Automatic Software Cache
Coherence through Vectorization

Ervan Darnell
John M. Mellor-Crummey
Ken Kennedy

CRPC-TR-92197-S
January 1992

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Appeared in Proceedings of the ACM 1992 International
Conference on Supercomputing, Washington, DC, July
1992.

Automatic Software Cache Coherence through Vectorization *'

Ervan Darnell

John M. Mellor-Crummey

Ken Kennedy

Computer Science Department
Rice University
Houston, TX 77251-1892

Abstract

Access latency in large-scale shared-memory multiproces-
sors is a concern since most (if not all) memory is one or
more hops away through an interconnection network. Pro-
viding processors with one or more levels of cache is an
accepted way to reduce the average access latency; how-
ever, in a multiprocessor, cached values must be kept co-
herent for the multiprocessor to support the abstraction of
a shared global memory. There is no generally accepted
hardware solution to provide cache coherence for large-scale
shared-memory multiprocessors. Software coherence strate-
gies offer scalability with current hardware. In this paper
we examine a compiler-based software strategy for main-
taining cache coherence that relies on dependence analysis
and a vectorization algorithm to insert cache control direc-
tives. Experiments on the BBN TC2000 for a pair of nu-
merical problems show that the run-time cost of coherence
using our strategy is less than that for previously proposed
compiler-based software methods and suggest that it should
compare favorably with proposed hardware schemes.

1 Introduction

Shared-memory multiprocessors are composed of a collec-
tion of processors and memories linked by an interconnec-
tion network. In scalable machines, the network necessarily
consists of multiple layers. With respect to any particular
processor, most (if not all) memory is one or more hops away
through the interconnect. For this reason, access latency is
an important concern.

Approaches for coping with access latency in shared-
memory multiprocessors include multithreading [2] and
caching. In this paper we focus on using caching to reduce
access latency. Caching can reduce the impact of network
latency on average access latency by reducing the number of
accesses that must traverse the interconnect. Reducing net-
work traffic also reduces the likelihood of contention which
can otherwise degrade performance.

*This work was supported in part by the National Science
Foundation under Cooperative Agreement CCR-8809615 and
ASC-8518578, and by IBM Corporation through its research
contracts with the Department of Computer Science at Rice
University.

tThis paper appears in the Proceedings of the 1992 Interna-
tional Conference on Supercomputing

Using caches in shared-memory multiprocessors intro-
duces the need for cache coherence. To avoid changing the
semantics of a program execution through the use of caches,
memory must retain the appearance of sequential consis-
tency [10]. By itself, caching hardware for uniprocessors is
not sufficient for multiprocessors since uniprocessor caches
have no knowledge of other processors’ actions.

Most approaches to the cache coherence problem have fo-
cused on hardware mechanisms to maintain coherence. Un-
fortunately, the overhead of maintaining coherence in hard-
ware can be high; scaling systems based on hardware co-
herence is a difficult problem [13]. Snoopy cache schemes,
which monitor accesses broadcast on the processor-memory
interconnect, are now in common use for small scale systems
[14, 16]; however, snoopy schemes are problematic for large-
scale machines because such machines cannot be based on a
single, central broadcast medium for lack of sufficient band-
width. Directory schemes [3, 11, 17], in which a directory
entry associated with each memory location indicates which
processors have cached values for that location, seem more
promising for large-scale systems. However, directories can
require large amounts of additional storage and directory
maintenance operations may substantially increase network
traffic. Others researchers suggest that caches include ver-
sion number based support for coherence[4, 12]. Drawbacks
to these schemes include dedication of precious cache real-
estate to version numbers (decreasing the amount of useful
data that the cache can hold), and the additional hardware
complexity.

A promising alternative to hardware-based solutions for
coherence is to use compilers to analyze programs and auto-
matically augment them with calls to coherence operations
where necessary. Coherence operations include UPDATES,
which write modified values from cache to main memory
without evicting them, and INVALIDATESs, which remove val-
ues from cache forcing them to be fetched from main mem-
ory the next time they are accessed. Compiler-based coher-
ence techniques require only minimal support from cache
hardware. The hardware need only provide a mechanism
to enable software control of INVALIDATEs and UPDATES;
currently available cache units such as the Motorola 88200
satisfy this requirement. With compiler-based approaches,
caches need not have any global knowledge of other pro-
cessors’ actions: they can use caches otherwise intended
for uniprocessor architectures. Furthermore, compiler-based
techniques that use high-level information about the pro-
gram, in particular the dependence structure (i.e., knowl-
edge of how values flow and when storage is reused), can

relax sequential consistency; they only need to maintain
apparent coherence. Such techniques can defer achieving
coherence until a more opportune time or determine that
certain values are dead on a given processor and that their
coherence need not be enforced. The limitation of such
approaches is that cache control is based on compile-time
decisions instead of run-time decisions; the imprecision of
compile-time analysis may cause some potential run-time
reuse in cache to be missed.

