. Heuristics
have been developed for managing multiprocessors cache coherence in software through the use of block
cache invalidate, prefetch, and update instructions [65, 85]. Taken to the limit, these optimizations begin to
resemble message vectorization and code generation for distributed-memory machines.

Researchers have proposed merging these data locality optimizations with parallelism information for
distributed-memory machines. The basic premise is that since parallel loops exhibiting data locality are
guaranteed to compute fairly disjoint data sets; the partition of parallel loop iterations among processors
can also be used to assign data to each processor [66, 168, 190]. Where data accesses are not entirely disjoint,
grouping methods can be applied to reduce communication between loop iterations [120, 191]. However, in
order to take advantage of data locality, the compiler must take into account affinity, the interaction between
data placement and task scheduling [149].

Though shared-memory compilation approaches are useful for reducing memory contention, in the end
they prove insufficient for distributed-memory machines because the resulting data partition may be highly
complex and frequently change between loop nests. In addition, no support is provided for generating or
optimizing communications where needed. Distributed-memory compilation techniques are still required. In
fact, even shared-memory machines may benefit. Experiments have shown that non-uniform memory access
(NUMA) shared-memory machines can actually achieve improved performance when programmed using a
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distributed-memory programming model [144], since resulting programs have been restructured to reduce
interprocessor contention and expensive global memory references.

11.4 Distributed-Memory Compilers

Compared with other approaches, distributed-memory compilers can achieve improved performance through
compile-time analysis and optimization of both parallelism and interprocessor data movement. In this thesis
we classified them as follows:

e Transformation-driven. First-generation systems that perform optimizing transformations on naive
run-time resolution code.

e Language-driven. Systems that rely on language features to guide the compilation and optimization
process, usually requiring extensive run-time support.

e Analysis-driven. Compilers that rely on compile-time analysis. Some also require significant run-time
support.

The classifications are not fixed; a number of systems are evolving from simple language translators to
tools that perform impressive compile-time analysis and optimization. In the following sections, we describe
compilers in each of these groups.

11.4.1 Transformation-Driven Compilers

The earliest distributed-memory compilers, Callahan-Kennedy, SUPERB, and ID NOUVEAU, perform exten-
sive analysis but adopt a rather cumbersome compilation approach. These systems first insert guards and
element-wise messages to generate a naive program performing run-time resolution, then apply program
transformations and partial evaluation in order to produce more efficient code. To perform optimizing
transformations, these compilers must keep track of intermediate program versions. However, the presence
of guards and explicit communication affects program semantics in ways that are difficult to determine,
especially whether program restructuring would cause deadlock [82].

In comparison, the Fortran D compiler performs its analysis up front and uses the results to drive code
generation. This approach is simpler and provides greater flexibility. For instance, the Fortran D com-
piler performs transformations on the original program without needing to consider potentially introducing
deadlock due to message reordering.

Callahan & Kennedy

Callahan & Kennedy proposed distributed-memory compilation techniques based on data-dependence driven
program transformations [38]. These techniques were implemented in a prototype compiler in the ParaScope
programming environment. In the compiler, standard and user-defined distribution functions are used to
specify the data decomposition for sequential Fortran programs. The compiler inserts load and store state-
ments to handle data movement, then applies program transformations such as loop interchange, distribu-
tion, and strip-mining to optimize guards and messages. The Callahan-Kennedy compiler prototype was
eventually abandoned in favor of the greater flexibility of the Fortran D compiler.

SUPERB

SUPERB is a semi-automatic parallelization tool designed for MIMD distributed-memory machines [79, 80,
212]. It supports arbitrary user-specified contiguous rectangular distributions; and performs dependence
analysis to guide interactive program transformations in a manner similar to the ParaScope Editor [129].
SUPERB originated overlaps as a means to both specify and store nonlocal data accesses. Once program
analysis and transformation is complete, communication is automatically generated and vectorized utilizing
data dependence information. Computation is partitioned via explicit guards, which may be eliminated
by loop bounds reduction [81]. Unlike the Fortran D compiler, the original version of SUPERB did not



170 CHAPTER 11. RELATED WORK

support data alignment, cyclic distributions, automatic compilation, collective communications, dynamic
data decomposition, and storage of nonlocal values in temporary buffers.

SUPERB performs interprocedural data-flow analysis of parameter passing. FEach formal parameter is
classified as unpartitioned or having a standard or nonstandard partition. A clone is produced for each
possible combination of classification of the procedure parameters. The algorithm is similar to that employed
by the Fortran D compiler, but less involved since SUPERB does not provide dynamic data decompositions.
For local compilation, SUPERB modifies procedures so that arrays are always accessed according to their true
number of dimensions, inserting additional parameters where necessary for newly created subscripts.

