Compiler Support for Machine
Independent Parallelization of
Irregular Problems

Reinhard von Hanzleden

CRPC-TR92301-S
November 1992

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Compiler Support for Machine Independent
Parallelization of Irregular Problems

Reinhard von Hanxleden
Thesis Proposal
November 1992

Department of Computer Science
Rice Unwversity
Houston, TX 77251
reinhard@rice.edu

Abstract

The Fortran D group at Rice University aims at providing a machine independent
data parallel programming style, in which the applications programmer uses a dialect
of sequential Fortran and high level distribution annotations. Extracting parallelism
from these applications typically is straightforward, but making efficient use of this par-
allelism for irregular applications, such as molecular dynamics or unstructured meshes,
is a challenge due to the limited compile-time knowledge about data access patterns.

It is my thesis that the spatial locality of the underlying problems can be used as
a basis of compiler support for parallelizing such applications. Value-based decomposi-
tions are an extension of Fortran D to express the spatial locality of an application and
to assist the compiler in computing a distribution with both a balanced computational
workload and high data access locality. A communication data flow framework detects
opportunities to combine messages, move them into less frequently executed code re-
gions, or even eliminate them. Loop flatlening is a code transformation to overcome
SIMD specific control flow limitations when executing nested loops with varying inner
loop bounds, which are typical for irregular problems.

1 Introduction

The FORTRAN D group at Rice University aims at providing a “machine independent
parallel programming style,” in which the applications programmer uses a dialect of
sequential Fortran and annotates it with high level distribution information [FHK*90].
From this annotated program, FORTRAN D compilers will generate codes in different
native Fortran dialects for different parallel architectures. The target architectures
include both shared and distributed memory architectures and both MIMD and SIMD
machines. The overall goal for the code generated by the FORTRAN D compiler is to

have a performance which is, for most applications, relatively close to the performance
of hand written native code.

A prototype FORTRAN D compiler targeting the iPSC/860 has been under devel-
opment. This compiler has had considerable success with regular problems [HHKT91,
HKK*91, HKT91, HKT92b]. The goal of my research is to extend the expressive-
ness and effectiveness of the FORTRAN D constructs like DECOMPOSITION, DISTRIBUTE,
ALIGN, and FORALL into the domain of irregular problems.

1.1 Irregular Problems

Depending upon one’s point of view, there are different criteria for when a problem or
an application is irregular.

o A physicist might classify a computational problem by the degree of geometric
simplicity and the variance of density of the underlying physical problem. An
example of a regular problem under this metric is the calculation of a simple
wave equation for a rectangular problem domain, whereas mapping out the gravity
potential for an expanding galaxy is certainly of irregular nature.

e An applied mathematician who sees the mathematical description of a problem
can consider the sparsity of the data describing a particular instance of the prob-
lem. Typical examples are finite difference methods, which have a dense (regular)
description, wvs. finite element methods, whose description is sparse due to the
varying element sizes.

o A computer scientist is typically interested in the complexity of the data struc-
tures and access mechanisms needed to efficiently solve a problem; “efficiently”
because even irregular problems can usually be captured by very simple data
structures, but not without wasting memory and/or processing power. Simple
arrays, accessed directly, are typical for regular problems, whereas irregular ap-
plications may employ arrays with indirection vectors, pointers, linked lists, or
quad trees, for example.

We consider a problem to be irregular if its data access patterns are hard to analyze
at compile time; i.e., there is no obvious, simple parallelization that gives good speedups
and makes efflicient use of processing power and storage capacities. This is usually
associated with the need for sophisticated data structures, for example quad trees for
solving N-body problems. These data structures are more difficult to distribute among
distributed memory processors than, for example, simple arrays accessed in a regular
manner. However, they enable us to use faster algorithms; in the N-body example,
we can replace the naive O(N?) algorithm with hierarchical tree methods, having an
O(Nlog N) [BH86] or even an O(N) time bound [GR87].

With increasing processor power opening the door to solving scientific problems
that were previously impractical to solve (“Grand Challenges”), the relative importance
of the already widespread irregular applications is expected to increase even further.
Examples for areas of high interest are molecular dynamics, galaxy simulation, gene
decoding, climate modeling, and computational fluid dynamics. Typical difficulties
when parallelizing irregular problems are:

Difficulty 1 Bad load balance, for example when modeling a rapidly changing physical
system.

Difficulty 2 Lack of compile time knowledge aboult where and which data have to be
communicated, for example in Monte-Carlo processes.

Difficulty 3 Limited locality, for example when computing long range interactions
between particles.

Difficulty 4 Large communication requirements, for example when simulating many
timesteps of a relatively small, bult dynamic system.

The thesis of this dissertation is the following:

1t is feasible and profitable to provide compiler support for the parallelization
of scientific applications of irreqular nature to directly exploit the spatial lo-
cality of the underlying problem. An important component of this compiler
support is the concept of value-based decompositions that are derived from
snapshots of the spatial configuration of the application. In combination with
the alignment mechanism provided in data parallel languages such as FOR-
TRAN D, value-based decompositions are a practical and convenient handle
for expressing both spatial locality and data interdependence.

Here, as in the rest of this proposal, the term spatial locality refers to the physical
locality in the problem domain of the application (as opposed to locality of reference in
an array, for example). Furthermore, the term data interdependence is used in a high-
level sense, like “the force between two particles depends on their distance” (as opposed
to the field of dependence analysis which derives statement ordering constraints based
on definitions and uses of the same variables).

The goal for this dissertation is to prove this thesis and to extend the support
for irregular problems within the FORTRAN D framework. Some points of particular
interest are:

o Scalability towards large-scale parallelism (> 1K processors),

¢ Fundamental and practical differences between MIMD and SIMD architectures
with respect to irregular problems, and

o The impact of high message latencies.

The rest of this proposal is organized as follows. Section 2 gives some background
about parallelizing irregular problems and describes related work. This section is or-
ganized into a hierarchy of levels reaching from the high level algorithm formulation of
the application down to the target machine architecture. Section 3 gives an overview
about the actual research plan, the contributions of this thesis, and the validation
approach. Section 4 concludes with a very briefl summary and a description of some
possible spin-offs this work will make possible. Appendices A, B, and C contain further
details of the projects outlined in Section 3.

2 Background and Related Work

We can classify the steps towards the eflicient parallel implementation of an irregular
problem by the level at which they are taken: the algorithm development, the program
text, supportive tools, the compiler, the operating system, or the underlying hardware.

While this thesis has a strong focus on the compiler level, this section lays the ground
for putting its contributions in perspective by examining related work also at higher
and lower levels and in the domain of regular applications.

2.1 The Choice of the Algorithm

The algorithm embodies many high level decisions that affect a parallel implementa-
tion. Obviously it is the key towards good efficiency, and it is often worth redesigning
a preexisting sequential algorithm before taking it as a basis for a parallel implementa-
tion. An typical example can be found in the WaToRr population simulation [FJLT88].
In WAToR, members of different species breed, move around within a quantized space,
and die. To avoid overpopulation, one rule is that whenever two animals move to the
same location, one of them has to retreat and try to go elsewhere. In a sequential
implementation, the overhead associated with this rollback is usually insignificant. In
a parallel implementation, however, a rollback across processor boundaries can be very
expensive. Due to potential race conditions, it also becomes difficult to assure de-
terminism, even for a fixed number of processors and a fixed problem decomposition.
After identifying such a problem, one should reexamine the algorithm, which was orig-
inally formulated for sequential computers. In the WATOR case, it turns out that for
enforcing the concept of finite space and avoiding overpopulation, there are alternatives
to the original rollback rule [HS92]. These alternatives are not only more efficient on
parallel machines by avoiding costly rollback operations, they also enable deterministic
program execution even for different problem decompositions and for varying numbers
of processors.

In practice, redesigning algorithms for parallel implementations (which are typically
more complicated than the simplistic WATOR application) is often hampered by the
algorithm designer having a solid expertise in either the underlying application or the
performance characteristics of parallel target machines, but usually not in both. How-
ever, with the field of parallel programming slowly maturing, parallel algorithms have
been formulated for many important application domains [Fox91]. While the results
of this thesis may have some implications for the design of good parallel algorithms for
irregular problems as well, they are not its main concern.

2.2 The Source Program

The program is often written by the same person as the algorithm, but it is responsible
for a different set of decisions. Very important is the choice of the right data structures,
and for irregular applications in particular many tradeoffs have to be made. Some of
these tradeoffs are listed here.

Simplicity: Critical in the development stage, but also for later maintenance.

For example, one might argue that the long lasting success of molecular dynamics
packages like Gromos [GB88] or CuarRMM [BBOT83] is at least partially due
to the simplicity of their main data structures. These programs use standard
arrays with indirect accesses, as opposed to complicated pointer structures with
data allocation/deallocation or other data structures that capture spatial locality.
Although Fortran is the underlying language in both cases, it is only part of the
reason for this simplicity, since one might simulate data structures beyond arrays

here as well. At least equally important seems to be the background of the
scientists who made the first implementations, whose ugly but straightforward
programming style enabled ongoing modifications and vast extensions of these
packages by their colleagues.

Simplicity: Again, but now from the compiler’s point of view. Here not only the data
structures themselves are important, but also the way they are accessed.

Coming back to the molecular dynamics example, it might be (relatively) easy
for a human to distinguish between code regions computing nonbonded forces
for solute atoms and corresponding code regions for solvent atoms and see that
they do not interfere with each other. A compiler, however, sees that there are
code regions manipulating the same arrays and might therefore overlook possible
optimizations.

Efficiency and Locality: This is often a space/time tradeoff. For example, it takes
fewer instructions to access an array element directly than to do so indirectly,
but direct access often implies large storage needs (see Appendix A). For parallel
applications, coarse locality, i.e., locality on a per-processor view, is crucial for
keeping communication costs down. However, data structures that enable orga-
nization of data according to the spatial proximity of the entities they are related
to (stars, atoms, ...) have some overhead which has to be traded off against
communication efficiency.

Equally important is the fine-grain locality, which is critical for good performance
on the memory hierarchy below off-processor access. If we let ¢,,imarys Csecondarys
and Ceomm be the cost of accessing a piece of data from primary memory (regis-
ters, cache), secondary memory (main memory), and off-processor, respectively,
it seems that flocal = Csecondary/cprimary is appfoaChing fglobal = Ccomm/csecondary
on newer architectures. Furthermore, as soon as we have a reasonable coarse
locality, the factor fiyeq comes into play much more often than fyi.pe. (Unfor-
tunately it seems that this fine locality is often much less carefully considered
than coarse locality. The reason is probably that it easier to picture the cost of
fetching data from another processor, which might be several feet away, than the
concept of finite cache lines, associativity, and so on.) Here the use of indirection
obviously has a high impact again. For example, the poor performance of many
molecular dynamics codes on vector machines such as the Cray is basically a con-
sequence of low fine-grain locality. In this case, the factors that prevent a code
from vectorization are similar to those that cause frequent cache misses [SM90].

2.3 Tools

Tools try to resolve the tradeoffs between simplicity and efficiency. They can assist in
load balancing and in communication, both of which can be particularly tedious and
error prone when trying to parallelize an irregular problem efficiently [HS91b].

The tools for parallelizing irregular problems can roughly be divided into two
groups. The first group of tools provides an easier grip on the physical properties
of the problem, i.e., it takes advantage of spatial locality. The second group comes
into play after the data structures have been laid out; these tools try to free the user
from dealing with the access properties of the parallel program; i.e., they examine data
locality.

2.3.1 Tools based on spatial decomposition

The Generic Multiprocessor The Generic Multiprocessor (GENMP) [Bad87a,
Bad87b, Bad91], aims at providing a machine independent programming environment
for a certain class of problems, namely scientific calculations that are spatially localized
on a mesh. GENMP is a layer of software that can be thought of as a virtual machine
that operates on a d-dimensional work mesh through a sequence of states. With the
aid of application dependent routines written by the user, it repartitions the work
mesh across processors to achieve a balanced work load and performs the necessary
communication. Good results have been achieved with the implementation of the
vorticity-stream function formulation of Euler’s equation for incompressible flow in
two dimensions in an infinite domain. The tests were performed on a 32 processor
distributed memory iPSC hypercube and a 4 processor shared memory Cray X-MP
vector machine. The limitation of this approach lies in its specificity towards mesh-
based, localized applications, which we try to overcome by using general value-based
decompositions as introduced in Section 3.2.

Lattice Parallelism Lattice Parallelism (LPAR) [Bad92] is an SPMD program-
ming model that supports coarse-grained parallelism based on the FipIL language [HC88]
and the owner computes rule. It is intended for non-uniform computations that involve
partial differential equations and have local structure. It explicitly excludes unstruc-
tured calculations such as sparse matrix linear algebra and finite element problems.
Its main data type is the Map, whose elements are indexed by tuples just like array
elements. However, the index set of a map, the Domain, is not necessarily rectangular,
but can be arbitrarily sparse instead. Furthermore, a map declaration itself does not
reserve any storage; this has to be allocated explicitly or by an initialization assign-
ment. Maps are flexible; their domain can change at run time, and several domain
constructors (for rectangular domains, also with arbitrary starting and ending points
and strides) and operators (union, intersection) are available.

Parallelism is expressed by mapping a logical processing Domain onto a spatial
processing Domain. LPAR supports load balancing and ghost regions, in which each
processor stores data within a certain proximity to its own data, similarly to overlap
regions [Ger90]. It is currently implemented in C4++ for the iPSC/860. LPAR treats
parallelism at a very high level, it manipulates the structure of the data, rather than
the data itself. It enables very elegant formulations of a limited class of problems and
can be seen as a potential user of an implementation of the value-based decompositions
proposed in Section 3.2. Citing Baden [Bad92]:

It is not an implementation-level system, and relies on application libraries
or other run time systems to handle data partitioning or to handle machine-
level optimizations, that could be provided for example by DINO or by FOR-
TRAN D.

2.3.2 Tools based on access patterns

The inspector-executor paradigm An important concept for the tools that
are based on access patterns is is the inspector-evecutor paradigm [KMV90, MSST8S8,
KMSB90, WSBH91], which was developed to support message blocking even in the

presence of indirection arrays. A loop that contains indirect accesses to a distributed
array is processed in four steps:

1. The wnspector runs through the loop and only records which array elements are
accessed, without doing the actual computation. Communication schedules are
computed that satisfy the communication requirements induced by these access
patterns.

2. A gather operation fetches all referenced off-processor data from their owners and
buffers them locally.

3. The ezecutor runs through the loop and performs the computation.

4. A scatter writes all off-processor data that have been defined in the loop back to
their owners.

Parti The PaRTI primitives (Parallel Automated Runtime Toolkit at ICASE) are
a set of high level communication routines that provide convenient access to off-
processor elements of arrays that are accessed (and distributed) irregularly [BS90,
SBW90]. Part1 is first to propose and implement user-defined irregular distribu-
tions [MSST88] and a hashed cache for nonlocal values [MSMB90]. They build on the
inspector-executor paradigm described above; they

1. Coordinate interprocessor data movement,
2. Manage the storage of and access to copies of off-processor data, and

3. Support a shared name space by building a distributed translation table [SCMB90]
to store the local address and processor number for each distributed array ele-
ment.

Communicating the right data at the right time and place is a difficult, yet crucial
task for parallelizing irregular problems. The PARTI primitives are valuable tools for
the first part of the problem, namely for determining where to find which data and for
efficient data exchange. The dataflow framework presented as part of this proposal in
Section 3.3 is designed for attacking the second part of the problem, namely enabling
the compiler to make good use of these primitives without further advice by the user.

The Communication Compiler The Communication Compiler [Dah90] is a
software facility for scheduling general communications on the Connection Machine.
It employs simulated annealing to find a data mapping with as low communication
requirements as possible. It uses a recursive routing algorithm to determine an actual
communication schedule. For fixed communication patterns, the cost of generating this
schedule can be amortized by reusing, for example, over many time steps of a simu-
lation. Its generality makes it very well applicable towards irregular communication
structures. However, the communication patterns have to be known before using the
Communication Compiler.

2.4 The Compiler

The compiler support level is the focus of this thesis. A principal reason for developing
powerful compilers is to shift responsibilities for tedious low level details away from
the programmer. This is typically associated with a tradeoff between abstraction and

performance, which is unfortunate but can be justified to some degree. However, there
also seems to be a fine line between a compiler being powerful and helpful, for example
by assisting the programmer in dealing with machine specific details, and a compiler
trying to be too smart and getting in the way of the programmer. The virtual machine
model used by CM Fortran [BHMS91] can be seen as a typical example of the lat-
ter [Chr91], as explained in more detail in Section 3.4. A programmer should not have
to make this tradeoff when choosing a compiler, especially in a performance oriented
field like scientific parallel computing. A compiler should try to assist the user in mak-
ing some decisions, but it should also provide the user with convenient mechanisms to
guide or override the compiler; such mechanisms are particularly important considering
that parallelizing compiler technology is still in its infancy. Citing from a study about
parallelizing different applications (including a molecular dynamics simulation) using
the FX/Fortran parallelizing compiler [SHI1]:

It is worth noting that the available directives were sometimes found to be
restrictive or incapable of expressing the exact information we wished to
convey to the compiler. For example, the smallest entity for which we can
tell the compiler not to check for dependences is an entire loop.

This observation has led to a trend away from completely parallelizing compilers, which
try to extract parallelism from a sequential program without any user assistance, to-
wards the development of more annotation oriented languages, which try to give the
user a convenient interface for indicating parallelism. This approach is similar to the
power steering paradigm [KMT91] used for loop transformations, where the compiler
cannot always pick the best transformation, but it assists the user by (conservatively)
testing correctness and performing the actual rewriting work.

2.4.1 Parallel Compilation Systems

There have been and still are numerous research projects in the area of compiling for
parallel architectures. Farly work in the field of compiling for distributed memory
machines focussed on defining frameworks for nonlocal memory accesses [CK88] and
data distributions [GB91, HA90, RS89]. For exploiting coarse-grained functional par-
allelism, high-level parallel languages such as Linpa [CGR9], STrRaAND [FT90, FO90],
and DELIRIUM [LS91] have been defined.