In this paper, we describe a compiler-based approach that
maintains cache coherence in software for programs with
fork-join parallelism expressed in the form of nested paral-
lel loops. Our technique improves upon previous compiler-
based approaches by carefully analyzing exactly which data
requires cache control, aggregating cache control operations
to amortize overhead, and adjusting the position of cache
control operations in the code to facilitate run-time reuse of
cached data.

Section 2 provides an overview of data dependence which
is necessary for the exposition of our compiler-based soft-
ware coherence strategy. Section 3 discusses a general
framework for compiler-based software cache coherence and
previous research in the area. Section 4 describes our ap-
proach and presents our vectorization-based algorithm for
adding cache control operations to a program with loop-
based parallelism. Using an example, we explain the behav-
ior of our algorithm and differentiate its results from those of
other compiler-based coherence strategies described in the
literature. Section 5 presents some preliminary experimen-
tal results on the BBN TC2000 that compare the perfor-
mance of two application kernels using our cache-coherence
strategy to their performance using alternative approaches.
Section 6 presents a summary and conclusions. In section 7
we outline several unresolved issues to be investigated in
future work.

2 Data Dependence

A data dependence exists between two statements S; and
Sz if there is a path from S; to Sz and both statements
access the same location in memory. There are four types
of data dependence [8, 9]:

True (flow) dependence S; writes a memory location
that S5 later reads.

Anti dependence S; reads a memory location that So
later writes.

Output dependence S; writes a memory location that
Ss later writes.

Input dependence S; reads a memory location that S
later reads.

Compile-time dependence analysis computes a conservative
superset of a program’s run-time dependences. A program’s
dependence graph contains a node for each program state-
ment and an edge for each dependence.

A data dependence between statements S7; and Sz is car-
ried by a loop if the execution of S; in loop iteration 2 can
potentially access the same memory location as the execu-
tion of S2 in loop iteration j, ¢ # 3. The nesting depth of
the outermost loop which carries a dependence is said to be
the carrying level of the dependence. For instance, in

DO 1, N

1,
)

(S}

I
DO N
A(I,J) = A(I,J-1)
ENDDO

ENDDO

there is a true dependence from the write of A(I,J) to the
read of A(I,J-1). This dependence is carried by the J loop
and the carrying level of the dependence is 2. Dependences
that are not carried by loops are said to be loop independent.

For programs with parallel constructs, a dependence is
called processor crossing [5] when the statement endpoints
of a dependence may execute on different processors. Pro-
cessor crossing dependences indicate when a value may be
accessed by more than one processor. Compiler-based soft-
ware coherence methods must consider processor crossing
true, anti, and output dependences.

3 Software Cache Coherence

Compiler-based algorithms for software cache coherence are
based on the following principle: processor-crossing true de-
pendences must be augmented with coherence operations to
ensure that values flow between processors. The WRITE in a
processor-crossing true dependence must be followed by an
UPDATE to send the new value to main memory; the READ
must be preceded by an INVALIDATE if it is possible that the
cache contains a stale value. To ensure values flow prop-
erly when a true dependence is present, previous work has
focused on placing an INVALIDATE between the write of a
value and its subsequent read. Here, we describe the notion
of access triples as a more precise framework for compiler-
based coherence problem.

For a value to be stale in a cache and not merely the
object of a processor crossing dependence, the following se-
quence of operations must occur:

1. READ or WRITE On processor 1
2. WRITE on processor j, j # t
3. READ on processor i

We call such a sequence an access triple. Assume the WRITE
is followed by an update. With no other coherence opera-
tions, the READ in step 3 may see a stale value left in cache
by the READ in step 1. Without step 1, the READ in step
3 would either find the correct value in cache or no value
at all (and fault in the new value). All that is necessary
to maintain coherence is to break each access triple on e:-
ther dependence, the one to the WRITE or the one from the
WRITE. Previous approaches add an INVALIDATE on proces-
sor ¢ between steps 2 and 3 after the READ is scheduled to
ensure that the stale value is cleared from cache. It would
be equally correct to add an INVALIDATE on processor ¢ be-
tween steps 1 and 2; purging the value from #’s cache before
the WRITE also ensures that a stale value is not present in
cache after step 2.

The notion of access triples has a natural extension for
accesses to arrays. The READ and WRITE operations in steps
1-3 of an access triple can represent access to arbitrary sec-
tions of an array. Assume that an update following step
2 ensures that all of the values modified by the WRITE are
written to main memory. As before, to maintain coherence,

an INVALIDATE on processor ¢ must be added. However, the
data to be invalidated need only subsume the intersection
of the three sections that are touched by the accesses in the
triple; it does not necessarily need to include all that is read
nor all that is written.