Id Nouveau

ID NOUVEAU is a functional language extended with single assignment arrays called I-structures [170, 178].
User-specified BLOCK distributions are provided. Initially, send and recv statements are inserted to communi-
cate each nonlocal array access. Message vectorization is applied to combine messages for previously written
array elements. Loop jamming (fusion) and strip-mining are used when writing array elements. Global
accumulate & reduction operations are supported. Analysis is considerably simplified due to I-structures.
Unlike other systems, program partitioning produces distinct programs for each node processor.

11.4.2 Language-Driven Compilers

A second group of language-driven distributed-memory compilers target programs containing explicit par-
allelism and possibly user-specified communication. Compilation is usually limited to extracting communi-
cation out of parallel computations, then partitioning the computation across processors. Communication
selection is based on matching language features or user annotations to routines in the run-time system.

Some languages specify parallelism through a local view of computation, where the programmer specifies
computation for an individual data point, relying on the compiler and run-time system to replicate the
computation for all data points [96, 183]. In comparison, Fortran D supports a global view of computation,
where the program specifies the overall computation, counting on the compiler to partition the computation.

In comparison to language-driven compilers, systems like Fortran D reduce the burden on the user through
program analysis, the key to advanced optimization. By applying dependence analysis, the Fortran D
compiler can exploit parallelism without relying on language features or annotations. It can also vectorize
messages in sequential regions, such as those found in SOR or ADI integration. Many language-driven
compilers are improving their compile-time analysis and optimization, especially CM FORTRAN.

Crystal

CRYSTAL is a high-level functional language [53, 138, 139, 140, 141]. Because it targets a functional language,
the CRYSTAL compiler possesses markedly different program analysis techniques than compilers for imper-
ative languages such as Fortran. However, it performs significant compile-time analysis and optimization,
pioneering both automatic data decomposition and collective communications generation techniques. It is
unclear whether the CRYSTAL language can express a wide range of scientific computations. Work in progress
to adapt the CRYSTAL compiler for scientific Fortran codes will help answer this question.

During compilation, the CRYSTAL compiler first separates programs into phases, where each phase has
a different computation structure, represented by an index domain. Heuristics are employed to align data
arrays with the index domain, both within and across dimensions, then derive the control structure of the
program. Communication patterns are synthesized syntactically from the computation, evaluated for a
variety of block distributions, then matched with CRYSTAL collective communication routines. Later phases
of the compiler generate message-passing C programs for the physical machine.

BLAZE, Kali

BLAZE is one of the first distributed-memory compilers [126, 152]. KaLI, its successor, is the first com-
piler system that supports both regular and irregular computations on MIMD distributed-memory machines
[121, 122, 123,127, 124, 153]. Programs written for KKALI must specify a virtual processor array and as-
sign distributed arrays to BLOCK, CYCLIC, or user-specified distributions. Instead of deriving a functional
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decomposition from the data decomposition, KALI requires that the programmer explicitly partition loop
iterations onto the processor array. This is accomplished by specifying an on clause for each parallel loop.
Communication is then generated automatically based on the on clause and data distributions. Arguments
to procedures are labeled with their expected incoming data partition. The user must ensure that the pro-
cedure is called only with the appropriately decomposed arguments. An inspector/executor strategy is used
for run-time preprocessing of communication for irregularly distributed arrays [125, 155]. Major differences
between KaLI and the Fortran D compiler include mandatory on clauses for parallel loops, support for
alignment, collective communications, and dynamic decomposition.

CM Fortran

CM FORTRAN is a version of Fortran 77 extended with vector notation, alignment, and data layout speci-
fications [5, 196]. Programmers must explicitly specify data-parallelism through the use of array operations
and by marking array dimensions as parallel. The CM FORTRAN compiler utilizes user-defined interface
blocks to specify a data partition for each procedure. Array parameter are then copied to buffers of the
expected form at run-time, eliminating the need for interprocedural analysis.

The first CM FORTRAN compilers treat the underlying machine field-wise as a collection of 1-bit pro-
cessors, resulting in inefficient code. Later compilers improve performance by operating slice-wise, using 32
bit slices to take advantage of the 32-bit Weitek floating-point processors on the CM-2 [187]. The stencil
compiler avoids unnecessary intra-processor data motion, inserting communication only for data located on
a separate physical, rather than virtual, processor [31]. It resembles a highly specialized Fortran D compiler
for stencil computations, including optimizations at the assembly code level to improve register usage. The
CM FoRTRAN compiler has been retargeted for the CM-5, but results show that it fails to fully exploit the
CM-5 architecture [186].