Numerous compilation systems for exploiting fine-grained parallelism have been
and are being built, which include AL [Tse90], Aspar [IFKF90], C*/DATAPARALLEL
C [HQL™91, RS87], CrysTAL [LCI1], Dino [RSWI1], Ip NouvEAU [RP89], MiMDIZER [SWW92],
OxYGEN [RA90], P3C [GAY91], PANDORE [APT90], PARAFRASE-2 [GB92], PARAGON [CCRS91],
SpoT [SS90, Soc90], SupErB [ZBGS8S8|, and VIENNA FORTRAN [BCZ92]. While there
is still much work to be done in this field in general, there has already been consid-
erable success in the field of regular applications, and “second generation parallelizing
compiler” has become a common term.

2.4.2 Fortran D

ForTrRAN D is an SPMD (Single-Program Multiple-Data) style language developed
by the distributed memory compiler group at Rice University and serves as a basis
for this work. The following contains a very brief summary of its basic concepts,

the complete language is described in detail elsewhere [FHK'90]. Citing Hiranandani
et al. [HKT92b]:

ForrTrAN D is the first language to provide users with explicit control over
data partitioning with both data alignment and distribution specifications.
The DECOMPOSITION statement specifies an abstract problem or index do-
main. The ALIGN statement specifies fine-grain parallelism, mapping each
array element onto one or more elements of the decomposition. This pro-
vides the minimal requirement for reducing data movement for the program
given an unlimited number of processors. The alignment of arrays to de-
compositions is determined by their subscript expressions in the statement;
perfect alignment results if no subscripts are used.

The DISTRIBUTE statement specifies coarse-grain parallelism, grouping de-
composition elements and mapping them and aligned array elements to the
finite resources of the physical machine. Each dimension of the decomposi-
tion is distributed in a block, cyclic, or block-cyclic manner or replicated.

2.4.3 Compilation Systems for Irregular Problems

Projects that have aimed at least to some degree towards compiler support for paral-
lelizing irregular problems are the following.

Kali Karr [KMV90, MV90, KM91] is the first compiler system that supports both
regular and irregular computations on MIMD distributed-memory machines. Programs
written for KALI must specify a virtual processor array and assign distributed arrays to
BLOCK, CYCLIC, or user-specified decompositions. Instead of deriving a computational
decomposition from the data decomposition, KALI requires that the programmer anno-
tates each parallel loop with an ON clause that maps loop iterations onto the processor
array. Communication is then generated automatically based on the ON clause and data
decompositions. An inspector/executor strategy as described in Section 2.3.2 is used for
run-time preprocessing of communication for irregularly distributed arrays [KMSB90].
Major differences between KALI and the FORTRAN D compiler include KALI’s manda-
tory ON clauses for parallel loops and FORTRAN D’s support for alignment, collective
communication, and dynamic decomposition.

ARF ARrr is another compiler based on the inspector-executor paradigm. ARF is
designed to interface Fortran application programs with the PARTI run-time routines
described in Section 2.3.2 [WSHB91]. It supports BLOCK, CYCLIC, and user-defined
irregular decompositions. The goal of ARF is to demonstrate that inspector/executors
based on PARTI primitives can be automatically generated by the compiler.

2.4.4 Communication analysis

Determining communication requirements and satisfying them efliciently is critical for
any parallel program. FEliminating redundant communication, message blocking and
hoisting, and hiding communication delays are important optimizations, all of which
are particularly difficult to perform for irregular problems. OQur strategy for effective
communication placement is based on an extensive dataflow framework, as outlined in
Section 3.3 and described in more detail in Appendix B.

Dataflow Analysis is a common technique for reasoning at compile time about the
run time behavior of the program concerning variable definitions and uses. The bulk of
the work in this field has treated all variables as scalars, resulting in a very conservative
analysis for array variables. More precise methods are based on representations of array
subsets, like data access descriptors [Bal90] or regular sections [HK91].

The W2 compiler [GS90] for the Warp multiprocessor gathers information like the
set of definitions reaching a basic block to exploit the fine-grain parallelism offered by
the highly pipelined functional units. It is based on interval analysis [All70, Coc70]
and computes information with array region granularity.

Granston and Veidenbaum combine flow and dependence analysis to detect re-
dundant global memory accesses in parallelized and vectorized codes [GV91]. They
assume that the program is already annotated with read/write operations. Their tech-
nique tries to eliminate these operations where possible, also across loop nests and in
the presence of conditionals.

What appears to be lacking so far is a general approach towards analyzing the
communication needs of a given program and determining when communication state-
ments can be combined and hoisted. Developing a dataflow framework which provides
this analysis and furthermore gives specific treatment for the access patterns induced
by irregular applications is a substantial part of this proposal (Section 3.3).

2.4.5 Evaluation

As mentioned in Section 2.4.1, the area of compiling regular applications onto dis-
tributed memory machines has become very active, and much progress has been made.
The formation of the High Performance Fortran Forum [Hig92], an ongoing standard-
ization effort for commercial parallel Fortran compilers, is certainly an indication for
this progress. High Performance Fortran (HPF') derives many of its underlying for
ForTrAN D, which is the base language chosen for the extensions to be proposed here.

The body of work that focuses on irregular application is much smaller. In partic-
ular, there are no attempts to directly exploit the characteristics of underlying appli-
cations (like the positions of atoms in a protein); previous approaches are still based
on access patterns (like a pairlist directly indicating the interaction partners for each
atom) and try to determine data decompositions and communication optimizations
after the access patterns of the program have been determined.

A compiler can not reasonably be expected to derive all locality aspects of the appli-
cation underlying a given program. We do think, however, that there is a considerable
potential for optimizations if the user has a convenient way to express locality infor-
mation to the compiler. The main objectives of this dissertation are the design and
evaluation of language extensions that provide such an interface and the development
of the compiler analysis necessary to support these extensions.

2.5 The Operating System

Virtual or hardware supported single-address space systems can ease the task of paral-
lel programming by eliminating separate address spaces and explicit communications.
Examples of these systems are AMBER [CALT89], CLoups [RAKS8S8], Dasu [LLG190],

Ivy [LH89], Mipway [BZ91], Munin [CBZ91, KCZ92], Orca [BT88], and Prat-
INUM [CF89]. They preserve sequential semantics by enforcing a consistency proto-

10

col, which can be lazy or eager, based on invalidations or updates. MUNIN supports
several such protocols, the choice between them for each individual shared variable is
guided by access pattern annotations provided by the user. These systems, however,
are demand-driven and therefore limited in how much they can hide memory latency
(by prefetching data before they are needed) or reduce data movement costs (by fetch-
ing entire blocks at once). They are limited in that they can only react to accesses
to nonlocal memory; at best, they can maintain a history of past accesses and try to
guess future patterns.

One problem where operating systems can assist in the implementation of irregular
applications in particular is the task of load balancing, since some spatial and temporal
locality is usually associated with the workload. Here information about the utilization
of different processors can be helpful. However, the work done in this area has focussed
on thread based parallelism [ELZ86, Luc88], typically even associated with distinct
processes, instead of data parallelism.

2.6 The Hardware

Some hardware facilities that can be particularly useful for irregular applications are
the following.

2.6.1 Low latency

Due to the typically very irregular access patterns, message blocking becomes more
complicated than for regular applications [SHG92]. A low latency communication
system makes this difficulty less critical.

2.6.2 General routing facilities

Again, due to indirect addressing and the associated irregular access patterns it is often
difficult to constrain the communication to nearest neighbor communication channels,
so a fast general router is advantageous.

2.6.3 Decoupling of control flow

A problem similar to the potential load imbalance across processors is an uneven work-
load within processors. This is also a common characteristic of irregular problems,
where the fraction which a processor spends of its total computation time on a certain
part of its assigned workload may vary. This may cause additional idling when running
irregular problems on SIMD machines instead of MIMD machines.

The restricted control flow of pure SIMD programming has been addressed by
several researchers. General simulators of MIMD semantics on SIMD machines have
been implemented by Kuszmaul [Kus86] and Hudak et al. [HM88] on the Connection
Machine and by Biagioni [Bia91] on the MasPar. These simulations are generally based
on graph reduction interpreters for functional languages. Their performance tends to
be scalable, but in absolute measures still below the speed of sequential workstations.

Philippsen et al. introduce two variants of a FORALL statement, a synchronous ver-
sion and an asynchronous one [PT91a]. The asynchronous FORALL enables multiple
threads of control to coexist. This can either be emulated using stacks of MASK bits,

11

or it can be implemented directly in an MSIMD machine which contains multiple pro-
gram counters. In either case, their proposal is mainly concerned with enabling the
concurrent execution of both branches in IF-THEN-ELSE constructs.

Loop flattening [HK92] is one technique to overcome this limitation for loop nests
with varying loop bounds, as proposed in Section 3.4. Loop flattening can also be used
to process multiple array segments of different lengths per processor, as introduced
in Blelloch’s V-RAM model [Ble90]. Thus it can be viewed as a generalization of
substituting direct addressing with indirect addressing as Tomboulian and Pappas did
for computing the Mandelbrot set [TP90].

2.6.4 Fast scan operations

The inhomogeneous workload across processors generally associated with irregular
problems calls for load balancing. Scan operations are one efficient way for determining
the total workload and its distribution [Bia91, Ble90]. On architectures providing an
embedded reduction tree, this operation can be done in O(log P) cycles.

3 Research Plan

3.1 Overview

For establishing the thesis stated in Section 1, I am currently pursuing three closely
related projects. These range from application oriented performance comparisons of
different distribution strategies to developing a compiler strategy for analyzing com-
munication characteristics of a given code to the development of architecture specific
techniques for solving irregular problems. These undertakings are expected to lead to
valuable insights towards

e Which requirements are given by irregular applications,
¢ How much support we can expect from the compiler for satisfying those, and
e Which difficulties we can expect from the hardware side.

These projects and their specific research contributions towards the thesis are sum-
marized in Sections 3.2, 3.3, and 3.4, respectively; the Appendices A, B, and C contain
more details for each of these.

3.2 Value-Based Decompositions

A standard problem in compiling for distributed memory multiprocessors is to deter-
mine which processors own which elements of a data array X [CK88, Fox88, PRV8T].
For simplicity of notation, we assume in the following that X is three-dimensional; the
extension to lower or higher dimensions is straightforward. Let

Vne IN,IN, = {i|ie IN,1<i<n},
I,JJK € IN (the extent of X in each dimension),
S = IN;x IN;x INg (the index set of X'), and
P e IN (the number of processors),
P = {pi|ie Np} (the set of processor labels),
é S—P (the ownership mapping).

12

The processor label of the owner of X (%, j, k) is given by 6(¢, j, k).

3.2.1 Data Distribution Mechanisms — Mapping Functions vs. Map-
ping Arrays

One important question is: how do we represent § 7 There are several tradeofls to
be made, regarding the locality properties of the data array and the complexity to
represent and compute 4.

o For static, regular mappings such as BLOCK (as shown in Figure 1) and CYCLIC
, 6 can be represented as a simple function involving some integer arithmetic
based on just I, J, K, and P. FEach processor can evaluate ¢ locally for all
(i,7,k) € §. This function is typically hardwired into the compiler and the code
it generates [FHK90].

e For irregular mappings that can be represented in some compact format, for ex-
ample because they map § into P rectangular subdomains. In this case, § can
be represented as a function based on I, J, K, P, and some set D of dynamic
parameters (such as the boundaries of the subdomains). D is typically small
enough to be replicated across processors, so é can still be evaluated locally.
This kind of mapping is applicable if the data structure, here X, directly reflects
spatial locality. Furthermore, a data structure with a fixed density, such as Vari-
able Conductance Diffusion [Bia91], is preferable since in this case the memory
requirements per spatial space unit are also fixed.

These mapping functions can be further subdivided into several classes, ranging
from restrictive but compact and fast to more general but larger and slower.
Assuming that the processors are organized in a three-dimensional mesh, let P =

INg x INg x INs, where QRS = P.

— An orthogonal mapping function as seen in Figure 2 can be represented as
a triplet of one-dimensional mapping functions (4, 6y, 0,):

In this case, § can be encoded by @ + R+ 5 — 3 integers [Bia91], which is
typically O(+v/P) for a 3-D index space.

— A hierarchical mapping function, as illustrated in Figure 3, can also be rep-
resented as a triplet of mapping functions (;,6,,6,). These, however, are
not all one-dimensional any more; instead, it is

Here ¢ can be represented with S — 1+ (R—-1)S+(Q —1)RS = P -1
integers [CHMS92], see also Section A.4.1.

— A general mapping function cannot be represented as a simple composition
of subfunctions; i.e., we cannot decouple any of the dimensions from each
other. A special case here are recursive mapping functions like the orthogonal
recursive bisection shown in Figure 4, which can still be encoded in P — 1
integers [Han89].

13

’5
L~

rd 1
L~

rd L]
/ L1

|~ L]

P

X-axis X-axis

Figure 1 Example of a BLOCK Figure 2 Example of an
decomposition for P = 64 orthogonal mapping for P = 64
Processors. Processors.
%
v
>l |

X-axis X-axis

Figure 3 Example of a Figure 4 Example of recursive
hierarchical mapping for P = 64 bisective mapping for P = 64
Processors. Processors.

The encoding sizes given here for the mapping functions are worst case lower
bounds; we can typically trade representation storage for evaluation speed and
precompute the functions to some degree, resulting in larger representations.

o If the way data are stored in X does not reflect their spatial locality, then ¢ can
probably not be represented in some compact form. In this case, a mapping array
that contains the precomputed values of 6(%, j, k) for all (4, j, k) € S is appropriate.
Since now 6 is encoded in an O(N) data structure (where N = I.J K is the problem
size), this typically implies that ¢ itself has to be (regularly) distributed. This
may result in an extra communication step to first determine the ownership and
then fetch the data from the owner as usual.

3.2.2 Index vs. Value-Based Decompositions

Section 3.2.1 gave an overview about different representations of the ownership mapping
6. The choice of the appropriate representation for §, however, depends on how the data

14

themselves are stored, i.e., which data structure we use for X. In PIC (Particle-In-Cell)
codes, for example, we can store the data linked to a particle in a data structure whose
elements are associated with spatial locations directly. This enables a fast neighbor-
lookup, but it forces us to provide sufficient space for the maximum particle density;
i.e., if we quantize spatial space into [locations and can bound the number of particles
per location by p, then we have to provide lpd bytes storage, where d is the number
of bytes needed to describe a particle. However, it is sufficient to just store for each
spatial location a pointer into another data structure where one linked list of actual
data is kept for each spatial location. If n is an upper bound on the total number of
particles, then Ip+n(d+ p) bytes are sufficient, where p is the size of a pointer in bytes.
For n < lp and 1 < p, which is typically the case, this can be a substantial savings in
storage, at the expense of using linked lists.

Revisiting the definition of ¢, we notice that it maps array element indices to
processors. On the one hand, this is certainly appropriate, since a program accesses
array data by their indices. On the other hand, an important objective in mapping
data to processors is to achieve high locality, not only in terms of indices, but also
regarding the underlying physical problem. This typically implies that there has to be
a correspondence between array indices (index locality) and spatial coordinates (spatial
locality), with the disadvantage of increased memory requirements as mentioned above
for PIC codes.

The approach developed in this thesis tries to resolve this conflict by relaxing this
correspondence requirement and having the compiler keep track of spatial locality
independent of index locality. A wvalue-based decomposition, VDECOMP, is based on
the values of an array, X, at a certain point. Internally, VDECOMP may be represented
as a mapping array, but this should be opaque to the user (see Appendix A.6 for details).
In other words, the mapping function § still effectively maps array indices to processors,
but the definition of ¢ is based on a snapshot of values. As usual, other arrays may
be aligned with VDECOMP; e.g., after deriving a decomposition VDECOMP from a
coordinate array X, we may align not only X but also velocities V and forces F to

VDECOMP.

3.2.3 Contributions

The development and benchmarking of different value-based decomposition schemes
and their comparison with non-value-based approaches from the performance point of
view is an important validation for determining how far these schemes can and should
be implemented in a compiler.

Although the concept of value-based decompositions was developed with simple
arrays as underlying data structures, the thesis will also contain an analysis of how
well this concept applies to the more advanced data structures used in hierarchical
solvers [Ben75, FB74, LW82]. On the practical side, this involves the parallelization of a
Molecular Dynamics code (GrRoMOs). This is accompanied with a comparison between
ForTRAN D and low level message passing code, IPFORTRAN, which still operates in
the local name space of message passing code, but provides language constructs for
easy access of non-local values [BCS91]. The dominating difficulties addressed here are
of type 1 and 3 (see Section 1.1). As described in Appendix A, this project already
has led to valuable insights into which of the language concepts well proven for regular
problems carry over easily into the irregular world and which concepts have to be

15

modified or extended [CHK*92, CHMS92].

3.3 Communication Analysis for Irregular Problems

One issue related to value-based decompositions, and to irregular decompositions in
general, is how to generate the necessary communication for accessing the data dis-
tributed this way. We decided to use the PARTI communication routines which are
described in Section 2.3.2. The remaining question is how to generate calls to PARTI
routines and where to place these calls. For example the unstructured mesh solver of
which Figure 5 shows a simplified and abstracted version has several opportunities for
combining communication and hoisting communications out of loops (see Section B.7).
However, to derive a good communication placement as the one shown in Figure 6 is
nontrivial.

The approach taken in this thesis is based on a dataflow framework [HKK™92] which
bears similarities to classical techniques such as common subexpression elimination,
loop invariant code motion, and dead code elimination. The framework provides a
basis for determining at compile time

o Where communication schedules are to be generated,
o Where gather, scatter, and accumulate operations are to be placed, and
e When combined or incremental schedules may be employed.

In our data flow analysis, some of the variables reflect inherent properties of the an-
alyzed program, while others calculate the results of heuristics we employ in order to
produce the gather and scatter operations. Qur heuristics aim to

e Exploit situations where we can reuse communication schedules, and to

¢ Remove extraneous communication by combining and hoisting gather, scatter and
accumulate procedures.