Like previous approaches, we consider programs with
loop-based parallelism that do not contain explicit synchro-
nization. As in previous work, in this paper we focus on
maintaining coherence based on processor crossing depen-
dences and reserve a more general treatment of access triples
(which requires more global program analysis) for future
work. Thus, from this point on through section 5, we only
consider placement of invalidates between the write and sub-
sequent read in a true dependence. We assume that the
run-time mapping of parallel loop iterations to processors
is unknown at compile time. Furthermore, we assume that
parallel loops do not carry any true, anti, or output depen-
dences. Such dependences indicate that the data written by
one loop iteration is not independent of the data accessed by
other iterations of the loop (i.e., race conditions exist). For
programs that satisfy this restriction, a processor crossing
dependence must flow across the start or end of a parallel
loop. In particular, a dependence crosses processors when
it is carried by a serial loop outside of a parallel loop, or
when it links a pair of statements with one of the state-
ments nested inside a parallel loop and the other statement
in a serial region or a different parallel loop.

For expository purposes, consider each serial section (a
code section not enclosed by any parallel loop) to start with
a dummy FORK and end with a dummy JOIN. With this
assumption, the sequence of operations to ensure proper co-
herence for a processor-crossing true dependence is WRITE,
UPDATE, JOIN, FORK, INVALIDATE, READ. Operations on un-
related data can be interleaved arbitrarily within this se-
quence. If complete knowledge were available, the best spot
to place the INVALIDATE would be immediately after the
FORK. Moving the INVALIDATE closer to the READ may re-
move an opportunity for reuse of a value since there may be
some other reference that brings the value into cache before
the INVALIDATE.

Moving the INVALIDATE closer to the FORK to facilitate
reuse can make it difficult to issue a precise INVALIDATE,
particularly if the INVALIDATE is moved to a point prior to
calculation of subscripts used to determine the location of
the READ. Such imprecision does not affect correctness as
long as the region covered by the INVALIDATE subsumes the
data accessed by the READ. This leads to a tradeoff affecting
potential reuse of cached values.

Figure 1 illustrates the sort of tradeoffs that occur in the
placement of INVALIDATEs. All program examples in this
paper use Parallel Computing Forum (PCF) Fortran [15]
syntax; PCF Fortran is an emerging standard for shared-
memory parallel Fortran. The PARALLEL construct corre-
sponds to a fork-join pair that specifies a block of code to be
executed on every processor. PD0is a worksharing construct;
iterations of a PDO are partitioned among the processors for
execution. PARALLEL DO packs both these statements into
one. If the INVALIDATE for reference 2 is placed immediately
after the FORK (option 1), it must invalidate all of A since at
that point it cannot be determined what part of A reference
2 will access. This invalidate will eliminate most reuse of
A by reference 3 in the trailing serial loop. Alternatively,
if the INVALIDATE for reference 2 immediately precedes the
reference (option 2), A(I) is invalidated ten times, once for
each iteration of the J loop, which is clearly unnecessary.

REAL A(10)
DO I=1,10
A(I)= ... [reference 1]
ENDDO
PARALLEL
Inv A(1:10) [option 1]
PDO I=1,10
DO J=1,10
IF (MOD(J,2).EQ.1) THEN
Inv A(I) [option 2]
B(I) = A(I) [reference 2]
ENDIF
ENDDO
END PDO
END PARALLEL
DO I=1,10
...=A(I) [reference 3]
ENDDO

Figure 1: Placement of Invalidate

R; = total reads in program
R, = optimal number of main memory reads
R, = actual number of main memory reads

Wi, W,, and W, are defined analogously for writes

CRE =1— (R, — R.)/(R: — R,)
CWE =1— (W, —W,)/(W, — W,)

Table 1: Definitions of coherence algorithm efficiency.

However, this placement of the INVALIDATE does not disturb
reuse of A by reference 3 in the trailing serial loop since most
of the INVALIDATEs will take place on a processor different
from the one that executes the serial code.

When evaluating the effectiveness of a caching strategy,
people most often focus on the hit ratio. The hit ratio is
only half of the picture though. The hit ratio measures
how effective reads are, but does not measure how effective
writes are. The read miss ratio (one minus the hit ratio) is
how often a read misses in cache causing lost performance.
A complementary measure is the write miss ratio, the per-
centage of writes which are made to main memory (instead
of just cache) relative to the total number of writes. Both
the read and write miss ratios are necessarily greater than
zero: there is some intrinsic number of reads from main
memory and writes to main memory that a program re-
quires. We are interested in how well coherence schemes
perform relative to this standard. We define two efficiency
measures, the Cache Read Efficiency, CRE, and the Cache
Write Efficiency, CWE (table 1). These measures reflect the
effectiveness of cache organization (e.g. associativity), but
more importantly, how well a given coherence scheme does
relative to an optimal scheme (for a given data set and num-
ber of processors). Optimal means the minimum number of
main memory reads that a program execution would require
given no evictions due to cache organization or size. Some
of these reads are needed to bring values into cache initially.
Others are needed because a value was changed on another

processor and needs to cross processors.