C*, Dataparallel C

C* and DATAPARALLEL C are extensions of C similar to C++ that supports SIMD data-parallel programs
[96, 97, 179]. They both provide a local view of computation. Data is labeled as mono (local) or poly (dis-
tributed). There are no alignment or distribution specifications; the compiler automatically chooses the
data decomposition. Parallel algorithms are specified as actions on a domain, an abstract data type imple-
mentation based on the C++ class. Communications are automatically generated by the compiler. Despite
their SIMD semantics, C* and DATAPARALLEL C can be efficiently compiled to both SIMD and MIMD
architectures. Instead of generating virtual processors for each element of a domain, compile-time analysis
enables contraction, emulating virtual processors via loops. Researchers have also examined synchronization
problems encountered when translating SIMD programs into equivalent SPMD programs, as well as several
communication optimizations [96, 174]. Experience will show whether SIMD languages such as C* provide
sufficient flexibility for a wide class of scientific computations.

DINO

DiNo is an extended version of C supporting general-purpose distributed computation [181, 182]. DINO sup-
ports BLOCK, CYCLIC, and special stencil-based data distributions with overlaps, but provides no alignment
specifications. Like C*, it provides the programmer with a local view of the computation. A DINO pro-
gram contains a virtual parallel machine declared to be an environment. They generate multiple processes
per physical processor when large numbers of virtual processors are declared in the environment. Nonlocal
memory references must be annotated with the “#” operator. The DINO compiler then translates these
references into communications. Parallelism is specified by composite functions. Passing distributed data
as parameters generates nonlocal memory accesses. The user labels parameters as IN or OUT to indicate
whether their values are used and/or defined. Special language constructs are provided for reductions. DiNo
programs are deterministic unless special asynchronous distributed arrays are used.

Dino is a powerful and flexible language. Programmers can use it to specify optimizations such as
coarse-grain pipelining and iteration reordering for pipelined and parallel computations [161]. However, its
many features may prove burdensome to users. DINO2 proposes a large set of additional language features to
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support parallel task creation, data and computation mapping, synchronization, and communication [180].
DyNo provides support for irregular and adaptive numeric programs [203].

Paragon

PARAGON is a C-based programming environment targeted at supporting SIMD programs on MIMD
distributed-memory machines [46, 177]. It provides both language extensions to C and run-time support
for task management and load balancing. Data distribution in PARAGON may either be performed by the
user or the system. Parallel arrays are mapped onto shapes that consist of arbitrary rectangular distributions.
Communication structures can directly specify arbitrary mappings on parallel data. The location of each
array element may be determined at run-time by checking the distribution map stored on each processor.
Redistribution and replication of arrays and subarrays, as well as permutation and reduction mechanism
are supported. PARAGON has been extended to handle the special class of irregulariy-coupled regular-meshes
[47]. Tt does not currently perform analysis or transformations to detect or enhance parallelism.

ARF, PARTI

ARF is a compiler for irregular computations [209]. It provides BLoCK and cycLic distributions, and
is the first compiler to support user-defined irregular distributions. The goal of ARF is to demonstrate
that inspector/executors can be automatically generated by the compiler for user-specified parallel loops.
It does not currently generate messages at compile-time for regular computations. ARF is designed to
interface Fortran application programs with PARTI, a set of run-time library routines that support irregular
computations on MIMD distributed-memory machines [188]. PARTI is first to propose and implement user-
defined irregular distributions [155] and a hashed cache for nonlocal values [108, 156]. It is employed by a
number of systems to support irregular computations, including the Fortran D compiler.

Pandore

PANDORE is a compiler for distributed-memory machines that takes as input C programs extended with
BLOCK, CYCLIC, and overlapping data distributions [12, 203]. Distributed arrays are mapped by the compiler
onto a user-declared wvirtual distributed machine that may be configured as a vector, ring, grid, or torus. The
compiler then outputs code in the vdm_[l intermediate language. Calls to the PANDORE communication
library to access nonlocal data is also automatically generated by the compiler. Guard introduction and
communications optimization techniques are under development.

Oxygen

OXYGEN is a compiler for the K2 distributed-memory machine [184, 185]. Unlike most systems, OXYGEN
follows a functional rather than data decomposition strategy. Task-level parallelism is specified by labeling
each parallel block of code with a p_block directive. Loop-level parallelism is specified by labeling parallel
loops with either split or scatter directives. Decompositions are mapped onto the K2 architecture as ring,
rowwise, or colwise. Distributed data arrays may be declared as local, multicopy, or singlecopy, corresponding
to private, replicated, and distributed, respectively. Explicit communications directives for reductions and
broadcast are also provided. The OXYGEN compiler converts Fortran code with user directives into C++
node programs with communications. Messages are inserted at points in the program called checkpoints to
enforce coarse-grain synchronization. Work is in progress to automatically generate OXYGEN directives for
functional and data decomposition.