The domain of this framework is the program flow graph (see Appendix B.1.1),
as shown in Figure 7 for the example from Figure 6. For the example code shown in
Figure 5, the framework would derive the result shown in Figure 8 (see also Section B.7),
which corresponds to the code shown in Figure 6. The dataflow framework aims at
providing good information about which data are needed at which points in the code,
along with information about which live off-processor data are available. We generate
combined communication schedules (Section 2.3.2) that combine off-processor data
for several indirect references, possibly contained in different loops, and we generate
incremental schedules to obtain only those off-processor data that are not already
requested by a given set of pre-existing schedules. This gives the runtime support
needed to combine and hoist gather, scatter, and accumulation operations. Eliminating
redundant data movements in the communication schedules is achieved by using a hash
table.

3.3.1 Contributions

A major part of this thesis is the design and implementation of a data flow framework
for compile time reasoning about irregular array access patterns that occur when using
value-based decompositions [HKK*92]. The generated code should make effective use
of the scatter/gather operations provided by the PARTI system (see Section 2.3.2) and

16

maximize message blocking and data reuse, as described in Section B. This mainly
addresses Difliculties 2 and 4 in Section 1.1.

The implementation work will be done within the FORTRAN D MIMD distributed
memory compiler prototype developed at Rice. The validation is based on comparing,
for a test suite of programs, how well the data flow framework does in communication
placement compared to hand crafted code, and how much of its power is actually needed
in these programs. So far, the prospective test suite includes programs covering

e molecular dynamics (GROMOS, see Section A.1),
e unstructured meshes [Mav91], and
e sparse maftrices.

Beyond working with these source codes, other applications (whose source codes are
not available or not written in Fortran) will be evaluated at least theoretically [HKK™91].

3.4 MIMD wvs. SIMD for Irregular Problems

In the process of parallelizing scientific programs, it is common to find loop nests in
which the outer loop can run in parallel but the amount of computation in the inner
loop varies for different iterations of the outer loop. A typical case is the calculation
of nonbonded forces as described in Section A.2: an outer loop steps through atoms,
each of which is associated with a varying number of partners enumerated in a pairlist
through which we step in an inner loop. This causes a load balancing problem be-
cause the outer loop iterations have to be partitioned among the processors in such
a manner that each processor has a roughly equal amount of work to do (Difficulty 1
in Section 1.1). Load balancing is a difficult problem in itself which has been fre-
quently addressed in the literature [BBHL90, BB87, Bok81, DG90, FKWS86, FJL*88,
HS91a, SHT'92]. Once this problem (including related issues like data locality) is
solved, we can usually expect good performance when running such a loop nest on a
shared-memory or distributed-memory MIMD (Multiple Instruction, Multiple Data)
machine.

However, this kind of loop nest causes special problems for SIMD (Single Instruc-
tion, Multiple Data) architectures because of the restricted control flow on these ma-
chines [Bra89]. If the number of iterations of the inner loops varies from one outer
loop iteration to the next, as for example in the code shown in Figure 9, then the
restriction to a common program counter makes a naive SIMD implementation ineffi-
cient. As observed in a case study implementing an image processing algorithm on the
Massively Parallel Processor [WLR90, page 143]: “... the complexity of each iteration
in the SIMD environment is dominated by the largest region in the image. This is
due to the fact that the synchronous execution of instructions forces each processor to
either perform the operation or wait in an idle state until all processors have completed
the operation. ” To overcome this limitation, we propose a transformation which we
call loop flattening [HK92]. Roughly speaking, loop flattening amounts to lifting the
innermost loop body up into the outer, parallel loop by merging the control of the
inner loops with the control of the outer loop, as shown in Figure 10. Further details
on this can be found in Appendix C.

17

3.4.1 Contributions

The development of the loop flattening concept, which is a loop transformation strategy
to overcome certain control flow limitations on SIMD architectures [HK92], addresses
the problem of providing architecture independent compiler support for parallelizing
irregular problems. These limitations emerge within nested loops if the number of
iterations of the inner loop varies between different iterations of the outer loop. This
situation occurs frequently in irregular problems like the calculation of non-bonded
forces between atoms, as described in Section A.2.

After load balancing, this kind of nested loop with varying inner loop bounds usually
does not pose any problem for sequential or MIMD machines; for SIMD machines, it
can be problematic, since the restriction to a common program counter means for a
direct implementation of such a nested loop that for each parallel outer loop execution,
all processors have to wait for the most time consuming inner loop before advancing to
the next outer loop iteration. This bottleneck, caused by Difficulty 1, can be avoided
by flattening loop nests, which is described in more detail in Section 3.4.

A high level outline of how to automate this transformation will be part of this
thesis, as well as a practical case study on how much loop flattening can improve the
performance of SIMD machines for certain kinds of irregular problems. However, since
the implementation part of this thesis focuses on the FoOrRTrRAN D MIMD distributed
memory compiler prototype, a general implementation of automated loop flattening
should not be part of this work.

3.5 Summary

To summarize, the research to be covered in the thesis includes the following.

o The extension and development of machine independent parallel language con-
structs supporting irregular problems, in particular for providing value-based de-
compositions.

o The evaluation of their usability with respect to different irregular applications.

e The implementation of a subset of these language extensions into the existing
ForTRAN D prototype compiler for MIMD distributed memory machines, poten-
tially covering interprocedural analysis as well. This includes the implementation
of support for mapping arrays, different mappers to automatically determine the
values of the mapping arrays (see Section 3.2.1), and a dataflow framework for
placing calls to PARTI communication routines (as described in Section 3.3).

e Experimenting with these language extensions and comparing the compiler gen-
erated code and its performance with handcrafted parallel code.

e The development and evaluation of the loop flattening transformation, which on
SIMD machines improves the performance of loops with varying inner bounds,
which are typical for irregular problems.

4 Conclusions

The projects described in Sections 3.2, 3.3, and 3.4 focus on different aspects of the same
problem, namely how to solve irregular applications efficiently with parallel machines.

18

Furthermore, they all focus on the issue of how much support a compiler can give
for these applications. The results so far seem to indicate that it is feasible to design
high level language support similar to the support existing for regular problems and
to implement it at reasonable costs. An important example of this is the concept
of the value-based decomposition based on the exploitation of spatial locality of the
underlying physical problem, as introduced in Section 3.3 and in Appendix A.

After having decided on a certain decomposition, communicating the right data at
the right time and place is still a difficult, yet crucial task for parallelizing irregular
problems. The PARTI primitives are valuable tools for the first part of the problem,
namely for determining where to find which data and for efficient data exchange. The
dataflow framework presented in Section 3.3 and Appendix B is designed to attack the
second part of the problem, namely enabling the compiler to make good use of these
primitives without further advice by the user. We believe our approach to be effective
for a wide range of interesting problems, as illustrated with an explicit unstructured
mesh solver.

However, there is obviously still room for further improvement and generalization
of the underlying theory. For example, the loop flow graph representation as described
in Subsection B.1.1 seems to be convenient and well suited for a first implementation,
but has some unsatisfactory aspects from the computer science point of view, such
as the ad hoc distinction between loops that directly enclose indirect references and
other loops. This distinction simplifies the use of portions (see Section B.1.2), which
contain references to iteration ranges, but it constrains the generality of the framework.
Depending upon which heuristic we use, this distinction may, for example, limit the
loop nesting depth out of which we hoist communication statements. A more general
representation of the program could be based on basic blocks instead of inner loops.
A complication then arising would be the loss of an implicit iteration space for each
irregular reference. To determine which references actually constitute a particular
portion, one can use slicing [HRB90]. (This is in fact already part of our current
implementation design, the representation of portions in the fixed format introduced
in Section B.1.2 was mainly used for illustration purposes).

Another relatively straightforward extension is to break each communication call
up into their matching send/receive pairs and then place these components such as to
overlap communication and computation as much as possible. For example, when we
break each GATHER into a GATHER,.,,q and a GATHER, .., (Section B.4), we can
place the GATHER .4 as currently determined by GATH, and place the matching
GATHER,., statement by delaying it along each path starting at the GATHERs.,.4
statement until we reach the first use of the communicated data. (This assumes block-
ing receives; with non blocking receives, we would place the GATHER, .., together
with the GATHER .4, and delay a GATHER,,;; statement instead to make sure the
data are available before we try to use them). A further refinement that would be
useful for block structured irregular problems, for example, is to allow data exchanges
between just subsets of processors, instead of requiring a global coordination whenever
the primitives are called as mentioned in the introduction.

One might also consider relaxing the static ownership concept for data accessed
via indirection arrays. For example, it might occur that a processor p computes some
data that are owned by processor ¢, but the next use of the data is on processor r.
In the current owner computes framework, we would first scatter the data from p to
¢ and then gather them from ¢ to r, which could be replaced by a single “scatter-

19

gather” from p to r. This, however, would add an additional degree of complexity to
the theoretical framework and the underlying communication primitives.

Finally, one might consider pruning the framework down towards regular applica-
tions, where the same need for blocking and combining communication arises. So far,
this is typically handled with local code transformations based on dependence analysis,
but there is no inherent reason for not applying data flow analysis here as well. This
could be done by basically using the framework proposed here and replacing portions
with classical array regions.

The loop flattening transformation described in Section 3.4 is an attempt to over-
come certain limitations when using a SIMD computer for solving irregular problems
without going as far as trying to achieve general MIMD semantics on SIMD machines.
Loop flattening was designed to ease some particular SIMD restrictions without in-
troducing any overheads; however, it supports a programming style that seems to be
preferable on current SIMD machines even when running regular applications [HK92].
This rather surprising result suggests that flattened loops make it easier for compil-
ers to derive the information they need for performing certain optimizations, such as
pruning out virtual processor layers for individual statements whenever possible. This
transformational approach might possibly be carried over into other situations where
the restrictiveness of the SIMD model degrades overall performance.

So far, there does not seem to be a clear limit to what support a compiler, when
given the proper analysis, can give the scientist programming an irregular problem.
It is my hope that this dissertation will advance the field in this particular area by
some steps within the FORTRAN D framework and will also indicate possible future
directions for increasing the compiler support for parallelizing this important class of
applications even further, for example by providing some support for the conversion of
data structures as outlined in Section A.4.

References

[All70] F. E. Allen. Control flow analysis. ACM SIGPLAN Notices, 1970.

[APT90] F. André, J. Pazat, and H. Thomas. Pandore: A system to manage data
distribution. In Proceedings of the 1990 ACM International Conference on
Supercomputing, Amsterdam, The Netherlands, June 1990.

[Bad87a] S. B. Baden. Run-Time Partitioning of Scientific Continuum Calculations
Running on Multiprocessors. PhD thesis, Lawrence Berkeley Laboratory,
University of California, 1987.

[Bad87b] S. B. Baden. Very large vortex calculations in two dimensions. In Vortex
Methods, volume 1360 of Lecture Notes in Mathematics, Los Angeles, CA,
May 1987. Springer-Verlag.

[Bad91] S. B. Baden. Programming abstractions for dynamically partitioning and
coordinating localized scientific calculations running on multiprocessors.
SIAM Journal on Scientific and Statistical Computing, 12(1):145-157,
1991.

[Bad92] S. B. Baden. Lattice parallelism: A parallel programming model for ma-
nipulating localized non-uniform scientific data structures. In Intel Super-

20

[Bal90]

[BB87]

[BBHLIO]

[BBO*83]

[BCS91]

[BCZ92]
[Ben75]
[BHS6]

[BHMS91]

[Bia91]
[Ble90)]
[Bok81]
[Brig9]

[BS90]

[BSGM90]

computer University Partners Conference, Timberline Lodge, Mt. Hood,

OR, April 1992.

V. Balasundaram. A mechanism for keeping useful internal information in
parallel programming tools: The data access descriptor. Journal of Parallel
and Distributed Computing, 9(2):154-170, June 1990.

M. J. Berger and S. Bokhari. A partitioning strategy for non-uniform prob-
lems on multiprocessors. IEEE Transactions on Computers, C-36(5):570—
580, 1987.

T. Bemmerl, A. Bode, O. Hansen, and T. Ludwig. A testbed for dynamic
loadbalancing on distributed memory multiprocessors. PUMA Working
Paper 14, Technical University Munich, Miinchen, Germany, August 1990.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-
nathan, and M. Karplus. CHARMM: A program for macromolecular en-
ergy, minimization and dynamics calculations. Journal of Computational
Chemistry, 4(2):187-217, 1983.

B. Bagheri, T. W. Clark, and L. R. Scott. IPfortran (a parallel extension
of Fortran) reference manual. Research Report UH/MD-119, Dept. of
Mathematics, University of Houston, 1991.

S. Benkner, B. Chapman, and H. Zima. Vienna Fortran 90. In Scalable
High Performance Computing Conference, Williamsburg, VA, April 1992.

J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18:509-516, 1975.

J. Barnes and P. Hut. A hierarchical O(nlogn) force calculation algorithm.
Nature, 1986.

M. Bromley, S. Heller, T. McNerney, and G. Steele, Jr. Fortran at ten
gigaflops: The Connection Machine convolution compiler. In Proceedings
of the ACM SIGPLAN ’91 Conference on Program Language Design and
Implementation, Toronto, Canada, June 1991.

E. S. Biagioni. Scan Directed Load Balancing. PhD thesis, University of
North Carolina at Chapel Hill, 1991.

G. E. Blelloch. Vector Models for Data-Parallel Computing. The MIT
Press, 1990.

S. H. Bokhari. On the mapping problem. IFEFE Transactions on Comput-
ers, C-30(3):207-214, 1981.

T. Braunl. Structured SIMD programing in Parallaxis. Structured Pro-
gramming, 10(3):121-132, 1989.

H. Berryman and J. Saltz. A manual for PARTT runtime primitives. I[CASE
Interim Report 13, Institute for Computer Application in Science and En-
gineering, Hampton, VA, September 1990.

H. Berryman, J. Saltz, W. Gropp, and R. Mirchandaney. Krylov methods
preconditioned with incompletely factored matrices on the CM-2. Journal
of Parallel and Distributed Computing, 8:186-190, 1990.

21

[BT8S]

[BZ91]

[CAL*89]

[CBZ91]

[CCRS91]

[CF89]

[CG8Y]

[CHK+92]

[CHMS92]

[Chr91]
[CKS88]

[CM90]

[CMS91]

[CocT70]

Henri E. Bal and Andrew S. Tanenbaum. Distributed programming with
shared data. In Proceedings of the IEEF CS 1988 International Conference
on Computer Languages, pages 82-91, October 1988.

Brian N. Bershad and Matthew J. Zekauskas. Shared memory parallel pro-
gramming with entry consistency for distributed memory multiprocessors.
Technical Report CMU-CS-91-170, Carnegie-Mellon University, September
1991.

J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Littlefield. The Am-
ber system: Parallel programming on a network of multiprocessors. In
Proceedings of the Twelfth ACM Symposium on Operating Systems Prin-
ciples, pages 147-158, December 1989.

J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and per-
formance of Munin. In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, pages 152-164, October 1991.

C. Chase, A. Cheung, A. Reeves, and M. Smith. Paragon: A parallel
programming environment for scientific applications using communication
structures. In Proceedings of the 1991 International Conference on Parallel
Processing, St. Charles, 1L, August 1991.

A. Cox and R. Fowler. The implementation of a coherent memory ab-
straction on a NUMA multiprocessor: Experiences with Platinum. In Pro-
ceedings of the Twelfth ACM Symposium on Operating Systems Principles,
December 1989.

N. Carriero and D. Gelernter. Linda in context. Communications of the
ACM, 32(4):444-458, April 1989.

T. W. Clark, R. v. Hanxleden, K. Kennedy, C. Koelbel, and L. R. Scott.
Evaluating parallel languages for molecular dynamics computations. In

Scalable High Performance Computing Conference, Williamsburg, VA,
April 1992.

T. W. Clark, R. v. Hanxleden, J. A. McCammon, and L. R. Scott. Paral-
lelization strategies for a molecular dynamics program. In Intel Supercom-

puter Universily Partners Conference, Timberline Lodge, Mt. Hood, OR,
April 1992.

P. Christy. Virtual processors considered harmful. In Proceedings of the
6th Distributed Memory Compuling Conference, Portland, OR, April 1991.

D. Callahan and K. Kennedy. Compiling programs for distributed-memory
multiprocessors. Journal of Supercomputing, 2:151-169, October 1988.

T. W. Clark and J. A. McCammon. Parallelization of a molecular dy-
namics non-bonded force algorithm for MIMD architectures. Computers &
Chemistry, 14(3):219-224, 1990.

T. W. Clark, J. A. McCammon, and L. R. Scott. Parallel molecular dynam-
ics. In Proceedings of the Fifth SIAM Conference on Parallel Processing
for Scientific Computing, Houston, TX, March 1991.

J. Cocke. Global common subexpression elimination. ACM SIGPLAN
Notices, 1970.

22

[Dah90]

[DGIO]

[DMS*92]

[EHL77]

[ELZ86]

[FB74]

[FHK*90]

[FIL*88]

[FKWS6]

[FO90]

[Fox88]

[Fox91]

[FT90]

[GAY91]

[GBSS]

D. Dahl. Mapping and compiled communication on the connection ma-
chine system. In Proceedings of the 5th Distributed Memory Compuling
Conference, Charleston, SC, April 1990.

F. Dehne and M. Gastaldo. A note on the load balancing problem for
coarse grained hypercube dictionary machines. Parallel Computing, 1990.

R. Das, D. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design
and implementation of a parallel unstructured Euler solver using software
primitives, AIAA-92-0562. In Proceedings of the 30th Aerospace Sciences
Meeting. ATAA, January 1992.

J. Eastwood, R. Hockney, and D. Lawrence. PM3DP — the three dimen-
sional periodic particle-particle/ particle-mesh program. Computer Physics
Communications, 19:215-261, 1977.