The CRE is not the same as the ‘hit ratio’. The CRE
is how the performance of a given coherence algorithm and
cache compares to the ideal for a particular program exe-
cution. Minor changes in the program under study (e.g.,
register allocation of some array references) might make
large changes in the actual ‘hit ratio’ without changing the
CRE. For some algorithms, R; = R, in which case CRE
is undefined. This is not just a mathematical triviality, but
a reasonable interpretation. In this circumstance, no im-
provement is possible regardless of the coherence algorithm.
Similar observations apply for the CWE.

3.1 Related Work

Here we examine two previously proposed software schemes
in terms of the aforementioned trade-offs in the positioning
of coherence operations. The first is Cheong and Veiden-
baum’s fast selective invalidation [4] (hereafter referred to
as the FSI method). The second is a method proposed by
Cytron, Karlovsky, and McAuliffe [5] (hereafter referred to
as the CKM method). Both methods were developed for
programs with fork-join parallelism expressed in the form
of parallel loops. Evictions and cache line sizes greater than
one word were not considered.

Both methods issue UPDATEs immediately after their cor-
responding WRITE. The FSI method does this implicitly by
using write-thru caching. The CKM method uses copyback
caching and thus requires explicit UPDATEs. However, the
two methods treat INVALIDATES in completely different ways.
The FSI method moves all INVALIDATES for a parallel region
to immediately follow the FORK at region entry. FSI does
not try to determine which locations need to be invalidated;
it invalidates everything that is a shared writable object af-
ter every FORK, even if it is not referenced before the next
JOIN. The CKM method goes to the opposite extreme and
places every INVALIDATE immediately before its correspond-
ing READ. To decide which READs need invalidates, the
CKM method uses dependence analysis to determine which
READs are involved in processor crossing dependences.

Both papers make part of the access triple observation
and use it in their methods to the extent of not placing IN-
VALIDATEs before READ references which follow only WRITE
references. This is useful for FSI only if it applies to every
reference in a loop. CKM can apply it on a reference by
reference basis.

Cheong and Viedenbaum’s simulations of the FSI
method [4] show that it has a good CRE, approaching 100%,
but its CWE is always 0%. There is no data on how the
CKM method fairs but one would expect it to usually have
a lower CRE and a CWE slightly above 0%.

Cytron, Karlovsky, and McAuliffe discuss replacing up-
DATEs and INVALIDATEs with FLUSHes under certain circum-
stances. The treatment was apparently only for scalars and
is not as general as it might be. They also suggest that
coherence overhead could sometimes be reduced by moving
INVALIDATEs to a pre-dominator and UPDATEs to a post-
dominator. A precise algorithm is not given. INVALIDATEs
can be moved to particular control flow branches so long
as the other branches have an assignment to the variable.
Without array kill information it is unlikely that these opti-
mizations can be applied for subscripted variables. Scalars
are not of interest since they are either local or read only;
otherwise, the parallel loop would carry dependences thus
violating one of the fundamental assumptions.

DO I=1,N

DO J=1,N
DO K=1,N
DO L=1,N

Inv ACI,F(J),K)

Figure 2: Level of aggregation

4 Coherence Through Vectorization

Conceptually, our approach starts with the solution gener-
ated using the CKM method and applies vectorization [1]
to aggregate cache control operations and move them as far
as possible, toward either the FORK or the JOIN. The result-
ing INVALIDATEs often resemble those created by the FSI
method. We refer to our strategy as Coherence Through
Vectorization (CTV). It maintains exactness in the sense
that it never invalidates anything that does not need to be
invalidated. And, of course, it never updates anything that
does not need to be updated. It never pays the cost that
the FSI method does of invalidating the wrong value. In the
worst case CTV will pay the cost that the CKM method
does of invalidating the same value too often, but it many
cases redundant INVALIDATEs will be avoided.

CTV has the additional benefit of reducing run-time
overhead by aggregating cache control operations and thus
amortizing their initiation overhead. For the UPDATE case,
this improves on both the CKM and FSI method. For the
INVALIDATE case, CTV does better than the CKM method,
which does not aggregate READs. But, CTV will usually not
aggregate as much as the FSI method, which lumps every
INVALIDATE for a given loop into a single global INVALIDATE.

4.1 Vectorization Background

We use vectorization here to mean a particular process of
reconstructing a program from its dependence graph. Gen-
erating vector code is not the objective per se. Vectoriza-
tion algorithms determine how many levels of aggregation
a statement has and restructure computations so that the
aggregation can be realized. Such algorithms work entirely
from a program’s dependence graph and deliberately ignore
the program’s original structure.