SPOT

SpPoT is a point-based SIMD data-parallel programming language [193, 194]. Distributed arrays are defined
as regions. Computations are specified from the point of view of a single element in the region, called a point.
Locations relative to a given point are assigned symbolic names by neighbor declarations. An iteration indez
operator allows the programmer to specify whether nonlocal values from neighbors are from the current or
previous iteration. This stencil-based approach allows the SPOT compiler to derive efficient near-rectangular
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data distributions. The compiler then generates computation and communication by expanding the single
point algorithm to cover all points distributed onto a node. No alignment and or distribution specifications
are provided. It is not clear how SpoT will support computation patterns that cannot be described by
stencils.

Vcode

VCODE is data-parallel intermediate language [49, 51]. It is designed to allow easy porting of data-parallel lan-
guages between parallel architectures. Initial implementations target the Thinking Machines CM-2,; Encore
Multimax, and Cray Y-MP. In Vcode, computation is performed as segmented scans on vectors [25]. Vcode
demonstrates the usefulness of segmented scans, but possesses severe shortcomings. A major problem is that
most information available in the original program is lost during the translation to Vcode, and must must
be recaptured through difficult analysis to enable efficient compilation [50].

Additional Compilers and Systems

We briefly review the large number of distributed-memory compilers and systems that have been developed.
The first group of compilers target Fortran 90. ADAPT [154] and ADAPTOR [27] both perform translations
relying on run-time support from a portable library. Wu & Fox describe development of a Fortran 90D
compiler developed and validated via a test-suite approach [210]. These compilers perform little analysis or
optimization, extracting parallelism from Fortran 90 array syntax or parallel loop annotations.

The remaining systems are quite varied. BOOSTER provides a system to annotate data placement through
user-defined shapes and views [163]. ORCA-1 supports explicit parallelism through phase abstractions [145].
MoDULA-2* provides a superset of data-parallel constructs [169]. METAMP provides a high-level interface
for explicit message-passing [162]. PYRROS statically partitions task graphs for multiprocessors [211]. Gupta
& Banerjee develop a methodology for generating complex collective communication [90]. Wolfe introduces
loop rotation, a combination of loop skew, reversal, and interchange to reduce contention for common data
[207]. Ramanujam & Sadayappan tile loop nests for distributed-memory machines [176]. O’Boyle & Hedayat
develop a linear algebraic framework for parallelizing S1saL [160].

11.4.3 Analysis-Driven Compilers

The final group of distributed-memory compilers are analysis-driven; they rely more on compile-time analysis
than language features or user annotations. These compilers typically accept Fortran 77 or 90 programs
with data decomposition annotations. They perform analysis to automatically detect parallel operations.
Compared with the Fortran D compiler, these compilers shift much of the burden of parallelization to the
run-time system. Calls to library routines are inserted at compile-time and invoked at run-time to calculate
information such as local loop bounds, array indices, and the amount of data to communicate. This approach
reduces the burden on the compiler and provides it with greater flexibility, allowing it to handle complex
cases such as work arrays or array reshaping at procedure boundaries at run-time. However, it does limit
the amount of optimization that may be applied at compile-time for simpler computations.

Forge90, MIMDizer

ForGEY0, formerly MIMDIZER, is an interactive parallelization system for MIMD shared and distributed-
memory machines from Applied Parallel Research [14, 100]. It performs data-flow and dependence analyses,
and also supports loop-level transformations. Associated tools graphically display call graph, control flow,
dependence, and profiling information. When programming for distributed-memory machines, users may
interactively select BLOCK or cycLic distributions for selected array dimensions. Code spreading is ap-
plied interactively or automatically to loops to introduce parallelism. Distributed arrays are linearized in
order to simplify ownership computation at run-time. FORGE90 automatically generates communications
corresponding to nonlocal memory accesses at the end of the parallelization session.
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ASPAR

ASPAR is a compiler that performs automatic data decomposition and communications generation for loops
containing a single distributed array [110]. It utilizes collective communication primitives from the EXPRESS
run-time system for distributed-memory machines [167]. AsPAR automatically selects BLoCK distributions;
no alignment or distribution specifications are provided. ASPAR performs simple dependence analysis using
A-lists to detect parallelizable loops. The structure of the loop computation may be recognized as a reduction
operation, in which case the loop is parallelized by replacing the reduction with the appropriate EXPRESS
combine operation. If the loop performs regular computations on a distributed array, a micro-stencilis derived
and used to generate a macro-stencil to identify communication requirements. Communications utilizing
EXPRESS primitives are then automatically generated. Like FORGE90, ASpAR performs less compile-time
analysis and optimization, relying instead heavily on run-time support.