D. Eager, E. D. Lazowska, and J. Zahorjan. A comparison of receiver-
initiated and sender-initiated adaptive load sharing. Performance Fvalua-
tion, 6:53-68, 1986.

R. A. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval
on composite keys. Acta Informatica, 4:1-9, 1974.

G. C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng,
and M. Wu. Fortran D language specification. Technical Report TR90-
141, Dept. of Computer Science, Rice University, December 1990. Revised
April, 1991.

G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker.
Solving Problems on Concurrent Multiprocessors. Prentice-Hall, 1988.

G. C. Fox, A. Kolowa, and R. Williams. The implementation of a dynamic
load balancer. In Proceedings of the Second Hypercube Microprocessors
Conference, pages 114-121, Knoxville, TN, September 1986.

. Foster and R. Overbeek. Bilingual parallel programming. In Advances
in Languages and Compilers for Parallel Computing, Irvine, CA, August
1990. The MIT Press.

G. C. Fox. Domain decomposition in distributed and shared memory en-
vironments. In Proceedings of Supercompuling °88, pages 1042-1073, Or-
lando, FL, November 1988.

G. Fox. Parallel problem architectures and their implications for portable
parallel software systems. CRPC Report CRPC-TR91120, Center for Re-
search on Parallel Computation, Syracuse University, February 1991.

I. Foster and S. Taylor. Strand: New Concepts in Parallel Programminyg.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

E. Gabber, A. Averbuch, and A. Yehudai. Experience with a portable
parallelizing Pascal compiler. In Proceedings of the 1991 International
Conference on Parallel Processing, St. Charles, IL, August 1991.

W. F. van Gunsteren and H. J. C. Berendsen. GROMOS: GROningen
MOlecular Simulation software. Technical report, Laboratory of Physical
Chemistry, University of Groningen, Nijenborgh, The Netherlands, 1988.

23

[GBI1]

[GB92]

[Ger90]
[GR87]

[GS90]

[GVO1]

[HA90]

[Han89]

[HC8S]

[HHKT91]

[Hig92]

[HKO91]

[HK92]

[HKK*+91]

[HKK+92]

M. Gupta and P. Banerjee. Automatic data partitioning on distributed
memory multiprocessors. In Proceedings of the 6th Distributed Memory
Computing Conference, Portland, OR, April 1991.

M. Gupta and P. Banerjee. Compile-time estimation of communication
costs on multicomputers. In Proceedings of the 6th International Parallel
Processing Symposium, Beverly Hills, CA, March 1992.

M. Gerndt. Updating distributed variables in local computations. Concur-
rency: Practice and Experience, 2(3):171-193, September 1990.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulation.
Journal of Computational Physics, 73(325), 1987.

T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and
its use in an optimizing compiler. Software—Practice and Fzrperience,
20(2):133-155, February 1990.

E. Granston and A. Veidenbaum. Detecting redundant accesses to array
data. In Proceedings of Supercomputing ’91, Albuquerque, NM, November
1991.

D. Hudak and S. Abraham. Compiler techniques for data partitioning of
sequentially iterated parallel loops. In Proceedings of the 1990 ACM In-
ternational Conference on Supercomputing, Amsterdam, The Netherlands,
June 1990.

R. v. Hanxleden. Parallelizing dynamic processes. Master’s thesis, Dept.
of Computer Science, The Pennsylvania State University, August 1989.

P. N. Hilfinger and P. Colella. FIDIL: A language for scientific program-
ming. Technical report, Lawrence Livermore National Laboratory, 1988.

M. W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. Interprocedural
compilation of Fortran D for MIMD distributed-memory machines. Techni-

cal Report TR91-169, Dept. of Computer Science, Rice University, Novem-
ber 1991.

Proceedings of the High Performance Fortran Forum, Houston, TX, Jan-
uary 1992.

P. Havlak and K. Kennedy. An implementation of interprocedural bounded
regular section analysis. [EFEFE Transactions on Parallel and Distributed
Systems, 2(3):350-360, July 1991.

R. v. Hanxleden and K. Kennedy. Relaxing SIMD control flow constraints
using loop transformations. In Proceedings of the ACM SIGPLAN °92 Con-
ference on Program Language Design and Implementation, San Francisco,

CA, June 1992.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An
overview of the Fortran D programming system. In Proceedings of the
Fourth Workshop on Languages and Compilers for Parallel Compuling,
Santa Clara, CA, August 1991.

R. v. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Com-
piler analysis for irregular problems in Fortran D. In Proceedings of the

24

[HKT91]

[HKT92a]

[HKT92b]

[HMSS]

[Hoa85]

[HQL*91]

[HRBY0]

[HS91a]

[HS91b)]

[HS92]

[HT84]

[IFKF90]

[KCZ92]

Fifth Workshop on Languages and Compilers for Parallel Compuling, New
Haven, CT, August 1992.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for
Fortran D on MIMD distributed-memory machines. In Proceedings of Su-
percomputing 91, Albuquerque, NM, November 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-
independent parallel programming in Fortran D. In J. Saltz and P. Mehro-
tra, editors, Languages, Compilers, and Run-Time Environments for Dis-
tributed Memory Machines. North-Holland, Amsterdam, The Netherlands,
1992.

S. Hiranandani, K. Kennedy, and C. Tseng. Evaluation of compiler opti-
mizations for Fortran D on MIMD distributed-memory machines. In Pro-
ceedings of the 1992 ACM International Conference on Supercomputing,
Washington, DC, July 1992.

P. Hudak and E. Mohr. Graphinators and the duality of SIMD and MIMD.
In Proceedings of the 1988 ACM Conference on Lisp and Functional Pro-
gramming, 1988.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, En-

glewood Cliffs, NJ, 1985.

P. Hatcher, M. Quinn, A. Lapadula, B. Seevers, R. Anderson, and R. Jones.
Data-parallel programming on MIMD computers. IFEF Transactions on
Parallel and Distributed Systems, 2(3):377-383, July 1991.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using depen-
dence graphs. ACM Transactions on Programming Languages and Systems,
12(1):26-60, January 1990.

R. v. Hanxleden and L. R. Scott. Load balancing on message passing
architectures. Journal of Parallel and Distributed Computing, 13:312-324,
1991.

R. v. Hanxleden and L. R. Scott. Parallelizing dynamic processes on mes-
sage passing architectures. In Proceedings of the Fifth SIAM Conference
on Parallel Processing for Scientific Computing, March 1991.

R. v. Hanxleden and L. R. Scott. Correctness and determinism of parallel
Monte Carlo processes. Parallel Computing, 18:121-132, 1992.

T. Hoshino and K. Takenouchi. Processing of the molecular dynamics
model by the parallel computer PAX. Computer Physics Communications,
31(4), 1984.

K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic
parallelization system for distributed memory parallel computers. In Pro-
ceedings of the 5th Distributed Memory Computing Conference, Charleston,
SC, April 1990.

P. Keleher, A. Cox, and W. Zwaenepoel. Lazy consistency for software
distributed shared memory. In Proceedings of the 19th Annual International
Symposium on Computer Archilecture, pages 13-21, May 1992.

25

[KMO1]

[KMSB90]

[KMT91]

[KMV90]

[KRS92]

[KUT76]
[Kus86]

[LCY1]

[LHS9]

[LLGT90]

[LS91]

[Luc8s]

[LW82]

[Mas91]

[Mav9l]

C. Koelbel and P. Mehrotra. Programming data parallel algorithms on dis-
tributed memory machines using Kali. In Proceedings of the 1991 ACM In-
ternational Conference on Supercomputing, Cologne, Germany, June 1991.

C. Koelbel, P. Mehrotra, J. Saltz, and S. Berryman. Parallel loops on
distributed machines. In Proceedings of the 5th Distributed Memory Com-
puting Conference, Charleston, SC, April 1990.

K. Kennedy, K. 5. MCKinley, and C. Tseng. Analysis and transformation
in the ParaScope Editor. In Proceedings of the 1991 ACM Inlernational
Conference on Supercompuling, Cologne, Germany, June 1991.

C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data
structures on distributed memory machines. In Proceedings of the Second
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, Seattle, WA, March 1990.

J. Knoop, O. Riithing, and B. Steffen. Lazy code motion. In Proceedings
of the ACM SIGPLAN ’92 Conference on Program Language Design and
Implementation, San Francisco, CA, June 1992.

J. Kam and J. Ullman. Global data flow analysis and iterative algorithms.
Journal of the ACM, 23(1):159-171, January 1976.

B. C. Kuszmaul. Simulating applicative architectures on the Connection
Machine. Master’s thesis, Massachusetts Institute of Technology, 1986.

J. Li and M. Chen. Compiling communication-efficient programs for mas-
sively parallel machines. IFEFE Transactions on Parallel and Distributed
Systems, 2(3):361-376, July 1991.

K. Li and P. Hudak. Memory coherence in shared virtual memory systems.
IFEFE Transactions on Computer Systems, 7(4):321-359, November 1989.

D. Lenoski, J. Laudon, K Gharachorloo, A. Gupta, and J. Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor.
In Proceedings of the 17th Annual International Symposium on Computer
Architecture, May 1990.

S. Lucco and O. Sharp. Parallel programming with coordination structures.
In Conference Record of the Eighteenth ACM Symposium on the Principles
of Programming Languages, Orlando, FL, January 1991.

B. J. Lucier. Performance evaluation for multiprocessors programmed us-
ing monitors. In Proceedings of the 1988 ACM SIGMETRICS Conference
on Measurement and Modeling of Compuler Systems, volume 16 of SIG-
METRICS Performance Fuvalualion Review, 1988.

G.S. Lueker and D. E. Willard. A data structure for dynamic range queries.
Inf. Proc. Letl., 15:209-213, 1982.

MasPar Computer Corporation, Sunnyvale, CA. MasPar Fortran Refer-
ence Manual, 1991.

D. Mavriplis. Three dimensional unstructured multigrid for the euler equa-
tions. Technical report, Institute for Computer Application in Science and
Engineering, 1991.

26

[McC87]
[MHS87]

[MPBY1]

[MSMB90]

[MSS*88]

[MV90]

[PRVS7]

[PT91a]

[PT91b]

[RA90]

[RAKSS]

[RCBT7]

[RPSY]

[RSS7]

J. A. McCammon. Computer-aided molecular design. Science, 238:486—
491, October 1987.

J. A. McCammon and Stephen C. Harvey. Dynamics of proteins and nu-
cleic acids. Cambridge University Press, Cambridge, MA, 1987.

F. Miiller-Plathe and D. Brown. Multi-colour algorithms in molecular sim-
ulation: Vectorisation and parallelisation of internal forces and constraints.
Computer Physics Communications, 64:7-14, 1991.

S. Mirchandaney, J. Saltz, P. Mehrotra, and H. Berryman. A scheme for
supporting automatic data migration on multicomputers. In Proceedings of
the 5th Distributed Memory Computing Conference, Charleston, SC, April
1990.

R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and K. Crowley. Principles
of runtime support for parallel processors. In Proceedings of the Second
International Conference on Supercomputing, St. Malo, France, July 1988.

P. Mehrotra and J. Van Rosendale. Programming distributed memory

architectures using Kali. In Advances in Languages and Compilers for
Parallel Computing, Irvine, CA, August 1990. The MIT Press.

M. L. Patrick, D. A. Reed, and R. G. Voigt. The impact of domain parti-
tioning on the performance of a shared multiprocessor. Parallel Computing,
5:211-217, 1987.

M. Philippsen and W. F. Tichy. Modula-2* and its compilation. In First
International Conference of the Austrian Center for Parallel Computation,
Salzburg, Austria, September 1991.

M. R. S. Pinches and D. J. Tildesley. Large scale molecular dynamics
on parallel computers using the link-cell algorithm. Molecular Simulation,
6:51-87, 1991.

R. Ruhl and M. Annaratone. Parallelization of FORTRAN code on
distributed-memory parallel processors. In Proceedings of the 1990 ACM
International Conference on Supercomputing, Amsterdam, The Nether-
lands, June 1990.

U. Ramachandran, M. Ahamad, and Y. Khalidi. Unifying synchronization
and data transfer in maintaining coherence of distributed shared memory.
Technical Report GIT-CS-88/23, Georgia Institute of Technology, June
1988.

J. Rycaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of
the cartesian equations of motion of a system with constraints: Molecular
dynamics of n-Alkanes. Journal of Computational Physics, 23:327-341,
1977.

A. Rogers and K. Pingali. Process decomposition through locality of ref-
erence. In Proceedings of the ACM SIGPLAN 89 Conference on Program
Language Design and Implementation, Portland, OR, June 1989.

J. Rose and G. Steele, Jr. C*: An extended C language for data parallel
programming. In L. Kartashev and S. Kartashev, editors, Proceedings of

27

[RSS9]

[RSWO1]

[SBW90]

[SCMBO]

[SHY1]

[SHG92]

[SHT+92]

[SM90]

[SMO1]

[Soc90]

[SPBRY1]

[$590]

[SWW92]

the Second Inlernalional Conference on Supercomputing, Santa Clara, CA,
May 1987.

J. Ramanujam and P. Sadayappan. A methodology for parallelizing pro-
grams for multicomputers and complex memory multiprocessors. In Pro-
ceedings of Supercompuling ’89, Reno, NV, November 1989.

M. Rosing, R. Schnabel, and R. Weaver. The DINO parallel programming
language. Journal of Parallel and Distributed Computing, 13(1):30-42,
September 1991.

J. Saltz, H. Berryman, and J. Wu. Multiprocessors and runtime compila-
tion. ICASE Report 90-59, Institute for Computer Application in Science
and Engineering, Hampton, VA, September 1990.

J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time
scheduling and execution of loops on message passing machines. Journal
of Parallel and Distributed Computing, 8(2):303-312, 1990.

J. P. Singh and J. L. Hennessy. An empirical investigation of the effec-
tiveness and limitations of automatic parallelization. In Proceedings of
the International Symposium on Shared Memory Multiprocessing, Tokyo,
Japan, April 1991.

J. P. Singh, J. L. Hennessy, and A. Gupta. Implications of hierarchical
N-body methods for multiprocessor architecture. Technical Report CSL-
TR-92-506, Stanford University, 1992.

J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. L. Hennessy. Load
balancing and data locality in hierarchical N-body methods. Technical
Report CSL-TR-92-505, Stanford University, January 1992.

T. P. Straatsma and J. Andrew McCammon. ARGOS, a vectorized gen-
eral molecular dynamics program. Journal of Compulational Chemistry,
11(8):943-951, 1990.

J. Shen and J. A. McCammon. Molecular dynamics simulation of Superox-
ide interacting with Superoxide Dismutase. Chemical Physics, 158:191-198,
1991.

D. Socha. Compiling single-point iterative programs for distributed mem-
ory computers. In Proceedings of the 5th Distributed Memory Computing
Conference, Charleston, SC, April 1990.

J. Saltz, S. Petiton, H. Berryman, and A. Rifkin. Performance effects of
irregular communication patterns on massively parallel multicomputers.
ICASE Report 91-12, Institute for Computer Application in Science and
Engineering, Hampton, VA, January 1991.

L. Snyder and D. Socha. An algorithm producing balanced partitionings
of data arrays. In Proceedings of the 5th Distributed Memory Computing
Conference, Charleston, SC, April 1990.

R. Sawdayi, G. Wagenbreth, and J. Williamson. MIMDizer: Functional
and data decomposition. In J. Saltz and P. Mehrotra, editors, Lan-
guages, Compilers, and Run-Time Environments for Distribuled Memory
Machines. Flsevier, Amsterdam, The Netherlands, 1992.

28

[Thio1]

[TP90]

[Tse90]

[WLR90]

[WSBHY1]

[WSHBY1]

[ZBGSS]

Thinking Machines Corporation, Cambridge, MA. CM Fortran Reference
Manual, 1991.

S. Tomboulian and M. Pappas. Indirect addressing and load balancing for
faster solutions to the Mandelbrot set on SIMD architectures. In Fron-
tiers90: The 3rd Symposium on the Frontiers of Massively Parallel Com-
putation, pages 443-450, College Park, MD, October 1990.

P.-S. Tseng. A parallelizing compiler for distributed memory parallel com-
puters. In Proceedings of the ACM SIGPLAN 90 Conference on Program
Language Design and Implementation, White Plains, NY, June 1990.

M. Willebeek-LeMair and A. P. Reeves. Solving nonuniform problems on
SIMD computers: Case study on region growing. Journal of Parallel and
Distributed Computing, 8:135-149, 1990.

J. Wu, J. Saltz, H. Berryman, and S. Hiranandani. Distributed memory
compiler design for sparse problems. ICASE Report 91-13, Institute for
Computer Application in Science and Engineering, Hampton, VA, January
1991.

J. Wu, J. Saltz, S. Hiranandani, and H. Berryman. Runtime compila-
tion methods for multicomputers. In Proceedings of the 1991 International
Conference on Parallel Processing, St. Charles, IL, August 1991.

H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18, 1988.

A Value-Based Decompositions in Molecular

Dynamics

A.1 Molecular dynamics

First developed for simulating atomic motion in simple liquids, molecular dynamics is
used routinely to simulate biomolecular systems and to obtain various kinetic, ther-

modynamic, mechanistic, and structural properties [McC87, MH87]. In molecular dy-
namics, the motion of each atom, represented as a point mass, is determined by the
forces exerted on it by other atoms.

Molecular dynamics algorithms commonly iterate over the sequence:

1. Calculate bonded and nonbonded forces on each atom as the analytical gradient

of a potential-energy function of the atom positions.

The calculation of the nonbonded forces between atoms has O(N?) time complex-

ity and typically constitutes over 90% of the overall computational effort [CMS91].
This calculation is also particularly difficult to parallelize, since the data access

patterns are highly irregular, as illustrated in Section A.2. However, it has a high

potential for reducing non-local data accesses by taking advantage of the spatial

locality of the computation.

2. Integrate Newton’s equations of motion to determine the new atomic momenta
and positions. By removing uninteresting, high-frequency motions, larger timesteps

29

can be taken to improve overall efficiency [MPB91, RCB77]. This usually involves
the constraining of some molecular motions.