We use the term aggregationin a special sense. The level
of aggregation is the number of serial loops out of which a
statement can be hoisted. This might be possible due either
to loop invariance or the presence of a discernable section.
If we were actually generating vector code, this would be
the number of dimensions of vector parallelism. In figure
2, the INVALIDATE has two levels of aggregation, K and L.
The L level exists because the INVALIDATE is invariant with
respect to it. The K level exists because the section can
be analyzed. No section can be constructed for the J level
because of the unanalyzable subscript. Unless the I and J
loops can be interchanged, there is no aggregation at the I
level because the J loop is nested inside of it. The two levels
of aggregation could be realized by changing the INVALIDATE
to Inv A(I,F(J),1:N) and hoisting it out of the K and L
loops.

1. Analyze the program for dependence.

2. Determine which of the dependences are processor
crossing.

3. For all references which have processor crossing de-
pendences,

(a) Create a coherence statment with the same ref-
erence.

(b) Add dependences to put the coherence state-
ment in the same PDO or serial region.

4. CodeGen,i.e. ‘Vectorize’

(a) Collapse PDOs and dependence cycles to single
nodes, thus forming a DAG.

(b) Generate code on this DAG in topological or-
der.

(c) For each collapsed node, recurse by calling Gen
at the next deeper nesting level.

(d) For single statements, produce the text of the
statement with the proper amount of aggrega-
tion.

Figure 3: CTV algorithm

4.2 The Algorithm

The essence of the CTV algorithm is to add INVALIDATES to
the dependence graph in such a way that the INVALIDATE is
constrained to occur after the FORK, before the READ that
needs invalidation, and as soon as any subscripts needed to
determine the memory location are known. Other depen-
dences on the variable needing invalidation are not relevant
to the placement of the INVALIDATE. The placement of the
INVALIDATE is not specifically determined; it is implicit in
the structure of the dependence graph. The vectorization
algorithm then restructures the code so as to achieve as
much aggregation as possible for the INVALIDATE. A similar
process applies for WRITEs and UPDATEs. The algorithm is
summarized in figure 3. The rest of this section discusses
it. Consider all PDOs to be collapsed into PARALLEL DOs for
purposes of discussion.

In a preprocessor step, all array references are rewritten
using temporary variables in order to make the subscript
references side effect free. Next, we apply conventional de-
pendence analysis to construct a dependence graph for the
program. The dependence graph serves as the program rep-
resentation for the remaining steps of the algorithm.

The next step is to determine which of the dependences
are processor crossing. This can be easily determined by
comparing the depth of any enclosing PARALLEL DOs, the
common nesting level of both ends of the dependence, and
the carrying level of the dependence.

Next, INVALIDATEs are added. For each READ reference
in the program, e.g. A(t1,t2...), that is the sink of a
processor crossing dependence (i.e. only true dependence
is relevant), a statement to invalidate the same reference is
added, e.g. INV A(t1,t2...). A dependence from the IN-

VALIDATE to the READ is added to the dependence graph. If
the READ is in the scope of a PARALLEL DO, a dependence is
added to place the INVALIDATE in the same PARALLEL DO as
the READ. The INVALIDATE is constrained only to stay in the
same parallel loop as the READ, not the serial loop(s) nested
inside of the parallel loop. If the READ is in a serial section
(not in the scope of a parallel loop), dependences are added
to execute the INVALIDATE after any PARALLEL DOs which are
the sources of processor crossing dependences reaching the
READ (this can be trivially extended for nested PARALLEL
DOs). This essentially means that invalidation can occur
any time between processor assignment in the FORK and
the actual reference, regardless of other program structure
and dependences. Finally, any dependences that existed on
the subscripts of the READ, t1, t2 ..., are copied to refer-
ences to those subscripts in the new INVALIDATE statement.
This assures that any computations which are needed to
determine subscript values have already been done. Other
dependences on A itself are not copied. At this point, the
placement of the INVALIDATE for the reference and the level
of aggregation available is determined solely by the single
reference.

UPDATEs for WRITE references which are the source of
processor crossing true dependences are added next. This is
done analogously to the adding of INVALIDATEs for READs.
For anti and output dependences from WRITEs, an INVALI-
DATE is added instead (unless there is already an UPDATE).
This is necessary because a dirty value that is no longer
needed after a task might be evicted by the cache hardware
at some later time when space is needed. This value could
then overwrite a more recent value in main memory.

In the circumstance where a READ follows a WRITE in
the same task and both access some of the same locations,
the strategy as outlined above might produce the follow-
ing sequence of events: WRITE, INVALIDATE, UPDATE, READ.
When the INVALIDATE and UPDATE reference overlapping
sections, a dirty value would be invalidated before it is up-
dated. An inversion dependence is added in this step to
prevent this problem. Adding coherence statements for all
of the READs before any of the WRITEs makes it easy to de-
termine when inversion dependences are necessary. This can
be done is such a way as to not affect the overall time com-
plexity of the algorithm or hinder any possible aggregation
that would otherwise be available.