Vienna Fortran

SUPERB has recently been adapted for a new language called VIENNA FORTRAN [45]. Vienna Fortran does
not provide a decomposition, but possesses alignment and distribution specifications similar to Fortran D.
It supports explicit processor array declarations, irregular computations, performance estimation, and auto-
matic data decomposition [29, 43, 69]. Dynamic data decomposition is permitted.

VIENNA FORTRAN allows the user to specify additional attributes for each distributed array [44]. Restore
forces an array to be restored to its decomposition at procedure entry. Notransfer causes remapping to
be performed logically, rather than actually copying the values in the array. Nocopy guarantees that its
formal and actual parameters have the same data decomposition. No copies take place, but an error results
if different decompositions are encountered. We attempt to achieve the same benefits in the Fortran D
compiler through interprocedural analysis and optimization.

AL, iWarp

AL is a language designed for the WARP distributed-memory systolic processor [198, 199]. The programmer
utilizes DARRAY declarations to mark parallel arrays. The AL compiler then applies data relations to au-
tomatically align and distribute each DARRAY, detect parallelism, and generate communication. Only one
dimension of each DARRAY may be distributed, and computations must be linearly related. Its successor, the
IWARP compiler, targets the difficult task of simultaneously supporting data-parallelism, coarse-grain task
parallelism, and fine-grain systolic parallelism [86, 102, 134].

P3C, VMMP

P3C, the Portable Parallelizing Pascal Compiler, translates sequential Pascal programs into explicit parallel
code [76]. The output program relys on VMMP [75], a portable software environment running on many
multiprocessors. P3C performs simple analysis to detect and parallelize parallel loops and reductions. Static
execution time estimation is used to choose between sequential and parallel code. P3C emphasizes portability
rather than complex program analysis.

Fortran-90-Y

The FORTRAN-90-Y compiler is designed to apply formal specification techniques to generate efficient code
for the CM-2 and CM-5 [54]. It is intended to support rapid prototyping of compilation and optimization
techniques. The FORTRAN-90-Y compile uses YALE INTERMEDIATE REPRESENTATION as the basis for
performing machine-independent program transformations. It achieves performance comparable to that of
the production CM FORTRAN compiler.

The FORTRAN-90-Y compiler also supports research on optimization techniques for distributed-memory
machines. A transformation strategy is presented to improve parallelism for iterative spatial Fortran 90 loops
on the CM-2, using a combination of loop interchange, skew, and strip-mining [55]. These transformations are
similar to Fortran D program transformations for optimizing pipelined computations on MIMD distributed-
memory machines. Techniques are also developed for algebraic representation of data motion and data
layout for YALE EXTENSIONS, a set of data layout declarations [56]. Variable references are translated into
communication erpressions and optimized using communication algebra through idioms.
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Chapter 12

Conclusions

The Fortran D compiler demonstrates that with minimal language and run-time support, advanced compi-
lation technology can produce efficient programs for MIMD distributed-memory machines. In this chapter
we summarize the research embodied in the thesis—new compilation techniques, experimental results, and
validation of a prototype compiler. We discuss the development of High Performance Fortran and our
perspectives on the issues confronting compilers for distributed-memory machines, including language, com-
pilation model, analysis, optimization, and long-term prospects. We conclude by considering areas for future
work.

12.1 Compiling Fortran D

In this thesis, we identified data decomposition specifications as the key to automatically compiling programs
for distributed-memory machines. Based on this premise, we designed a language, developed compilation
technology, and applied both towards the construction a prototype Fortran D compiler. Preliminary expe-
riences show that Fortran D programs written in a data-parallel programming style can be compiled into
efficient parallel programs for MIMD distributed-memory machines, at least for parallel stencil codes.

The two major tasks facing the Fortran D compiler is to partition the program and introduce communi-
cation for nonlocal data accesses. To achieve high performance, the compiler must strive to minimize both
load imbalance and communications costs. The Fortran D compiler utilizes a code generation strategy based
on message vectorization that unifies and extends previous techniques. Its first applies scalar data-flow anal-
ysis, symbolic analysis, and dependence testing to determine the type and level of all data dependences. The
compiler partitions data by analyzing Fortran D data decomposition specifications to calculate distribution
functions. Computation is then partitioned across processors using the “owner computes” rule.

Once the work partition is computed, the compiler calculates the nonlocal data accessed by each processor.
The compiler examines each nonlocal reference, using results of data decomposition, symbolic and dependence
analysis to determine the legality of optimizations to improve parallelism and reduce communication costs.
The compiler collects the extent and type of nonlocal data accesses to calculate the storage required for
nonlocal data. Finally, the Fortran D compiler uses the results of analysis and optimization to generate the
SPMD program with explicit message-passing that executes directly on the nodes of the distributed-memory
machine. Array and loop bounds are reduced to instantiate the data and computation partition. Nonlocal
data accesses result in the generation of calls to buffer, send, recv calls, and collective communication routines.
The compiler applies run-time resolution to references not analyzed at compile time.