3. Save data as appropriate for post analysis.

Several program suites have been developed for the dynamic modeling of biomolecules,
CuarMM [BBOT83] and Gromos [GBS8S] being two commonly used packages. GRO-
MOs (GROningen MOlecular Simulation) serves as a basis for a long-term paralleliza-
tion project that originated at the University of Houston and is now carried out jointly
by the University of Houston and Rice University. GROMOS provides programs for the
simulation of biological molecules (and arbitrary molecules) using molecular dynamics
or stochastic dynamics. In addition, energy minimization and analysis programs are
provided. The approximately 127 files comprising GROMOS consist of about 74,000
lines of FORTRANT7, comments included.

A.2 The Nonbonded Force Calculation

If the number of recent publications in this area is any indication, then the paral-
lelization of the nonbonded force computations is challenging even from the human
programmer’s point of view. The following contains an evaluation of this problem
from the compiler’s point of view, starting with some background and brief descrip-
tions of the experiences gained when parallelizing the nonbonded force kernel manually.
More detailed accounts on other aspects of this project, like the parallelization of the
pairlist generation or the calculation of bonded forces, can be found elsewhere [CM90,
CMS91, CHK*92, CHMS92].

The GrROMOS code approximates nonbonded forces by calculating them only for
atom pairs that are within a certain cutoff radius of each other. These pairs are stored
in a pair list that is updated in regular intervals, where each atom is identified by a
gan (global atom number). In the original code, this pair list is represented by two
arrays, INB and JNB. INB(I) gives the number of partners of atom /, and JNB can
be thought of as a concatenation of lists of partners, one list for each atom. We also
introduce the arrays firstJ and last.J, so that the array section JNB(firstJ(I) : lastJ(1))
gives the list of partners of atom I. Obviously, INB(I) = lastJ(I) — firstJ(1)+ 1.

According to Newton’s Third Law, for each force exerted by an atom A on an atom
B, atom B exerts an equal but opposite force on atom A. We therefore can cut the
number of force calculations in half by storing each atom pair only once, for example
by storing only partners with a higher atom index. The resulting sequential version for
N atoms is shown in Figure 11, where we assume that the force array F is initialized
to 0 (similarly in the following code samples). Note also that in practice the forces F
and the positions X are vectors in IR>.

A general strategy towards parallelizing this kernel is to make each processor re-
sponsible for computing the nonbonded forces for a certain set of atoms. For processor
p, let Owned(p) be the set of atoms for which p is responsible, and let Stored(p) be the
set of atoms whose data are stored on p. Note that Owned(p) and Stored(p) are not
necessarily the same (see Section A.3). Before describing some different approaches in
more detail, however, we will introduce some formal tools for analyzing their locality
characteristics.

30

A.2.1 The computational cost

Let JNBL(I,:) represent all of the partners of atom I whose atom number is greater
than I:

JNBI(I,1:INB(I)) = JNB(firstJ(I): lastJ(I)).
This leads to a predicate that indicates whether an atom pair (I, K') is stored in the

pair list or not:

1 if 3M, JNBL(I, M) = J,

0 otherwise;

isPair(1,J) = {

I>J=isPair({,J)=0 (Newton’s Third Law) (1)
Based on isPair, INB can be expressed as well as its dual, Partners:

N N
INB(I) = isPair(1,J), and Partners(J) = isPair(1,J).

Since each processor computes the forces for the atoms it owns, we can approximate
the workload of processor p with

N

Pairs(p) = Y isPair(1,J)= Y INB(I).
IeOwned(p) J=1 1€ Owned(p)

In terms of averages, we have
1 N
INBaye = 5 12—31 INB(I),

P P N

1 1 1 N % INBye

Pairsae = Z: Pairs(p) = - Z: >, INB(I)= 5 Y INB(I)= XT'
p=1 p=1 I€Owned(p) I=1

Therefore, the overall computational cost is given by

Teomp X m]_lex Pairs(p) = m]_lex Z INB(I).
P= P= I€Owned(p)

This results in a typical load balancing problem, where the goal is to lower T, down
t0 Tigear X Pairsgye; t.e., we want to achieve for all p:

N X INB ;e
S INB(D) =~ X#.
I€Owned(p)

A.2.2 The data locality

For deciding if and how data should be distributed across processors, an important
measure is to what degree a processor p accesses data (as reads or writes) that are not
in Owned(p). For that purpose, we determine the number of writes from p to the force

F(K):
INB(K) if K € Owned(p),

0 otherwise.

Writes(p, K) = > z'sPaz'r(I,K)—l—{
I€ Owned(p)

31

The sum of these across all processors, broken up into writes by owners and other
writes:

P
OwnedWrites(K) = Z Z Writes(p, K),
p=1 K€ Owned(p)

P
NotOwnedWrites(K) = Z Z Writes(p, K),
p=1 K¢ Owned(p)

AllWrites(K) = QOuwnedWrites(K) + NotOwned Writes(K).

It turns out that AllWrites is independent of how we distribute ownership across
processors:

AllWrites(K) = Partners(K) + INB(K).

To illustrate the irregularity of a typical molecular dynamics problem, Figure 12
contains a plot of AllWrites and INB for the bovine superoxide dismutase molecule
(SOD) and O3 in water, a total of 6968 atoms. SOD is a catalytic enzyme composed of
two identical subunits, each with 151 amino-acid residues and two metal atoms [SM91].
Note that the data show a very high irregularity even though a smoothing factor of
20 has been applied, i.e., each data point on the plot represents the average of 20
actual data points. However, we can still see the (strongly non-monotonic) decrease of
INB(K) as K increases, which is due to Equation 1.

A.3 Data Replication — The UHGromos Approach

The first parallelization of GRoMOS performed at the University of Houston was based
on IPFORTRAN [BCS91], which is an SPMD style language like FORTRAN D. The key
concept of IPFORTRAN is to provide a better abstraction for interprocessor commu-
nication than simple message-passing [Hoa85]. Unlike for the global memory model
used by FORTRAN D, here the variables are implicitly local to each processor; thus,
X on processor 1 may have a different value from X on processor 2. Nonlocal ac-
cesses are denoted by the @ operator, so A(¢)@j means the ¢-th element of array A
on processor j. Note that only the processor using a nonlocal value must reference it,
and that the reference may be made within a larger expression. This is in contrast to
message-passing languages, which require matching but separate “send” and “receive”
operations. Global reductions are also supported; for example, +{X } denotes the sum
of all values of X on all processors.

The objective for this first parallel version of GRoMOs, called UHGROMOS, was to
achieve good performance for medium numbers of Atoms (N < 10000) and medium
numbers of processors (P < 128), with a minimal impact on the original, sequential
code. This goal was certainly achieved; for example, for P > 16 the performance on
an iPSC 860 was better than on a single processor CRAY 2 [CMS91].

A.3.1 The nonbonded force calculation in UHGromos

In UHGRroMOS, the nonbonded force calculation is parallelized by having each proces-
sor p compute the forces for a continuous range of atoms indices:

Owned(p) = {1 | firstl(p) < I < lasti(p)},

32

where
firstl(1) =1, ‘v’;;_ll tlastl(p) + 1= firstl(p+ 1), and lastI(P) = N.

This range is determined in an initial call to aload balancing routine, of which gathering
the corresponding portion of JNB, namely myJNB, is the most time consuming part.
Each processor stores the data for all atoms:

Stored(p) ={I |1 < I < N}.

According to the local memory model employed by IPFORTRAN, there is no implicit
consistency enforcement for these data across processors. This avoids unnecessary
communication, but necessitates an explicit accumulation of the forces at the end of
the computation, as shown in the code in Figure 13. Assuming an effective load
balancer, this implementation results in

Teomp = O(Pairsgye) and Teomm = O(N),

where the latter bound is achieved by performing the accumulation step with 2log P
messages per processor using a divide-and-conquer approach [FJLT88].

A ForTRAN D version of this kind of algorithm can be written by expanding each
array by one dimension (the processor dimension), the introduced index being the
processor number, and then distributing that dimension blockwise [CHK*92].

A.3.2 The data locality of UHGromos

The global atom numbering provided by sequential GRoMOS and the resulting pair
list do not inherently have a good locality; i.e., atoms close together in space do not
necessarily have similar gan’s. Even in sequential GROMOS, this is relevant for the
cache efficiency, similarly for UHGroMOS. However, it becomes even more impor-
tant when we want to increase the scalability of UHGRoMOs (where the maximal
problem size is limited by having all data replicated) by distributing the data across
processors. To analyze this locality quantitatively, we ran the SOD test case already
mentioned in Section A.2.2 on four processors. Figure 14 shows the resulting values
for AllWrites, Owned Writes, and NotQwnedWrites. Note that load balancing resulted
in having |Owned(p)| increase as p increases, which is a consequence of Equation 1
again. This also caused that no other processor wrote to the atoms owned by pro-
cessor 1; as this graph indicates, however, most (if not all) other atoms receive many
contributions by processors other than their owner. Given the fyipq; of current ma-
chines (Section 2.2), distributing the data according to their ownership (i.e., setting
V, : Stored(p) = Owned(p)) and furthermore issuing one message for each non-local
data access would therefore have a devastating effect on performance.

However, one might hope to improve the situation by message blocking, i.e., col-
lecting all non-local contributions any processor has until the end of the computation
and then performing the communication. This would imply that

e All non-local reads have to be performed before the computation, using for ex-
ample an inspector-executor approach as described in Section 2.3, and

e All non-local contributions of p have to be buffered in p’s local memory, in addition
to those owned by p,

33

but it might still decrease overall communication costs and/or increase scalability. How
beneficial message blocking really is depends on how the non-local data accesses are
distributed across processors:

o If each processor would contribute only to a few atoms other than his own, we
would need less buffer space, which would improve scalability.

o If for each processor the atoms it makes non-local contributions to would be
owned by a few processors, then T.,,,, would go down.

To characterize UHGROMOS under this aspect, we have to break AllWrites, which
summarizes across processors, up into Writes, which reflects the access patterns of
individual processors. Figure 15 shows the resulting data for processor 2 when running
the SOD test case with four processors. We observe that processor 2 makes some non-
local contributes to all atoms owned by processors 3 and 4 (ignoring that the applied
smoothing factor might hide a few atoms that were not hit by processor 2). Since we
already assume that we perform message blocking, it does not help that the number of
non-local contributions per atom is lower than the number of local contributions; what
matters is whether for a particular atom there are any contributions at all or not.

One can conclude that — at least in this particular test case — there is little to be
gained by distributing the data, and there is no evidence that other test cases result in
better locality. Furthermore, it appears that even for higher numbers of processors each
processor still contributes to most other processors unless P > INB,,. [CHMS92].

A.3.3 The UHGromos approach from the compiler’s point of view

To summarize this approach:

1. Replicate data across processors: can be done in FORTRAN D as indicated in
Section A.3.1.

2. Reduce loop bounds for compute intensive loops:

(a) identify this loop,

(b) need a load balancing metric for appropriately reducing loop bounds.
3. Insert global reduction operation.

Evaluation:

e Apart from the load balancing, which would require a relatively complex interface,
this seems feasible.

e However, scalability is limited.

A.4 Value-Based Decompositions A — The EulerGro-
mos Approach

EULERGROMOS uses a more involved decomposition scheme that retains the spatial
coherence of the simulated system. The Eulerian decomposition offers the advantage
of providing locality for all parts of GRoMOs with the potential for scalability [EHL77,
HT84, PT91b]. In the remainder of this section, we will discuss the principal data
structures of EULERGROMOS.

34

A.4.1 Logical Eulerian space

We conceptually divide our overall problem domain, which here is the physical space
occupied by the set of atoms we want to simulate, into small rectilinear regions of
fixed size, henceforth called subboxes. We map the application space into a logical
coordinate system of subboxes. Each subbox conceptually contains a list representation
of the atoms resident within its spatial extent [EHL77]. Connected sets of subboxes are
assigned to processors according to some space-to-processor mapping strategy. Each
of these connected sets constitutes a subdomain assigned to a certain processor. Each
subdomain s is associated with a certain overlap area, which is the set of subboxes that
are not in s but reach into the cutoff radius of some subbox in s.

In our implementation, the data structure on a processor p for a subbox s consists of
just a pointer to the head of a linked list of the atoms stored on p whose X-coordinates
are within s. Each processor p has a copy of a structure representing the full problem
domain, with non-empty pointers for each subbox that contains atoms stored on p. It
would be possible to restrict the subbox structure to just the part that contains local
atoms. This could further increase the scalability of our code, but it would make it
more difficult to do dynamic load balancing involving the shift of processor subdomains.

Current mapping and load balancing strategies include blockwise, slicewise, and hi-
erarchical decompositions (see Section 3.2.1). The first two techniques are straightfor-
ward decompositions of the problem domain into equal sized rectangular boxes or slices.
For illustrating the hierarchical decomposition, let us assume we have P = pipsps pro-
cessors, with py processors for dimension d. The hierarchical decomposition first cuts
the problem domain into p; slices, then it divides each of these slices into py strips, and
finally it cuts each strip into ps subdomains. Were these subdomains of fixed, identical
size, the result would be the same as for the blockwise decomposition. However, the
hierarchical decomposition also enables us to create subdomains of different sizes; for a
balanced workload, the subdomains should be larger if they correspond to a region with
lower density. This can be achieved by choosing the cuts along the three dimensions
in such a manner that each resulting slice/strip/subdomain contains a roughly equal
number of atoms. This is illustrated in the example shown in Figure 16.

For each spatial dimension d, the number of subboxes, ny, and their size, boxg,
depend on several parameters including the number of processors P, the mapping
strategy, the number of atoms N, and the cutoff radius R.. There are several tradeoffs
and constraints to be observed:

e We distribute our problem domain across processors with subbox granularity, i.e.,
a certain subbox is treated as indivisible as far as ownership goes, and we assume
only one owner per subbox.

Therefore, if ng becomes smaller, our load balancing may become less accurate,
since the number of different decompositions becomes smaller.

e However, if ny becomes larger, the overhead associated with a traversal of the
subboxes to locate the atoms increases.

e We also use our subbox structure to limit our search for nonbonded interaction
partners of a given atom, which enables us to avoid the naive O(N?) pairlist

generation algorithm. For that purpose it is advantageous if box, is an exact
fraction of R. [PT91b].

o We expect that for molecular systems with varying density p, the hierarchical

35

decomposition can outperform the blockwise and slicewise decompositions by
adjusting subdomain sizes dynamically. However, for the trivial case of a system
with constant p, the hierarchical decomposition should also be able to balance
the workload. Therefore it must be possible to create subdomains of equal size;
so for all d, ng should be a multiple of py.

A.4.2 The nonbonded force calculation in EulerGromos

The nonbonded force subroutine required only slight changes from standard GRoMOS.
The original control structure of the nested loop shown in Figure 11 was modified to
the code in Figure 17. Note that X, V, and F are actually three-dimensional values.

The only conceptual difference is in how the local atoms are accessed. EULERGRO-
MOS has two ways of looping over local atoms. The first method is to iterate directly
over local data arrays, like in Figure 17, where an outer loop iterates from 1 to Njyeqr,
the number of local atoms. The second technique loops over data indirectly using the
subbox data structure described in Section A.4.1. In both cases, the loop complexity is
on the order of the number of atoms local to the processor, and not the total number
of atoms in the system; this property is important for scalability.

In a molecular-dynamics simulation, molecules undergo a wide variety of motion
that includes localized, high-frequency vibrations of bonds, diffusion of solvent molecules,
and large-scale motion of protein subunits. As a result, the local atom set of a proces-
sor changes as a simulation evolves. To accommodate this shifting of atoms between
processors, EULERGROMOS maintains two views of the data, a local view and a global
view.

Each processor maintains a local naming convention for both the local atoms and
the buffered neighbors. To maintain scalability, local data structures, such as the
coordinate array, are accessed using a lan (local atom number). Thus a processor uses
O(N/P) space for coordinates, velocities and forces. Exchanged atoms, however, are
identified using the gan (global atom number) as introduced in Section A.2. The gan
is used to directly access various atom-dependent parameters and actually conforms to
the canonical GRoOMOS view of the molecular system.

By translating gan’s to lan’s for relocated atoms, processors avoid the shipping
of parameters associated with a lan-identified atom. Having a uniform, global atom
number for each atom gives us easy access to atom type, atom charge, and topology
information. Without such a unifying scheme, we would need to piggy-back each atom
changing ownership with this additional information.

The gan-to-lan translation is done via a mapping array GAN2LAN, which is the
only local O(N) data structure besides the molecular-topology data structures; this
trade of memory for speed is feasible for most practical applications [CHMS92]. How-
ever, should the simulation size exceed the processing-element memory’s capability for
storing this data structure, we could still distribute it (at the expense of additional
communication) or replace it with a hash table (with higher overhead than simple
array look-up and still potential for extra communication).

A.4.3 The EulerGromos approach from the compiler’s point of view

To summarize this approach:

36

. Need to change data structures from arrays to linked lists connected by data
structure reflecting spatial locality (very difficult to automate).

. Use load balancer to distribute data accordingly.

3. Implement overlap regions for buffering atoms within cutoff.

4. Generate messages for updating overlap regions.

Advantages:

¢ Obviously we get good computational locality when cutting this data structure

into P simple, connected pieces. This locality is also used for the pairlist gener-
ation (i.e., no more O(N?)!)

e Can use compact ownership function.

Disadvantages:

o If we still want to use a simple data structure (like n-dimensional arrays), then

we have to provide storage for a certain maximum density. Otherwise, data
structures can become really complicated.

o Important information, for example about the spatial topology, is based on the

global atom number (GAN). This number is uniquely attached to each atom, and
we often have to reference atoms by their GAN. This becomes difficult when
atoms move around in a data structure according to their spatial movements.

e Obviously, the whole approach is relatively complicated. There are plenty of

publications about just how which data structures can be used to effectively
exploit this spatial locality, and Euler GROMOS has already taken many more
man hours to implement than UH GroOMOS.