We refer to a dependence graph augmented with coher-
ence operations as a coherence graph. A coherence graph
contains all of the dependences which must be satisfied for a
correct execution of the program on a shared memory mul-
tiprocessor without hardware coherence.

Code generation, CodeGen, proceeds by collapsing all cy-
cles in the coherence graph and all PARALLEL DOs (but not
serial DOs) to single nodes. The resulting DAG is then pro-
cessed in topological order. Different node types are handled
in different ways. PARALLEL DOs must be collapsed to single
nodes to keep them from being distributed. This insures
that INVALIDATEs will be done in the same task as their
corresponding READS.

If a given node contains more than one statement, an
appropriate type of DO statement is generated at this level
and the contents of the cycle are processed by recursively
calling CodeGen at one level deeper. In the recursive call,
all statements and dependences outside of this node are ig-
nored. Also, any dependences carried at the current level
are ignored because they are satisfied by the DO. If the node
is a single statement, code can be directly generated for it.

PARALLEL DO I=1,N
J2=0
DO J=1,N
J2=J2+1
DO K=1,N
C(I,J) = ¢(I,J2) + A(I,K)*B(K,J)

O U WD

Figure 4: Matrix Multiply before coherence

The four cases are:

e Cycle: this indicates that the statements in the node
originally came from a serial loop and they all depend
on each other in some way including at least one loop
carried dependence. This does not cause all of the
statements originally in the DO to be generated, only
those in the cycle.

e PARALLEL DO node: Generate a PARALLEL DO and then
recurse.

e A single non-coherence statement: Generate it. If the
current level is less than the original level of the state-
ment then additional serial DOs will be necessary. This
may occur because a statement is nested in a loop but
has only loop independent dependence upon it. There
are no cycles in this case, but the surrounding DOs are
still necessary.

o A single coherence statement: Generate the coherence
statement with a level of aggregration which is the
difference between the current level of code generation
and original nesting depth of the coherence statement.
This is sufficient to ensure that coherence statements
are generated at the outermost level possible, i.e. with
as much aggregation as possible.

As a practical matter, cycles and single non-coherence state-
ments on the same level will be fused together into one serial
loop when doing so does not capture a coherence statement
between them. This simply prevents loops from being dis-
tributed unnecessarily.

Non-unit cache line sizes cause aliasing of values. This
problem must be addressed by any coherence scheme. If a
parallel loop index does not appear in the fastest varying
subscript of an array reference, it is not a problem. When
it does, other compiler techniques such as changing the ar-
ray layout or strip mining can be used to solve it. Failing
that, either no-caching or write-thru caching must be used
for that variable inside any parallel construct in which this
situation occurs. If the architecture does not permit such an
allocation, some of the parallelism will have to sacrificed for
a completely automatic technique. This must be handled
before the coherence graph is built.

A more detailed treatment of the algorithm can be found
in [6].

4.3 Example

Consider a simple matrix multiply (figure 4) where the outer
loop is parallel. The J2 assignment in statement 4 is added

1 PARALLEL DO I=1,N

2 J2=0

3 DO J=1,N

4 J2=J2+1

5 DO K=1,N

6 Inv A(I,K)
7 Inv B(K,J)
8 Inv C(I,J2)
9 C(I,J) = C(1,J2) + A(I,K)*B(X,J)
10 Upd C(I,J)
11 END DO

12 END DO

13 END PARALLEL DO

Figure 5: Matrix Multiply after CKM coherence

for the sake of example (assume that the compiler does not
recognize auxiliary induction variables). References to ele-
ments in arrays A, B, and C must all be invalidated before
they are used because their initial assignments may have oc-
curred on a different processor. The new value of C must be
updated from cache to main memory before the PARALLEL
DO loop finishes.

The FSI approach would solve this problem by invalidat-
ing the whole cache for each processor when the PARALLEL
DO starts and using write-thru so that every assignment to C
in statement 9 goes straight to main memory. The problem
with this is that for any given I and J it writes C(I,J) N
times (for each iteration of the K loop instead of just once).

The naive CKM approach would solve the problem by
specifically invalidating before every READ and updating af-
ter every WRITE (figure 5). This suffers from the same prob-
lem as the FSI method for both the WRITE and the READ of
C(I,J).In this particular case, the INVALIDATE and the UP-
DATE for C contain a loop invariant expression and could be
hoisted. The original CKM paper discusses this possiblity.
But, that is still not good enough.

CTYV conceptually starts with what the CKM approach
produces (figure 5). Dependences are added from the
PARALLEL DO I to the Inv A and from the Inv A to the
reference to A in the assignment statement. Dependences
for references to B and C are added similarly. Note that the
dependences do not pin the coherence statements inside the
inner K loop.