The Fortran D compilation process presents many opportunities for optimization. Program transforma-
tions modify the program execution order to enable optimizations. Communication optimizations reduce
communication overhead by decreasing the number of messages or hide communication overhead by over-
lapping the cost of remaining messages with local computation. Parallelism optimizations restructure the
computation or communication to increase the amount of useful computation performed in parallel. Cost
models help guide both parallelism and communication optimizations.

Interprocedural analysis, optimization, and code generation algorithms limit compilation to only one
pass over each procedure by collecting summary information after edits, then compiling procedures in re-
verse topological order to propagate necessary information. Delaying instantiation of the work partition,
communication, and dynamic data decomposition enables interprocedural optimization. Both Fortran 77D
and 90D may be compiled in a unified system by ordering loop fusion, partitioning, and sectioning. The
Fortran D compiler must cooperatively interact with many other compilers and tools in a complete pro-
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gramming system. Empirical studies validate the performance of the prototype compiler and point out its
strengths and weaknesses.

12.2 Contributions

This thesis contributes in three areas: improved compilation techniques, experimental evaluation of individual
design choices, and empirical validation of the prototype Fortran D compiler.

12.2.1 Compilation Techniques

This thesis develops a number of compilation techniques that may be classified as new discoveries or exten-
sions to existing methods. Novel algorithms introduced in this thesis include:

e Providing the DECOMPOSITION statement, allowing users to map different arrays to the same logical
group.

e Applying vector message pipelining to hide communication costs without increase communication over-
head.

e Identifying and optimizing parallelism in a class of pipelined computations.
e Cost models for guiding communication and parallelism optimizations.

e Efficient one-pass interprocedural compilation and optimization.

In addition, the Fortran D compiler incorporates a large number of adaptations and enhancements to com-
pilation techniques discussed by previous researchers. These extensions include:

e Combining ALIGN, DISTRIBUTE, and extending FORALL for both SIMD and MIMD systems.

e Formulating a compilation model based on the owner computes rule. Applying distribution functions
at compile-time and efficiently instantiating the program partition at run-time.

e Extending message vectorization into a complete code-generation strategy, including message coalescing
and aggregation to reduce communication overhead.

o Adapting methods for relaxing the owner computes rule.
e Generalizing iteration reordering for unbuffered messages.

e Developing heuristics to guide program transformations such as loop interchange, fusion, distribution,
and strip-mining.

e Unifying compilation of Fortran 77D and 90D.

12.2.2 Experimental Evaluation and Validation

In addition to new compilation techniques, this thesis contains a number of experimental studies that have
provided valuable information. These studies fall into two groups. The first group of experiments verify the
design of individual components of the compiler by:

e Evaluating the importance and interaction between different optimizations. Results indicate that
exploiting parallelism is key, followed by optimizations that eliminate large numbers of messages, e.g.,
message vectorization, coarse-grain pipelining, and collective communication.

o Establishing the importance of interprocedural optimization. Measurements show order of magnitude
improvements in the optimized version of DGEFA, Gaussian elimination with partial pivoting.
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e Verifying the importance of a unified compilation framework for Fortran 77D and 90D. Results show
order of magnitude improvements for ADI integration due to loop fusion, and 30-50% improvements
for kernels due to data prefetching.

The second group of experiments are designed to validate the complete prototype compiler. They compare
the output of the prototype against:

e Hand-optimized message-passing kernels and programs on the Intel iPSC/860. On parallel stencil
computations, the Fortran D compiler is slower by up to 50% for kernels but matches the performance
of programs. On linear algebra and pipelined codes the prototype is slower by 50-100%.

e Kernels and programs compiled by the CM Fortran compiler for the TMC CM-5. The Fortran D
compiler is faster by 2-17 times on parallel stencil codes, and over 20 times faster on linear algebra
and pipelined kernels.

12.3 High Performance Fortran

Many researchers in the field have come to share the Fortran D view of data-parallel programming, as have
most major vendors of parallel machines. Distribution of the initial Fortran D language specification quickly
captured the interest of the high-performance computing community. It culminated a year later in the
formation of the High Performance Fortran Forum, a coalition of vendors, research laboratories, academics,
and users dedicated to defining an informal Fortran language standard for high-performance computing.
Members include Convex, Cray Research, DEC, Fujitsu, IBM, Intel SSD, and Thinking Machines.

After much effort and a year of meetings, High Performance Fortran (HPF) was presented for public
comment at Supercomputing '92 [99]. Many core features of Fortran D were adopted by HPF, along with
numerous additional extensions and refinements. Several hardware vendors and software companies are in
the process of developing commercial HPF compilers, some scheduled for distribution as early as 1993. We
consider this wide-spread interest and acceptance additional validation of our thesis—that advanced compiler
technology makes languages such as Fortran D and High Performance Fortran efficient and feasible for a
variety of parallel architectures.