Evaluation:

o Will probably give good performance results (this hope was the reason for starting

with the EULERGROMOS project after all). Therefore, it is a useful baseline
against which the performance of automated approaches can be measured.

e However, especially the conversion of the data structures can probably not be

A.

automized to a high degree; we consider it to be beyond current compiler tech-
nology.

5 Value-Based Decompositions B— The CHARMM-

ICASE Approach

This is work in progress, carried out by R. Das and J. Saltz at ICASE. The basic
approach is to derive decompositions from the data access pattern as given by the
nonbonded pairlist (see Section A.2).

1.

Generate the pairlist as usual, i.e., O(N?) (sequentially) or O(N?/P) (parallel).

2. Run a partitioner to distribute data according to the locality preferences given

by the pairlist.

3. Compute an ownership array as defined in Section 3.2.1.

4. Use PARTI routines to generate schedules and gathers/scatters.

37

Advantages:

o Conceptually relatively straightforward.

e Can use PARTI directly.

Disadvantages:

e The mapper can be expensive.

o Need (distributed) mapping array, two step process for determining ownership

(but we still need some mechanism like this to keep track of GAN’s anyway, as
described in Section A.3.1).

A.6 Value-Based Decompositions C — A Hybrid Ap-
proach

Let X be the array where the positions of the atoms are stored. Conceptually, do the

following:

1.

Ot = W N

7.
8.

Like in Approach B, leave data arrays, like X (atom positions), V (velocities),
and F (forces), as simple arrays (instead of more complicated data structures like
in Approach A).

Initially, use some regular decomposition to store X.
Compute or read in initial atom positions and store them in X.
Apply a mapping function (like recursive bisection) to the values of X.

Based on this mapping, derive a mapping array for the indices of X. (However,
the user should not see the mapping array at any point, it should only see the
mapping function.)

Define a decomposition, like AtomD, and distribute it according to that mapping
array.

Align X, V, and F with AtomD.

Handle the resulting communication patterns with calls to PARTI routines.

The difference to Approach A is that we keep using simple arrays, where the indices

do not necessarily have any spatial meaning. However, we do derive the decomposition
from the spatial locations associated with the data points, instead of from the pairlist

as in Approach B.
A (very preliminary) syntax for this kind of decomposition could look like the

following:

DECOMPOSITION AtomD(MaxAtom)
DISTRIBUTE AtomD (BLOCK)
ALIGN X, F, V WITH AtomD

. initialize X ...

DISTRIBUTE AtomD BY VALUE X USING RecBis

Some points to be made:

38

e RecBis here stands for recursive bisection, which indicates the mapper to use.
This mapper should also provide the possibility to provide some parameters,
like the problem domain size or the metric for dividing space. However, if no
such parameters are provided by the programmer, the mapper should be able
to use default values and still produce reasonable results for standard problem
configurations.

e This mapper could either be part of the language (just like BLOCK or CYCLIC),
or it could be supplied as a library package compatible with a an interface provided
by the compiler (see Fox’s proposals in this direction).

e The second DISTRIBUTE should be viewed as an executable here.

e Remapping has to be done in some intervals. We do not expect the compiler to
derive when this has to be done; this has to be indicated by the user, for example
by executing

DISTRIBUTE AtomD BY VALUE X USING RecBis
again.

e One might also try to provide some concept of overlap areas, but (at least initially)
this might be handled implicitly by the PARTI routines.

Advantages:

e Probably faster mapper than Approach B.

e Simpler and closer to original program than Approach A.
e Fits nicely into FORTRAN D framework.

o Easy to keep track of GAN’s.

Disadvantages:

o Still need mapping array like in Approach B (but again, we still need some mech-
anism like this to keep track of GAN’s anyway, see Section A.3.1).

B A Dataflow Framework for Optimizing Com-
munication Placement

This appendix is organized as follows. Section B.1 provides some definitions and termi-
nology for the framework. Section B.2 introduces the local flow variables, followed by
global variables in Section B.3 and result variables in Section B.4. Section B.6 gives an
extension of the framework for handling reduction operations. In Section B.7, we work
through the dataflow variables for a program example, which is a simplified version of
a mesh solver, which, together with experimental results based on the outcome of this
framework, is described in more detail elsewhere [HKK*92].

B.1 Basics of the Framework
B.1.1 The domain

Even though our implementation can handle other cases as well, we assume here
for presentation purposes that all indirect references in the program text are of the

39

form (array) ((index_array) ({loop_variable))). For many programs, this can actu-
ally be achieved by forward substituting array indices. For example, the code sequence
j=ia(i); x(j)=10 would be treated as x(ia(i))=10. Arrays that are never referenced
indirectly are assumed to be analyzed using other methods [GS90] prior to this analysis.
References with multiple (but bounded) levels of indirection will require more levels
of complexity in the dataflow framework; we do not consider potentially unbounded
indirection, as is found in linked lists.

Let V' be the set of arrays that are accessed indirectly; in the example code shown
in Figure 5 it is V = {z,y,z}. We assume that each reference r to some v € V is
contained in some loop(s). Let L be the set of loops that directly enclose an occurrence
of some v € V; in the example, it is L = {ly,l3,13,14}. We assume that no [€ L
encloses any other m € L. One set of dataflow variables is computed for each element
of a set of nodes, N. It is N = L U P, where P contains one entry pad, l.,¢y, and
one exit pad, .., for each loop [€ L containing some !’ € L. The example contains
one outer time stepping loop, for which we introduce lcpsy = lop and [y = [5. This
results in P = {lo,l5} and N = {lo,l1,12,03,14,15}. Furthermore, we assume oy
(lezit) to be executed before (after) [iff [has at least one iteration; this enables us to
hoist communication out of loops without risking unnecessary communication in case
the loop has zero iterations. In the example, the resulting loop flow graph shown in
Figure 7 therefore has an edge around the outer loop including Iy and I5.

The framework operates on a loop flow graph G = (N, F) of the program, where
the edges F are simple control flow edges. For example, if [is an outer time stepping
loop that does not directly contain any irregular array references but contains a loop
" over mesh edges, then [’ is represented as a node in G and [is represented as some
interval in G. In the following, loop refers to elements of N, i.e., it may denote a pad
as well.

Future work will present a complete framework in which summary information is
built in a bottom-up fashion similar to array kill information [GS90]. Finally, we only
discuss the case where the summarized loops have no data dependences, except for
commutative and associative reductions that are handled specially.

B.1.2 Array portions

Array portions are a central concept to the framework and best introduced by an
example. A portion x(ia(1:n)) consists of the array x and the index set ia(1:n).
This index set in turn consists of the index array ia and the range (1:n), which has
the lower bound 1 and the upper bound n.

Several portions may be taken from the same array or may have the same index set.
The index range does not have to be known at compile time, so the bounds may contain
symbolics. No assumptions are made about whether different portions taken from the
same array are disjoint or whether they overlap each other partially or completely. This
enables analyzing symbolic index ranges, but it requires the analysis to be conservative
when using intersection and set subtraction in the equations.

The framework can be implemented using a lattice of bit vectors. Each bit vector
represents a dataflow variable at a certain node in G, and each bit represents one
array portion. To construct these bit vectors, an initial pass over the program has
to collect all indirect references. The length of the bit vectors is bounded by the
number of indirect array references an therefore linear in program size. All equations

40

given here are rapid [KU76]. Therefore, using bit vectors for the analysis gives us good
asymptotic running times. However, for our examples (and probably also in a practical
implementation), it seems advantageous to represent the different flow variables as bit
matrices. The rows of a bit matrix correspond to the arrays of the portions represented
(e.g9., x in x(ia(1:n))), while the columns correspond to the index sets (ia(1:n)).
Theoretically that representation increases variable sizes from linear in program size to
quadratic in program size, so the feasibility of this approach depends on how programs
behave in practice. However, this representation makes potential schedule sharing, for
example, very easy to recognize by determining which index set columns have more
than one entry.

We assume that all indirect array references are identified in a previous pass over the
program text and construct bit vectors/matrices accordingly. For the analysis we also
assume that a (identity) dummy index array is inserted for all direct array references.

B.1.3 Operations on portions

To aid the distinction between portions, indirect array references, array elements, and
sets of all these constructs, we make a short digression to introduce the conversion
operators elements-of p (where p is some portion or set of portions), denoted p, and
references-of p, denoted p. Assume we are given

e an array ;
e an index array ia(1:5);

e portions p = z(ta(p; : pu)), ¢ = z(ia(q : qu)), ¥ = x(ia(r; : ry)); and
e sets of portions A = {p,q}, B = {p}, C = {r}.

We can reason about A, B, and C at different levels.For example, if the index ranges of
the portions are only known symbolically, one can determine at the portion level that

ADB

must hold, but no other relationships can be proven among the sets of portions. How-
ever, if we know for example that

p=Lp.=3q=3,q.=5,11=3,1y =4,

then the elements-of operator,”, can be applied to the portions and to the sets thereof,
to obtain

A=z(ia(l:5)),B =z(ia(1:3)),C = z(a(3 : 4)).

The scope of ™ is extended to set operators and predicates, so we can assert at the
element level that

ADB, ADC.
Assume furthermore that we know the values of the index array to be
ia(l1:5)=1,4,3,1,4.

Then the references-of operator, -, obtains

A= {e(1),2(3),2(4)}, B = {2(1),2(3),2(4)},C = {a(1),2(3)}.

41

With this knowledge, we conclude at the reference level that
ADBOC.

We can see how the set relationship predicates change over the different levels of rea-
soning, with

X2V = X2V = XDV.
Another interesting operation in this context is set subtraction:

o A\B ={p, ¢} \ {p} = {q}, which is {z(1),2(3),2(4)};
o A\B=A\B =z(ia(1:5))\ z(ia(1:3)) = z(ia(4 : 5)), which is z(1), z(4)};

e A\B=A\B={z(1),2(3),2(H)}\ {z(1),2(3),2(4)} = 0.
As described in Section B.4, A\ B (and the corresponding sets at lower levels) can
be viewed as a so called incremental schedule, which indicates what has to be com-
municated if A is needed and B is already available in local memory. We can see
immediately the consequences for this incremental schedule in the example: the more
we know about portions, the less we might have to communicate. Formally,

X\Y O X\¥ 2 X\v.

To aid formulating conservative equations that still offer the possibility to exploit
any knowledge potentially available at compile time, we introduce some set operators
that map sets of portions into sets of portions. Given some set of portions SET, we

define

SET* = {p|p has same array as some ¢ € SET},
SETY = {p| SET might affect p}

{p| pASET # () cannot be disproven}
SET*,

{p | SET contains p}

{p] péSET can be proven}

SET,

SET° = {p| SET might partially touch part of p}
= SETY\ SET".

IN

SET"

1

SET* can be derived easily from SET by just reducing a bit matrix (array names
by index sets) to a bit column (array names) using row-wise OR. From there we can
conservatively approximate SETY, SET", and SET® directly, or we can employ further
compile time knowledge about how portions relate to each other if available. Either
way, we do not leave the portion space as given in the program, i.e., we can still
represent these sets with binary bit matrices.

For example, let the portions p, ¢, r be defined as above, and let D = {¢q}. If
no compile time knowledge at the element or reference level is available, then we
conservatively assume that D* = {p,q,7}, D" = {p,q,7}, D" = {q}, and D° = {p,r}.
With knowledge at the element level, we have D* = {p,q,r}, D° = {p,q,r}, D" =

42

{q,r}, and D° = {p}. Reference level knowledge gives D* = {p,q,r}, D” = {p,q, 7},
D" ={p,q,7},and D° = 0.

A point to keep in mind when reasoning about which elements are contained in
which portions and how portions relate to each other is that two portions p, ¢ might
globally contain the same set of array elements of some array X, but that locally a given
processor may see different parts of X for p and ¢. (This applies to lhs occurrences
as well, since we apply the owner computes rule based on index array ownerships, not
on data array ownerships; otherwise we would not need a SCATTER operation). In
this case communication must occur if for example we first define p and then use gq.
The important consequence is that we must apply ~and ~ based on the share of each
processor.

Furthermore, we have to keep different decompositions of arrays and index arrays in
mind for the analysis. For example, we cannot reuse a schedule between two portions
that have the same index set, but whose arrays are distributed differently. For sake of
simplicity, however, we assume in this paper that all arrays are conformable.

B.2 The Local Flow Variables

We define the local flow variables to be the components of the dataflow equations that
are determined by local analysis of each loop. In the following,

e [stands for an arbitrary loop node,

e p denotes a portion x(ia(lb:ub)),

e an occurrence of p is either a use of p or a definition of p, and

o the terms “variable” or “flow variable” stand for dataflow variables.

We begin with two variables, REF and DEF, which are familiar from standard live
variable analysis. A point to keep in mind, however, is that here live does not refer to
whole arrays, but to limited portions thereof instead. Also, there may be conditionals
in the loops generating the variables, which can be handled by annotating portions
with (symbolic) guards applying to whole portions or elements thereof.

For each loop [, we define

REF(1): the portions live on entry to [, and
DEF(1): the portions defined in .

Formally:

REF(l) = {p]| first stmt containing p in [reads p},
DEF(l) = {p|some stmt in [assigns to p}.

To aid the extension to reduction statements discussed in Section B.6, we do not
base the further development of the framework on REF and DEF directly, but replace
them with GET and PUT. These variables are used to derive the portions that have

to be buffered locally. We define

GET(1): the portions referenced in ! from local memory (the buffer).
PUT(1): the portions written by [/ into the buffer.

BUF(1): the portions that will be buffered on exit from I.

43

The equations (which will be redefined in Section B.6):

GET(I) = REF(I),
PUT(I) = DEF(I),
BUF() = GET()UPUT(l).

We also have to compute the live ranges of index sets, otherwise we might acciden-
tally try to communicate a portion before or after the program region where its index
set is available (i.e., before the index set is defined or after it is overwritten with other

values). We define
IND(1): the portions whose index sets may be computed (in part) by .

KILL(1): the portions that may be made invalid by [, either because [assigns an
overlapping part of the array or [reassigns the index set. GATHER operations
can never be hoisted above [for these portions.

FLUSH(1): the portions that may be read by [or whose index sets may be reassigned
by I. SCATTER operations can never be delayed until after [for these portions.

Formally:

IND(l) = {p]|p has index set ia(in:imqz) and [assigns to ia},
KILL(I) = IND(I)U DEF(l),
FLUSH(I) = IND(I)U REF(l).

B.3 The Global Flow Variables

The computation of the global flow variables constitutes the meat of the dataflow
framework. Here we actually propagate knowledge about the communication charac-
teristics of the loops around in the flow graph. The problems addressed here have
elements from Common Subexpression Elimination, Loop Invariant Code Motion, and
Dead Code Elimination. As already mentioned, all equations given here are rapid, so
we can expect to solve them efficiently using simple iterative techniques. All global
variables are initialized to ().

B.3.1 Fetches

The strategy for determining where to place GATHER operations is based on the
following definitions:

LIVEaHY/all(l): the portions that are needed in / or along any/all paths starting in
l.

BUFFD(l): the portions that are already available when entering /. Here we assume
that buffers are not flushed unless the data in them may be invalid, because either
the data array or the index array has been assigned to.

HOIST(1): the portions for which a GATHER should be hoisted ahead of .

FETCH(1): the portions that are needed in [, or needed in some later loop and can
be hoisted before [.

44

The equations:

LIVE® (1) = GET()u () (LIVE"(s)\ KILI(I)),

sesuces(l)

LIVE*™(l) = GET()u |J (LIVE*™(s)\ KILL()),
s€suces(l)

BUFFD(I) = BUF(I)U () (BUFFD(p)\ KILL(I)),
pEpreds(l)

HOIST(l) = (\ (LIVE"(p)U BUFFD(p)),

pEpreds(l)

FETCH(l) = GET(H)U () (HOIST(s)n FETCH(s)).

s€suces(l)

At this point, we have identified candidate locations in the program for placing
GATHER’s. In short, whenever a portion appears in a FETCH(]) set, then that portion
can be gathered before [and will be used before it is assigned. The final placement
will be determined by the result flow variables discussed in Section B.4.

Note that we can not only distinguish the variables defined so far by whether they
are local or global, but we can also classify them into either reflecting fixed properties
inherent of the analyzed program, or being subject to heuristics. Furthermore, this
classification can be done based either on the definition of the variable, i.e., how it is
defined in terms of other variables, or on the actual values of the variable.

For example, HOISTis currently defined so that we combine and hoist up GATHER’s
as much as possible, subject to the constraint that we never want to overcommunicate.
If we, for example, replace the LIVE®! in the definition of HOIST with LIVE®™, we
could hoist up communication even further, at the expense of possibly communicating
unnecessary data, but with the potential benefit of additional schedule saving. An-
other strategy would be to limit communication hoisting to cases where we actually
reduce the size or number of messages, which can also be achieved in a straightforward
manner similar to lazy code motion [KRS92]; this might decrease the live ranges of our
communication buffer with a possible savings in overall buffer storage requirements,
but at the expense of reduced opportunities for hiding communication delays.

In other words, the definition of HOIST is a matter of heuristics, which is not
the case for the other definitions so far. For other variables dependent on HOIST (so
far, FETCH is the only such variable), their values become a matter of the chosen
heuristics as well, but not their definition.

B.3.2 Stores

The high level strategy for determining where to place SCATTER operations is rela-
tively similar to the one for placing GATHER’s. Note that we do not have to scatter
portions (i.e., send them back to the owner) if they are used only locally, which is why
we restrict our attention to GET® instead of GET. The definitions:

HINaHY/all(l) / HOUTaHY/aH(l): the portions touched by a reference on any/all
of the paths starting at the entry/exit of [.

DELAY(1): the portions that should be scattered in a later loop, or are dead on exit.

45

STORE(]): portions that are assigned to in [, or were assigned to earlier and whose

SCATTER’s can be hoisted into [.