Next, CodeGen is invoked on the resulting coherence
graph. The only node is the PARALLEL DO itself (other state-
ments are collapsed into this node). That statement is gen-
erated. Then CodeGen recurses on the contents of the loop.
The Inv A has no predecessors in the coherence graph so it
can be generated, even though neither the J loop nor the
K loop have been generated yet. The Inv A was originally
at nesting level 3 and code is now being generated at level
1, so there are two levels of aggregation available. These
are found and the final Inv A is generated. The B case is
similar.

The Inv Ccannot be generated yet because it depends on
the assignment of J2. The J2=0 assignment has no depen-
dence predecessors and can be generated. All of the other
statements which reference J2 are in a cycle because of loop
carried anti dependence. That cycle is handled by generat-

1 PARALLEL DO I=1,N
2 J2=0

6 Inv ACI,1:N)
7 Inv B(1:N,1:N)
3 DO J=1,N

4 J2=J2+1

8 Inv C(I,J2)
5 DO K=1,N

9 C(I,J) = €(1,J2) + A(I,K)*B(K,J)
11 END DO

12 END DO

10 Upd C(I,1:N)

13 END PARALLEL DO

Figure 6: Matrix Multiply after CTV

Method CRE (%) CWE (%)]
FSI 100 0
CKM 0 0
CKM+ T— 100
CTV 100 100

Table 2: Cache Utilization of Different Methods on Matrix
Multiply

ing the DO J loop then recursing on its contents. The INV
C can then be generated after the J2=J2+1 which it depends
on. Thus, the INV C is hoisted out of the K loop, but not
the J.

A rough comparison of the three methods can be made
by counting the READs and WRITEs to main memory versus
cache (table 2, where n = problem size, p = number of pro-
cessors). CKM+ refers to the results of the CKM method
after making the simple optimization of hoisting loop invari-
ant coherence instructions.

The CTV and CKM method both suffer overheads that
the FSI method does not which are not reflected in the ta-
ble. For this problem, however, the CTV method has asym-
potically fewer operations than the FSI and must for some
sufficiently large problem be faster. This will be approxi-
mately when nx time for main memory write > the time to
start a coherence operation + time for main memory write.

5 Experimental Results

The CTV method, the CKM method, and the FSI method
were applied manually to two small, simple programs which
were tested on a BBN TC2000, a distributed shared mem-
ory multiprocessor, to evaluate their effectiveness. The two
programs were blocked LU decomposition and a heat flow
relaxation.

The BBN T'C2000 is a shared memory multiprocessor ca-
pable of supporting up to 512 nodes. Each processing node
consists of a Motorola 88100 processor, an 88200 cache unit,
and several megabytes of memory. Each processor can ac-

cess its own memory directly, and can access the memory
on any other node through a logg-depth interconnection net-
work (organized as an indirect binary N-cube composed of
8x8 crossbar switching nodes). Virtual circuit connections
through the switching network are used to perform remote
accesses. Many non-interfering virtual circuit connections
(i.e., the sources and sinks of all connections are unique sys-
temwide) can be open across the switching network simulta-
neously. If collisions occur at a switch node, one transaction
succeeds and all of the others are aborted, to be retried at
a later time (in hardware) by the processors that initiated
them. There is no hardware mechanism for ensuring co-
herence between cache units on different nodes. The 88200
cache unit allows any given memory segment to be config-
ured with one of three caching policies: uncached, cached
with write-thru, or cached with copy back. Transparent to
the caching policy, the T'C2000 architecture supports inter-
leaved memory. In a page of interleaved memory, cache line
size blocks are allocated in virtual address order across all
processors in the machine in a round robin fastion. Inter-
leaving can reduce potential contention for shared data.

The test programs all use the “Uniform System”, a stan-
dard library of functions that support parallel programming
on the TC2000. The tasking model supported by the Uni-
form System dedicates a set of processors to a program for
its duration. Under the Uniform System, writable shared
data must either be allocated uncached or the programmer
must explicitly manage coherence with INVALIDATE and UP-
DATE calls.

The sample codes used in our experiments were not opti-
mized by hand in order to avoid prejudicing the test re-
sults. The simple sequential code with appropriate DO
loops changed to parallel was used. Interleaving was used
for all shared data. The compiler does not allocate array
references to registers across loop boundaries (such aggres-
sive allocation techniques will tend to equalize coherence
methods).

All caches were emptied before the start of each test.
The times include the cost of faulting in the data initially,
whatever evictions occur, and writing back the final results
(except for the no coherence case, explained below).

The FSI method proposal calls for additional hardware to
invalidate cache contents in constant time. The FSI method
was run with software calls to invalidate all of cache where
the method specifies and then run again with no invalida-
tions (which produces wrong results). The former is referred
to as FSI and the latter as OptFSI, Optimistic FSI. On the
TC2000, the software call to invalidate all of cache takes
constant time with a fairly large constant. The real effec-
tiveness of FSI lies somewhere between the measured per-
formance of FSI and OptFSI depending on just how efficient
of a total INVALIDATE is available.