12.4 Perspectives

Our experiences in designing, implementing, and experimentally validating the prototype Fortran D compiler
have provide us with a number of perspectives concerning languages such as Fortran D and High Performance
Fortran.

12.4.1 Fortran D Language

First, we discovered that for most applications, very simple data decompositions suffice for good perfor-
mance. In particular, only simple interdimensional array alignment proved useful for MIMD distributed-
memory machines. Alignment offsets and options for overflow & range were not needed. Complex replication
specifications were also unnecessary, variables were either distributed or replicated across all processors.

The data distribution attributes in Fortran D appear to be more than sufficient for generating good
code. Brock distributions reduce communication for stencil computations, while cycric distributions
improve load balance for linear algebra computations. Higher dimensional data distributions are required to
effectively exploit large number of processors for limited problem sizes. The FORALL loop, REDUCE statement,
and ON clause were all unnecessary for regular dense-matrix computations. Dynamic data decomposition
appears to be desirable only in a few rare cases.

12.4.2 Compilation Model

So far, our experiences with the Fortran D compilation model indicate the owner computes rule works
quite well in practice. Given reasonable data decompositions, the rule partitions computation evenly while
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preserving data locality. Straightforward analysis can identify private variables and reductions, two occasions
when the owner computes rule must be relaxed. Given the simple data decompositions and array subscripts
encountered in programs thus far, distribution functions are easily applied and inverted as needed to enable
compilation.

We also find that the SPMD model of computation used by the Fortran D compiler does not pose any
restrictions to the flexibility or efficiency of Fortran D programs. Because the Fortran D compiler is designed
for data-parallel codes, SPMD programs are sufficient to exploit all of the available parallelism. In fact, its
control over SPMD output allows the Fortran D compiler compile-time control over scheduling and task-
to-processor mapping not found in MIMD shared-memory fork-join programming models. Compilations
systems that bypass SPMD to produce output specialized for particular processors avoid the need for run-
time testing of processor identity. However, the computation avoided is purely local, and is so inexpensive
it is unlikely to affect overall execution time.

12.4.3 Program Analysis

Just as in shared-memory parallelizing compilers, symbolic analysis is essential for providing sufficient infor-
mation at compile-time. However, the penalty for missing information is much more severe for distributed-
memory compilers. For well-written data-parallel codes, the Fortran D compiler does not seem to require
symbolic analysis beyond the capability of mature parallelizing compilers. The difficulty lies in attempting
to analyze “dusty deck” programs, which usually contain constructs too difficult for even state-of-the-art
dependence analyzers. These codes are poor targets in any case for massively-parallel machines.

Regular section descriptors appear to be adequate for describing index and iteration sets for parallel
stencil programs. More complex descriptors such as simple sections [18] may be required for blocked linear
algebra computations, as they frequently access data in trapezoidal sections. Kill analysis for scalars and
array sections can aid the Fortran D compiler but are not essential; they seem more useful for guiding
automatic data decomposition. Interprocedural analysis designed to optimize dynamic data decomposition
through the calculation of live decompositions may be difficult, but the scarcity of opportunities for dynamic
data decomposition render the problem academic.

12.4.4 Compiler Optimization

Our experiments show that recognizing and exploiting parallelism is the key optimization for the Fortran D
compiler. The impact of exploiting parallelism increases with both problem size and the number of processors.
The overall effect of communication optimizations, on the other hand, is limited by the portion of execution
time devoted to performing communication. Because of the relatively high cost of initiating each message,
communication optimizations that can eliminate large numbers of messages appear to be most significant.
Additional communication optimizations seem worthwhile only for applications where communication is a
large percentage of total execution time.

12.4.5 Algorithmic Complexity

Though not considered in detail in this thesis, the complexity of most Fortran D compilation and optimiza-
tion algorithms appear to be strictly polynomial in the number of variable references in each loop nest.
Dependence edges must be examined, and pair-wise comparisons of variable references or RSDs occur, but
combinatorial search is rare. Most algorithms simply apply affine functions to directly calculate a solution,
such as applying distribution functions to an array subscript to discover the local index set. The only al-
gorithm where exponential search may potentially occur is in vector message pipelining, which resembles
instruction scheduling in the presence of constraints. The prototype compiler avoids combinatorial search
by applying a greedy algorithm to select communication placement.

12.4.6 Prospects

Despite its successes, our experiences with the Fortran D compiler shows that it is not a panacea for all the
problems with parallel programming. In particular, the Fortran D compiler cannot be effectively used to
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parallelize “dusty deck” Fortran programs, even those written for vector or parallel machines. Significant
user effort is still required to write programs in a clean data-parallel style before the Fortran D compiler can
successfully analyze and compile the result. However, once programs have been rewritten in such a manner,
the Fortran D compiler fulfills its promise of providing an efficient data-parallel programming model.