HINYY(I) = GET°(1)U HOUT(]),
gour(yy = (| HIN"(s),
s€suces(l)
HIN(I) = GET(1)U HOUT™™(s),
HOUT™ (1) =) HIN"™(1),
s€suces(l)
DELAY(l) = () (HOUT™(s)UHOUT™™(s))\ |J FLUSH(s),
s€suces(l) s€suces(l)
STORE(l) = PUT()u () (DELAY(p)n STORE(p)).
pEpreds(l)

Our heuristic, here defined by DELAY, is to combine and delay SCATTER’s as
much as possible, subject to the constraint that we never scatter data that are dead.

B.4 The Result Flow Variables

The result flow variables given in this section are computed after solving the equations
given so far. They should accurately describe which portions have to be gathered before
entering [or scattered after leaving [(possibly using reductions). Here we want to take
previous and succeeding loops and their communication requirements into account as
well.

B.4.1 Fetches

Similarly to FETCH, GATH(l) describes which portions have to be in local memory
before entering [. However, it excludes portions that must already be locally available
either by previous gathers or by previous calculations. Furthermore, we may not only
exclude these available data on a portion by portion basis, but also on an element by
element basis. In other words, if we know that a portion x(ia(im :imaz)) is buffered,
then we might not only eliminate gathers of exactly that portion, but we can also save
on a gather of a potentially overlapping portion x(ia(jmin:jmaz)) by gathering only
the increment from the first portion to the second one.

For that purpose we compute incremental schedules using the \ operator as intro-

duced in Section B.1; recall that AKB contains exactly those references that appear
in the portions in A but do not appear in any of the portions in B. Note that this
operator, unlike the \, U, N used in the flow equations so far, brings us out of the fixed
space of sets of portions appearing in the program text, and applying it repeatedly can
lead to an explosion of the number portions we have to be able to represent (nestings
of increments of intersections of increments, etc.). Applying this operator just once,
however, leads to sets that can still be represented by 3-valued “bit” vectors/matrices;
in addition to included/not included, we also need ezxplicitly excluded.

Note also that AKB = () is possible even for A\ B # (. This reflects for example
the case where we express a mesh and its boundary as different portions of the same
array; the portions are distinct, but one contains a subset of the other.

46

The equation:

GATH(l) = FETCH(I)\ (FETCH(p) U BUFFD(p)).
pEpreds(l)

B.4.2 Stores

The SCATT variables are derived from the STORF variables, except that we eliminate
unnecessary scatters by excluding portions that either will be scattered later, or are

not at least potentially live (using HOUT®"Y). Again, we use the set operator i to
support incremental schedules.

SCATT(l) = STORE(I) i ﬂ (STORE(s)U HOUTY™(s)).
s€suces(l)

Note that we can still override the communication patterns obtained by global
analysis for GATH and SCATT by just substituting the local counterparts GET and
PUT for them, as long as this is done consistently for all loops. Furthermore, this can
be done for either both variables or for just one of them, since they do not rely on
each other, but merely on the loop properties.

B.5 Schedules

The framework described so far gives an accurate description of which schedules are
needed where. Critical for the overall cost associated with our communications is also
the generation of these schedules, in particular where the schedules are generated.
However, once we know the communication requirements, schedule computation place-
ment appears to be relatively straightforward. Therefore, we currently use the simple
heuristic of generating schedules as soon as possible, i.e., as soon as the necessary index
arrays are available. This seems to work well in the codes we have considered so far.

B.6 Reduction Variables

As indicated earlier, the framework developed so far can be extended to take advan-
tage of reduction statements as well. The portions exclusively appearing in reduction
statements can be treated differently from other definitions and uses, since they are
not necessarily brought into local memory if we use reduction operations like SCAT-
TERADD or SCATTERMULT. However, portions appearing in different reduction
operations within one loop have to be brought into local memory, so we have to care-
fully separate the portions into the ones used exclusively in ADD reductions and the
ones used only in MULT reductions:

ADD(l) = {p|all g € p” are only added to in [},
MULT(l) = {p]all ¢ € p" are only multiplied to in [}.

We derive RED, the set of all portions that are used exclusively in reduction operations,
and redefine GFET and PUT which were introduced in Section B.2:

RED(I) = ADD(I)U MULT(1),
GET(I) = REF(I)\ RED(I),
PUT(I) = DEF(I)\ RED(I).

47

The changes so far have eliminated the GATHER’s and SCATTER’s for portions that
appear exclusively in reductions.

We now define another, separate framework, which computes only the SCAT-
TER_ADD’s (similarly for the other reductions). This new ADD framework coexists
with the old non-reduction framework, which is still used to compute communication
requirements for non-reduction operations. The redefined variables are:

GET app(l) = REF(I)\ ADD(1),
FLUSHADD(Z) = IND(])UGETOADD(Z),

STORE app(l) = ADD()U () (DELAY app(p) N STORE spp(p)).
pEpreds(l)

Corresponding to these new variables, we can derive HINZ%{)G”, HO UTZ%{)‘I”, DELAY spp,
and SCATT pp with the same equations as for the non-reduction framework. SCATTspp
now indicates where to place SCATTER_ADD’s.

In the exact same fashion we can define a MULT framework by substituting ADD
with MULT. Like for the non-reduction framework, we can override the result variable
with their local counterpart, which is here ADD (MULT in the MULT framework).
Note that the flow equations for ADD (MULT) are defined independently of other
reductions. This simplifies extending the framework to other reduction operations
by just adding flow variables and equations, without having to modify existing ones
(except extending RED).

B.7 Example

Figure 5 shows an example code, which is a simplified and abstracted version of an
actual unstructured mesh solver [DMST92].

The loop structure of the example code can be derived from the actual solver by
inlining the function calls; the main loop in the example is analogous to a time-stepping
loop.

In this program, we have

e four inner loops, 1y, I, I3, and Iy

e three array names, z, y, and z;

o five index sets, s; = tel(1 : ne), sp = ie2(1 : ne), s3 = if1(1:nf), sa =if2(1:
nf), and s5 = identity(1 : nn);

e this spans a bit matrix of fifteen portions, z; = #(s1), 22 = z(s2),...,25 = 2(s5),
twelve of which actually occur in the program text.

The corresponding flow graph is shown in Figure 7; note the entry pad ly and the exit
pad l5 of the outer time stepping loop, which does not directly enclose any indirect
references, but which contains other loops (/y,...,l4) that contain such references.
The bit matrices of the resulting local flow variables are shown in Figure 18. A
matrix entry for a particular portion p and a flow variable VAR is defined as follows:

“1” — pis included in VAR,
“» —pis not included in VAR,

48

“0” - pis explicitly excluded from VAR (as a result of the i operator; in our example,
there are none such entries due to the simple control flow structure).

Figure 19 shows the global and result variables, and Figure 20 shows the variables for
the ADD framework. The loop flow graph including the result flow variables is shown
in Figure 8.

The result variables, i.e. GATH and SCATT, determine where the GATHER, and
SCATTER operations should be placed. If the bit representing a portion p is set in
the GATH set, then a GATHER operation for p is placed at the beginning of that
loop. Similarly, a set bit in the SCATT set results in placement of a SCATTER
operation (SCATTER_ADD in the ADD framework) at the end of aloop. GATHER’s
and SCATTER’s of portions with ¢dentity as the index array are ignored because they
represent data movement from a processor to itself. The resulting code is shown in
Figure 6.

We do not show here the optimizations needed to generate the schedule operations
(i.e., the inspectors). In general, the method is to identify the index sets used, and
insert the inspectors at the birth points of those sets. The first step can be done by
inspection, while the second is a simple application of reaching definition analysis.

49

DO t = 1, itime

C Looply
DOi=1,ne
x(iel(i)) = x(iel(i)) + y(ie2(i)
x(ie2(i)) = x(ie2(i)) + y(iel(i)
ENDDO

— N’

C Loop ly
DO j=1,nf
x(0M1(3)) = (1)) + v(if2(j

—
~—
~—

N
—~

=

N
—~

I
x(if2(j)) = x(if2(j)) + y(if1(j)) + =z(if1(j

ENDDO

C Loopls
DOk =1, ne
x(iel(k)) = x(iel(k)) + y(ie2(k
x(ie2(k)) = x(ie2(k)) + y(iel(k
ENDDO

— N’
~—

)

C Looply
DO1l=1,nn
y(1) = x(1)
ENDDO

ENDDO

Figure 5 Original example
code, using a global name space.

IF (itime > 1)
GATHER(z(if1(1:nf)), z(if2(1:nf)))
DO t = 1, itime

C Looply
GATHER(y(iel(1:ne)), y(ie2(1:ne)),
y(ifL(1:nf)), y(if2(1:nf)))
DO i=1, nep.
x(iel(i)) = x(iel(i)) + y(ie2(i))
x(ie2(i)) = x(ie2(i)) + y(iel(i))

ENDDO
C Loop I,
DO j =1, nfj,.
X(iT1(3)) = x(M1G)) + y(f20)) + 2(£207)
x(if2(3)) = x(if203)) + Y(if1(3) + #(i71(7)
ENDDO
C Loop I3
DO k =1, ney.
x(iel(k)) = x(iel(k)) + y(ie2(k))
x(ie2(k)) = x(ie2(k)) + y(iel(k))
ENDDO
SCATTERADD(x(iel(1:ne)), x(ie2(1:ne)),
x(if1(1:nf)), x(if2(1:nf)))
C Loop ly
DO 1 =1, nny,
y(1) = x(1)
ENDDO
ENDDO
ENDIF

Figure 6 Parallelized example
code, using a local name space.
(The schedule generation and
most of the parameters for the
communication calls are omitted
for clarity.)

50

GATH(y17y27y37y4)
I T2 1 Yo
To—Tr+

. 11 T Y2
ls To—xy + Y1

Figure 7 Flow graph for

example code. The dotted Figure 8 Flow graph for
rectangles indicate potential call example code, with calls to PARTI
sites for PARTI routines to gather routines.

data (at beginning of loop) and
scatter data (at end of loop).

initq i=1
WHILE testq WHILE (i < K)
inity j=1
WHILE testy WHILE (j < L(i))
BODY X(i,j) =1%]
increments ji=j+1
ENDWHILE ENDWHILE
incrementy i=i4+1
ENDWHILE ENDWHILE

Figure 9 Generic loop nest (left) and corresponding EXAMPLE (right).

51

inityq i=1
inity j=1
WHILE test; WHILE (i < K)
BODY X(i,j) =1*]
IF done; THEN IF (j = L(i))
incrementy i=i4+1
inity j=1
ELSE ELSE
increments ji=j+1
ENDIF ENDIF
ENDWHILE ENDWHILE

Figure 10 Flattened generic loop nest and EXAMPLE.

DOI=1,N
DO Jind = firstJ(I), lastJ(I)
J = JNB(Jind)
force = nbf(X(I) — X(J))
F(I) = F(I) 4 force
F(J) = F(J) — force
ENDDO
ENDDO

Figure 11 Sequential form of the nonbonded force calculation.

52

Access patterns for SOD, 6968 atoms, smoothing factor 20
250 ‘ :

5
i
| I
h |)
L
"v r’V:I "
| AN i
R i
E e i
I’y e N —
1 iy
[} " Wty [
1 h I (R
| [\ |
i A (L
! [] 1
1 [| [l
W ,“ " | [
| [T n |
A | O T TR h |
(oF [o I | 1
bl I B) i ; i
8 b “‘ il iy f'. LT I \ l‘l
A b I I i |
+— N oo R | W Wi I hn
— Vi e [NINI) ik, oy Wi, W
= 100 [|,|“‘u ! Hh i :'\’:H' I !\“y‘ 1 r‘“' 1 o " 1y [
[IR e RN oy oty e L N
| al [N oty i [| | W i ih
" I ‘1“ [R LRI BRI l‘ It oy [T \ll‘ [I 1" “u‘u
! iy | [T i IR IR | Lo
I 1! o H| ot v(IR } J‘ o “‘i W ", ey i :' o
W ! [[[A I Y R T L R A }
| ‘: ‘H “‘\ it \"v [R Jv,‘\', |J"',u [IX T u" PR ," :. | ‘\‘, B I
1 P! I 1 [| ! 1" { ! o 1
| Y o ! \ g ot oy [] h R) n
i ! TR [AL R [[i L T A I T S NI T "
| B A A Wy it
f ‘” \"\‘ W o ! I,\\ |) [y Wy Il“ : 1 'u“‘ o “”\
yoh ! [[ey \‘u b W T
ool W Vo | | Ty ey WU |
- i ! [| |] A [P AT [| _
H ol i i V I [l [L DRI I |
It ! "Vllwl il [I " iy ‘”“ 1 o ety
1 I I 1l I I i A 1 I H
\ f vl ' ! o Lt
[y ' Iy i ur o
1
| I H\ i LR
|l v .
1 | W ‘v"
1 P ol \
INB(K) !
"
n
‘l

0 I I I I I I 1
0 1000 2000 3000 4000 5000 6000 7000

Atom number K

Figure 12 The total number of Writes to each atom (solid) and the contributions
by INB (dashed). It is

Balance(firstl, lastl)

DO I = firstl(me), lastl(me)
DO Jind = firstJ(I), lastJ(I)
J = myJNB(Jind)
force = nbf(X(I) — X(J))
F(I) = F(I) 4 force
F(J) = F(J) — force
ENDDO
ENDDO

F=4+{F}

Figure 13 Force calculation, UHGROMOS version.

53

Neighbors for SOD, 6968 atoms, 4 processors, smoothing factor 100
250

Processor 1 Processor 2 Processor 3 Processor 4
200
AllWrites(K)
§ 150
E // \\
as - \ / /
Q_‘ //‘ \\ /' -, ' \\/
4& / \ r/ \\ N
/ OwnedWrites(K)
50 ,\ SN
NotOwnedWrites(K)
0 1000 2000 3000 4000 5000 6000 7000

Atom number K

Figure 14 The total number of Writes to each atom (solid), broken down into
local contributions Owned Writes (dashed) and nonlocal contributions

NotOwned Writes (dot-dashed).

54

Access patterns for SOD, 6968 atoms, 4 processors, smoothing factor 100

250 : :

200 -]
(qV
Writes(2,K) (owned)
o
s 150~]
3
£
o
©
¢ 100]
o
8
2

501 Writes(2,K) (not owned) i
0 I I I I I I
0 1000 2000 3000 4000 5000 6000 7000

Atom number K

Figure 15 The contributions of processor 2 to each atom, Writes(2, K'). The
vertical dotted lines indicate the ownership range of processer 2.

99

Y-axis

Z-axis

X-axis

Figure 16 Subbox division of the problem domain; we use P = pypaps = 4«4 x4
processors and n;,; = ningng = 16 * 16 * 8 subboxes. Dotted lines indicate subboxes,
heavy lines delineate processor subdomains. Hashed-lined regions show the overlap
area of the processor with logical coordinate (4,3, 1), which has a subdomain
consisting of 4 * 3 * 2 subboxes located at the center of the edge closest to the
reader; note the wrap-around of the overlap due to periodic boundary conditions.

DOI= 17 Nigcal
DO Jind = firstJ(I), lastJ(I)
J = JNB(Jind)
force = nbf(lan2gan(I),Jan2gan(J))
F(I) = F(I) + force
IF (is—local(J)) THEN
F(J) = F(J) — force
ENDIF
ENDDO
ENDDO

Figure 17 EULERGROMOS version of the nonbonded force calculation.

56

| b | & I I s | 15 |

_____ 11 1111 1)
REF || 11 1)1)

__________ 11

_____ 11 1)1)
DEF 1

_____ 11 11)11 |
ADD

_____ 11 11)11)
RED

1

GET || 11 1)1)

__________ 11
PUT 1

1

BUF || 11 1111 1)

__________ 11

_____ SR 1 I I I I)
KILL 1111 |

_____ SR 1 R I I I O
FLUSH || . SR 1 I O I)

__________ 11_1

Figure 18 Local flow variables for example code.

57

LIVESY 1111 (111 (i |
— A1 | 11

LIVE®™ || 1111|1111 1111 11) |

<= U 1 O O O I
1 1
BUFFD || _____ 111111 1111 1| ___1
= || | SN I U I A I A I
1
HOIST || _____ | _____ 1111 11111111 ___1
— || S 1 O O I A I B I
1
FETCH || _____ 1 I (R
<= S T Iy O (Y I
1
GATH || _____ 1111_
— _11_

T []]
HOUT*" |[11111]11111| 111
— 11.1(11.1
T T T T T ST ET T
HOUT®¥ |[11111]11111|11111 11112 |11112| ___
— 111111111111 111
| 111 111]11111
DELAY || 11_| _11_| | ____ 11 |11111
— 11111 112 | 112 | 11-|11111]11111

STORE 1
=

SCATT 1
-

Figure 19 Global flow variables and result flow variables for example code.

28

1
GET spp || ——— 111111)
__________ 11
1111
FLUSH spp || ———— 1 I A
__________ 11_1

HOUTY,, |1 11111]11111| 111
— 111|111

HOUTSY S, (1111111111 (1111111111 |11111)

— 111111111111 }111|
11111t 1 11 11111
DELAY 4pp || 11| 11| | 1111111
— 11111 11 11) 111111111111
_____ 1 I I O N

STORE spp

_—

111 |

SCATT spp

Figure 20 Flow variables for ADD framework of example code.

99

C Loop Flattening

This Section is organized as follows. Section C.1 describes the different variants of
pseudo Fortran used in the examples. Section C.2 presents a small example to illustrate
the kind of problem we are interested in and gives a first glance at loop flattening, which
Section C.3 elaborates at at a more general level. Section C.4 examines the applicability
of loop flattening for the nonbonded force kernel described in Section A.2, which we
implemented on both the CM2 and the DECmpp; performance results on this can
be found elsewhere [HK92]. Section C.5 evaluates loop flattening from the compiler
perspective.

C.1 Languages

The concepts introduced here apply to a broad range of languages. We will give
program examples in different variants of pseudo Fortran:

F77 - Strictly sequential Fortran 77 (possibly a “dusty deck” program).

F77D - F77 enhanced with decomposition statements as proposed in FORTRAN D [FHKT90]
and High Performance Fortran [Hig92]. An important goal of F77D is to provide
a basis for efficient compilation towards both MIMD and SIMD distributed mem-
ory machines, so it should not contain any constructs that are specific to either
architecture.

F77ymip - A Fortran 77 version to run on a MIMD machine, which assumes a separate
name space for each processor.

F90s;p - A Fortran 90 version to run on a SIMD machine, similar to Connection
Machine Fortran [Thi91] or MasPar Fortran [Mas91]. There are two important
differences to the F77 variants:

e By default, scalars of the F77 version will be replicated in the F90g73p ver-
sion; i.e., they will be declared as vectors of size P, where processor p owns
the p-th element.

o In keeping with Fortran 90 convention, omitted array indices refer to all
elements of an array dimension, and an unsubscripted array reference refers
to all array elements.

For enhancing readability of the F90gs7p examples, we extend the language con-
structs that are typically implemented by vendors in several ways:

o The FORALL construct cannot only be applied to single statements, but also to
blocks. The general form of this extension can be interpreted differently depend-
ing on the semantics chosen for the case where different iterations modify the
same set of data; our examples, however, will avoid these access interferences.

¢ DO-ENDDO’s, DO-WHILE’s, IF’s, WHERE’s, and FORALL’s can be nested

freely within each other.

e WHILE loops can be controlled by an array of booleans (instead of just a scalar
boolean), if the different array elements are guaranteed to have identical values.

60

C Pl — sequential version
DO i=1,K
DO j=1, L)
X(ij) =i+
ENDDO
ENDDO

Figure 21 Original loop nest EXAMPLE.

C.2 Example of Loop Flattening

Consider the contrived F77 loop nest in Figure 21, henceforth called EXAMPLE. This
clearly is a dependence free, parallelizable loop, where the number of inner loop iter-
ations depends on the current iteration of the outer loop. Let K be 8 and let L(1:8)
have the values 4,1,2,1,1,3,1,3, respectively. Assuming P = 2 processors and the owner
computes rule, where in all assignment statements the right hand side expression is
computed by the processor that “owns” the left hand side variable, we can in this
case just distribute L and the rows of X blockwise to achieve perfect load balance.
This is illustrated in the F77D program in Figure 22, which assigns L(1:4), X (1:4,1:4)
to the first processor and L(5:8), X (5:8,1:4) to the second processor. The owner
computes rule results in partitioning the iteration space among the two processors, so
each processor executes only some iterations of the outer loop.

For a MIMD machine, the FORTRAN D compiler would derive the F77y73p pro-
gram shown in Figure 23. Each processor executes the loop nest independently,
needing a total of

4

TIMEyivmp = max ; Lii+4(p—1))=8 (2)

inner loop iterations. This is illustrated in the trace in Figure 24.

A F90s5pp version could be derived from the F77D program by just changing the
outer DO loop to a FORALL loop. This would result in a partitioning of the iteration
space, similar to the F77D version. For expository reasons, we will give a slightly
different but equivalent F90g7p version that takes the data decomposition and the
number of processors already into account and thus directly reflects the control flow
for K =8 and P = 2. As in the F77yyyp version, we change the upper bound of the
outer loop from K = 8 to K/P = 4 and let each processor execute all iterations of
the loop. We continue to use the loop index ¢ in control flow related statements; to
enable the different processors to operate on different data, we introduce an auxiliary
induction variable, 7', which replaces 7 in non-control flow statements. The result is
shown in Figure 25.

Note how we had to transform the inner DO loop due to the single SIMD control
flow. To make sure that each processor can perform all of its iterations, the upper
bound L(¢') had to be changed into the maximum of L(¢') over all processors. This in
turn necessitated a guard for the loop body that tests whether this processor is still

61

C P2 — Fortran D version
DECOMPOSITION XD(K,Lmax), LD(K)
ALIGN X with XD, L with LD
DISTRIBUTE XD(BLOCK,*), LD(BLOCK)

DO i=1,K
DO j =1, L(i)
X(1j) =1i*]
ENDDO
ENDDO

Figure 22 EXAMPLE in F77D.

C P38 — MIMD version
DO i=1,4
DO j=1,L%)
X'(ig) = i #]
ENDDO
ENDDO

Figure 23 EXAMPLE in F77;yp. X and L are renamed to X’ and L' to
reflect that there is no common name space any more. On processor p,
p=1,2, L'(¢) corresponds to L(i +4(p — 1)), and X'(¢,7) corresponds to
X(i+4(p—1),7)-

involved in the current inner loop iteration or whether it is masked out and sits idle,
possibly to participate again in later iterations.

We will refer to this transformation, which can be applied to other loop types as
well, as SIMDizing a loop. It is a straightforward consequence of the SIMD restricted
control flow, yet it is the crucial motivation for the concepts introduced in this paper.
The outer loop does not have to be SIMDized in this particular case because we know
that each processor works on exactly four rows of X and therefore has to execute the
outer loop the same number of times. Loop SIMDizing has the effect that our F90s7:p
program has to execute

4
TIMEsmp = Z;I_lélwg Lii+4(p—1)) =12 (3)
=1

iterations. Roughly speaking, our time bound has increased from a maximum over
sums to a sum over maxima. This becomes apparent when considering the execution
trace shown in Figure 26.

Since the equivalent MIMD implementation performs significantly better, this bad
running time can not be explained with lack of parallelism or bad load balance. To

62

Time|l1 2345678

1 |1111(2|3 3|4
J1 1123411 2|1
12 (112 223|444
J2 {111 2 3111 23

Figure 24 MIMD execution trace for EXAMPLE loop, ¢, and j, denote ¢ and j on
processor p.

C P4 — naive SIMD version
DO i=1,4
=14 [0,4]
DO j =1, max(L(i))
WHERE (j < L(i") X(i",j) =1 #j
ENDDO
ENDDO

Figure 25 EXAMPLE in F90g/yp. [0,4] denotes the two-element vector
containing 0 and 4.

overcome this purely control flow related problem, we apply loop flattening, which
will be introduced at a more general level in the next section. The result is shown in
Figure 27. Now we can achieve the same time bound as in the MIMD implementation,
needing only eight steps as shown in the trace in Figure 24.

The reader might have noticed that the loop body shown in Figure 27 is now always
executed at least once for each outer loop iteration, which is equivalent to assuming
L(i) > 1 for all 7. Even though this is correct in our example, a more general loop
flattening does not rely on this assumption, as we will see in the next section.

C.3 General Loop Flattening

Assume that we are given two fully parallelizable nested loops like in the previous
section; an extension of the following to deeper loop nests is straightforward. Each
of the loops might be structured as a WHILE loop, a DO-WHILE loop, a simple DO
or FORALL loop, or it might use conditional GOTO’s. The transformation described
here can be done either at the F77/ F77D level or at the F90g7p level. For simplicity
and generality, we will present it here on the F77 level. A corresponding F90g¢ryp
version can always be directly derived by SIMDizing loops and replacing IF’s with
WHERE’s.

As a first step, we normalize both loops by breaking their control pattern into
three phases for each nesting level [; an initialization phase inil;, a guard lest;, and an
incrementing step increment;. For example, a control pattern like DO var = lo, hi,

63

Time|l 2 3 4|56 7|8 9/10 11 12
i (11112 334
71 112341 121
12 |1 2223 (4 4 4
J2 |1 12311 |1 2 3

Figure 26 Execution trace for unflattened example loop; 7,, j, denote the actual
iteration counts of processor p, no entry means “idle.”

C P55 — flattened SIMD version

i =[1,5]
K = [4,8]
j=1

WHILE ANY(i < K)
WHERE (i < K)
X(1,j) =ix]
WHERE (j = L(i))

ELSEWHERE
j=i+1
ENDWHERE
ENDWHERE
ENDWHILE

Figure 27 EXAMPLE in flattened F90s7p.

stride would be broken into inif; = var = lo, test; = (var < hi), and increment; =
var = var + stride. The resulting loop nest GENNEST is shown in Figure 28, along
with the corresponding version of the EXAMPLE from the previous section (of course, we
usually expect BODY to contain more computational work than in EXAMPLE).

Since GENNEST conservatively tests for loop completion before entering the loop
body, all loops can be brought into this normal form. To estimate the running time
of the above code on P processors, for processor p let K, be the number of outer
loop iterations and L; be the number of inner loop iterations for the i-th outer loop
iteration. A straightforward MIMD version would then finish after

Kp

_ 7 !
TIMEyivp = max, ; L, (1)

iterations.
A F90g7pp version could be derived by SIMDizing both WHILE loops and would

64

initq i=1

WHILE test; WHILE (i < K)
inity j=1
WHILE test; WHILE (j < L(i))
BODY X(i,j) =1%]
increments j=j+1
ENDWHILE ENDWHILE
increment; i=i4+1
ENDWHILE ENDWHILE

Figure 28 Generic loop nest GENNEST (left) and corresponding EXAMPLE
(right); original version after normalization.

execute
11121)(11::J Ky
_ 7 !
TIMEsiyp = g pr:nlaxp L, (2"
=

iterations. Again, if the number of iterations of the inner loop varies from one outer
loop iteration to the next, then the restriction to a common program counter makes
this SIMD implementation inefficient.

Since we do not know whether the evaluation of test; has any side effects, we intro-
duce flags t; to store the results of evaluating the conditions tesi; before we make any
other transformations, see Figure 29. So far, control flow is still unchanged.

The key idea of loop flattening is to make sure that each processor has a chance
to advance to the next loop iteration where it participates in the execution of BODY
before the control flow actually reaches BODY. One requirement that follows immedi-
ately is that control variables (iteration counts etc.) are replicated to enable individual
processors to advance independently to the next outer loop iteration whenever they are
done with the current inner loop. Furthermore, we have to take BODY out of the part
of the loop nest that handles the transition between different iterations of the inner
and outer loop. Each processor should be able to execute BODY whenever it has still
work left to do in this loop nest and the control flow reaches BODY. In other words,
BODY should be executed whenever ¢ is true, independent of {3. The flattened loop
version meeting these goals is shown in Figure 30.

As the reader might verify, we still execute exactly the same instructions in the
same order and the same number of times as we did in the original loop nest. We also
still have two nested loops. However, BODY is lifted out of the inner loop. The inner
loop now contains just the control structure to let each processor advance to the next
iteration in which it actually executes BODY. In other words, the processors still have
to run through BODY and the rest of the loop nest in lockstep, but now they may be
executing effectively different loop iterations.

The above transformation is the most general, conservative one. It can be optimized
for several special cases; one common case is that

1. testy, testy and inity have no side effects, and that

65

initq i=1

tl = testl tl = (1 S K)
WHILE t, WHILE t,
inity j=1
tg = test2 tg = (J S L(l))
WHILE t, WHILE ¢t
BODY X(i,j) =1*]
increments ji=j+1
tg = test2 tg = (J S L(l))
ENDWHILE ENDWHILE
increment; i=1i4+1
tl = test1 tl = (1 S K)
ENDWHILE ENDWHILE

Figure 29 GENNEST/EXAMPLE, with guard variables.

2. for each outer loop iteration, the inner loop is executed at least once.

Then we can safely transform the code into the simpler version shown in Figure 31.
If it further is the case that

3. we can replace the guard tesly with a test whether we are in the last inner iteration,
doney (for example, in DO var = lo, hi, stride, we can replace fest = (var
< hi) with done = (var = hi)),

then we can save the last execution of incrementy, as shown in Figure 32. The SIMDized
equivalent EXAMPLE of this version was shown in Figure 27.

C.4 Case Study with Molecular Dynamics

The transformation described in the previous section should be profitable whenever
some processors sit idle in an inner loop and still have work to do in later iterations of
the outer loop. This seems to be a situation potentially occurring in many scientific
programs solving irregular problems [BSGM90, SPBR91, TP90, WLR90]. One example
is the GROMOS molecular dynamics program, which contains several interesting kernels
of this kind [CHK*92, CHM S92, GB88]. Here we want to focus on the calculation of the
nonbonded forces between individual pairs of atoms which is described in Section A.2;
Figure 11 shows the kernel of a typical sequential implementation.

Figure 33 shows a F90g7yp version that lays out the data in a cyclic fashion. If we
assume for simplicity that P divides IV, then each processor computes the nonbonded
forces for N/P atoms. The uneven atom density results in varying values of INB;
therefore, the inner loop with the (relatively expensive) force calculation often has to
be executed with processors masked out even though they still have work to do in later
iterations, just as it was the case in the EXAMPLE in Section C.2. All processors have

66

initq i=1

tl = test1 tl = (1 S K)
IF t; THEN init, IF t{ then j =1
WHILE t; WHILE t;

tg = test2 tz = (J S L(l))

WHILE (t; A— t2) WHILE (t; A— t2)
increment; i=14+1
tl = test1 tl = (1 S K)
IF t{ THEN IF t; THEN
inity j=1
tQ = test2 tg = (J S L(l))
ENDIF ENDIF
ENDWHILE ENDWHILE
IF t; THEN IF t{ THEN
BODY X(i,j) =1x*]
increments j=j+1
ENDIF ENDIF
ENDWHILE ENDWHILE

Figure 30 GENNEST/EXAMPLE, after flattening.

to go through
N/P

— T n
TIMEspyp = ; max, INB(Atom!) (2"
iterations, where AtOm; is the ¢-th Atom of processor p.

This can be improved on by applying loop flattening, where we take into account
that each atom has at least one interaction partner. The result is shown in Figure 34.
Now each processor can loop through its atoms individually, so this code achieves the
same time bound as a MIMD implementation:

N/P
la 7
TIMELS: S = max, > INB(Atom!), (1")
=1

which is only limited by the quality of our workload distribution.

C.5 Loop Flattening from the Compiler’s Perspective

The discussion so far seems to advocate a certain style of SIMD programming for
applications that can benefit from loop flattening, just as a certain style of programming
emerged when vector machines became popular. However, this would be contrary to
existing efforts to make programming independent from machine idiosyncrasies, as for
example the development of the FORTRAN D language. For non-SIMD machines, it
still seems natural and efficient to have the inner loop bodies contained in the inner

67

initq i=1

inity j=1
WHILE test; WHILE (i < K)
BODY X(i,j) =1x*]
increments ji=j+1
IF NOT test; THEN IF NOT(j < L(i))
incrementy i=1i4+1
inity j=1
ENDIF ENDIF
ENDWHILE ENDWHILE

Figure 31 GENNEST/EXAMPLE, flattened and optimized.

inity i=1
inity j=1
WHILE test; WHILE (i < K)
BODY X(i,j) =1x*]
IF done; THEN IF (j = L(i))
increment; i=i4+1
inity j=1
ELSE ELSE
increments ji=j+1
ENDIF ENDIF
ENDWHILE ENDWHILE

Figure 32 GENNEST/EXAMPLE after further optimization.

loops, even though flattened loops should run well on these machines also. Therefore,
we suggest to make loop flattening part of the optimizing repertoire of SIMD compilers.

Applicability is ensured whenever there are multiple loops fully contained in each
other, i.e., there are not several loops on the same nesting level. This can be easily
derived from the abstract syntax tree. Furthermore, the normalized version always
tests the loop guard lest; before executing BODY, so we cover all loop constructs. The
transformation itself is relatively straightforward; for example, there are no parameters
to adjust, unlike in loop skewing. The first step of the transformation is to identify the
three phases init, test, and increment.

WHILE/DO-WHILE loops: The relevant phases can be identified from their po-
sition between the WHILE and ENDWHILE keywords. Since incrementy and
BODY stay together throughout the transformation, we actually do not need to
separate these two phases.

DO/FORALL loops: The phases can be derived directly from the loop header, as
exemplified earlier.

68

F=0
I=1[1:P]
lastl = [N—=P+1 : N]
WHILE ANY (I < lastl)
WHERE (I < lastl)
DO Jind = 1, max(INB(I))
WHERE (Jind < INB(I))
J = JNBL(L, Jind)
force = nbf(X(I) — X(J))
F(I) = F(I) + force
F(J) = F(J) — force
ENDWHERE
ENDDO
I=1I+P
ENDWHERE
ENDWHILE

Figure 33 F90g5p version of NBFORCE.

F=0
I[=1[1:P]
lastl = [N—=P+1 : N]
Jind =1
WHILE ANY (I < lastl)
WHERE (I < lastl)
J = partners (I, Jind)
force = nbf(X(I) — X(J))
F(I) = F(I) + force
F(J) = F(J) — force
WHERE (Jind = INB(I))
I=1I+P
Jind =1
ELSEWHERE
Jind = Jind + 1
ENDWHERE
ENDWHERE
ENDWHILE

Figure 34 Flattened F90g7yp version of NBFORCE. We take into account
that INB(:) > 1 for all ¢.

69

Reducible GOTO loops: Similarly to WHILE loops, we can identify the phases by
their position between labels and jumps.

After normalization, the introduction of flags {; and the actual code rearrangement
follow straightforwardly. As described in Section C.3, we also can often detect op-
portunities for further optimizations, for example when we are transforming simple
DO/FORALL loops.

In evaluating profitability, we note that the additional overhead caused by loop
flattening is, in the worst case, to manipulate two flags and to perform two conditional
jumps. So we can relatively safely assume profitability whenever the inner loop bounds
may vary across the processors.

As with many code transformations, the hardest problem in automating loop flat-
tening is to determine its safety. A suflicient condition is that the loop into which
we lift an inner loop body can be parallelized, which might be hard to detect, es-
pecially if indirect addressing occurs. However, this is already a necessary condition
for parallelizing loops in general, and therewith a standard problem for parallelizing
compilers [HKT92a]. The same technology developed there can be applied here.

When safety is ensured, either by user information (like a FORALL loop header) or
by “heroic dependence analysis,” we expect that the systematic loop flattening trans-
formation, as described in Section C.3, can be implemented efficiently into compilers
like the FORTRAN D compiler in the ParaScope programming environment [KMT91].
This implementation should not be part of this dissertation; what it will contain, how-
ever, is a performance study on which improvements to be gained when applying loop
flattening manually and an evaluation of its applicability and automatability.

70