High Performance Fortran finesses the problem of dusty decks by choosing Fortran 90 as its base language.
HPF thus forces programmers to write in a data-parallel style with explicit parallelism. This approach greatly
simplifies the task of the HPF compiler as compared to the Fortran D compiler, and makes the relatively
quick release of HPF compilers achievable. However, the poor performance of the CM Fortran compiler
on the CM-5 demonstrates that explicit parallelism and language features do not entirely substitute for
advanced compiler technology.

12.5 Future Work

We conclude by pointing out some areas for continuing the research begun in this thesis.

12.5.1 Extensions to the Fortran D Compiler

First, to increase its usefulness as a programming tool, the Fortran D compiler must be improved. We found
that the prototype compiler was unable to compile many scientific programs because of its inflexibility and
immaturity. For some cases better symbolic or array data-flow analysis is required for the compiler to under-
stand complex programming constructs. In other instances better run-time support would have enabled the
prototype to handle boundary conditions that take up only a small percentage of total computation time.
There are also complex computation patterns such as FFTs and particle-in-cell that the compiler fails to
recognize and compile due to its immaturity. The compiler also proved to be less effective for computations
requiring extensive communication, such as ADI integration and LU decomposition using Gaussian elimina-
tion with partial pivoting. More advanced optimizations need to be developed and implemented for these
communication-intensive programs.

12.5.2 Shared-Address Space Architectures

We intend to adapt Fortran D compilation techniques for emerging shared-address space architectures (e.g.,
DASH, KSR-1). On these scalable parallel systems processors share the same global address space, freeing
the compiler from the chore of handling explicit address conversion. However, locality of reference, latency
avoidance & tolerance, and block data movement are still key to achieving good performance. In addition,
the compiler must insert synchronization to must prevent undesirable data-races. Techniques to improve
locality on these systems have typically evolved from shared-memory compilers, consisting of program trans-
formations, affinity scheduling, and software cache coherence. In comparison, we plan to evaluate compiler
optimizations adapted from distributed-memory compilers.

The main advantage of compilers like Fortran D is that they can more precisely determine the location of
data and computation. By retaining the SPMD programming model, these compilers can also retain control
over both the computation partition and mapping of tasks relative to data. The Fortran D compiler may
partition both data and computation at compile-time as before in order to maximize locality of reference.
Run-time task scheduling is not needed for regular computations. However, the compiler can no longer rely
on explicit message passing to provide both synchronization and data movement. Instead, it will need to
insert explicit barrier synchronization using shared-memory compilation techniques. In addition, send and
recetve messages can be translated into hints for optimizing inter-processor data movement using block data
prefetch and update.

12.5.83 Low-level Communication Primitives

Another improvement we plan for the Fortran D compiler is to exploit low-level communication primitives
such as active messages [200]. Standard message-passing libraries incur significant software overhead due
to their generality and fault tolerance. Lower-level communication primitives, on the other hand, can avoid
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much of the overhead of a standard typed message-passing communication layer by making optimistic as-
sumptions or limiting generality. Experience has show this can yield integer factors of improvement in
performance [180].

By utilizing such communication primitives, the Fortran D compiler can generate programs with better
performance. However, greater effort is required on the part of the compiler to ensure these primitives are
used correctly. For instance, a major source of improvement in low-level communication primitives is the
elimination of unnecessary data buffering. Instead of first copying data to a system buffer, it is sent or
received in place in the users’ address space. To use these primitives, the Fortran D compiler must perform
compile-time analysis and generate appropriate synchronization to ensure that data is not overwritten.
Unlike unbuffered messages provided, active messages allows the Fortran D compiler to exploit compile-time
knowledge to reduce system overhead.

12.5.4 Irregular Computations

This thesis has focused on the compilation of regular dense-matrix computations. Though these still comprise
the majority of scientific applications, there is an accelerating trend in the computational science commu-
nity towards irregular computations involving sparse matrixes and adaptive algorithms [72]. Fortunately,
researchers have been investigating techniques for efficiently handling such computations through a combina-
tion of compile-time and run-time approaches [125, 155]. There is an ongoing effort to develop and improve

support for such irregular computations in the framework of the Fortran D compiler and programming system
[58, 95, 172].

12.5.5 Support for Parallel Input/Output

Finally, one aspect of automatic parallelization that most researchers prefer to avoid is that of providing
support for parallel 1/O. The current Fortran D compiler inserts guards to ensure all I/O is performed on a
single processor. More advanced systems will need to deal with parallel I/O is a more comprehensive manner

[28].
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