The CKM method has been slighted somewhat because it
was never designed to deal with cache line sizes of other than
one word. On the TC2000, two ’double’s fit in one cache
line. So, each fault in the CKM case causes 16 bytes instead
of 8 to be read. None of the suggested CKM optimizations
(section 3.1) were applicable to these test cases.

The CTV method as presented so far does not rely on
being able to understand array sections in any way. The
code actually produced has many duplicate invalidations of
the same locations. If array section analysis were available,
CTV could be changed so as to invalidate the smallest (de-
scribable in vector notation) section that subsumed all oth-
ers for which complete subscript information is available.

%— v No Coherence
ACTV
o OptCTV

. o FSI

8‘ ® OptFSI
o CKM

¢ Uncached

o

TEQOHOTUN <~ —0 T
<

—

5 10 15

Processors
Figure 7: LU Decomposition, Interleaved, Size = 200

This approach is referred to as OptCTV, Optimistic CTV.
This can over-invalidate and will not be better in all cases.
What separates it from CTV is removing the overhead of
unnecessary calls. For the tests cases in this paper, OptCTV
has an invalidation (but not update) patten like FSI.

The three software methods are compared to the no co-
herence case. In this case, the program is run using a copy
back caching strategy with no coherence provided in soft-
ware. Read misses still occur to bring the data in the first
time, but the final results are never written back and no
values are communicated between processors (with the ex-
ception of values that are written out as a result of evictions
and subsequently faulted in by another processor). The
computed result is nonsense, but the performance in the
no coherence case would seem to represent an upper bound
on the performance that any coherence scheme, hardware
or software, could hope to achieve. But for eviction anoma-
lies, it is super-optimal because some coherence traffic is
essential for the results to be correct.

The results are summarized in figures 7, 8, 9, and 10.
Speedup for figures 7, 8, and 10 is versus the one processor
uncached case. For figure 9, speedup is versus the uncached
case for each problem size, i.e. the uncached case is defined
to be a horizontal line. Each test point was run 30 times.
The (sloping) lines are plotted on the averages. The vertical
lines represent a 95% confidence interval, assuming normal
distribution, for the measured performance of a test config-
uration. This is not a confidence interval for an arbitrary
run because overall system loading conditions affect timing
through the memory interconnect. The data accurately re-
flects the relation between any two methods though, since
all were run under similar loading conditions. Confidence
intervals are longer in the upper right of the graphs sim-
ply for the reason that reciprocals of small numbers (actual
times) with constant absolute deviations are being graphed.
These figures are not meant to show speedups over a well
coded single processor version of the algorithm but only to
show the relation of the different coherence methods.

The LU decomposition is a partial pivot blocked right-

™

v No Coherence
ACTV

o OptCTV

o FSI

@ OptFSI

o CKM

¢ Uncached

VT F—T—Y—Y—Y—¥

—y — R A AR AN
e A A—A—A—A—A—A

W— N A—A—A—

O

TEQOHVTUN <~ —0

i

5 10 15

Processors
Figure 8: LU Decomposition, Not Interleaved, Size = 200

looking algorithm [7]. The blocking factor for all tests was
10. That is close to optimal for all measured test cases.
The no coherence case produces numerous floating point
exceptions due to both division by zero and overflow errors.
Trapping these exceptions skews the results. To avoid this
problem, all test cases for LU decomposition were run with
a min operator in place of multiply and divide in at attempt
to replace them with a nearly time equivalent operator. This
makes all test cases run about 3% slower but does not affect
the relative performance. In particular, it does not affect
the memory reference pattern. The pivot decisions were
fixed to be the same for all cases (though the search for the
best pivot still occurs). This did not measurably affect the
running time.

LU decomposition is an O(n?) time algorithm working
on an O(ng) matrix. Therefore each matrix element is be-
ing written (on average) O(n) times. Most of these writes
could stay in cache. CTV takes advantage of this in its cre-
ation of a section to update thereby raising the CWE. The
performance of FSI is degraded by doing these unnecessary
writes. CKM simply has too much overhead to achieve good
performance. FSI performs better than CTV on small ma-
trices because CTV is paying higher overhead for system
calls. For larger matrices, CTV performs better (figure 9).

Another advantage of CTV is that interleaving is not crit-
ical. FSI’s maximum speedup is small when running with
the default allocation of all memory on one node because
of high contention. CTV continues to perform well though
(figure 8).

The heat flow algorithm gives the FSI method its best
chance to do better than CTV. The computational kernel
of the algorithm uses a simple four point iterative relax-
ation in which the value computed for each point is needed
in the next time step to compute the new value of each
neighboring point. Lacking any knowledge about processor
scheduling, it is necessary to update to main memory every
write that occurs in the inner loop of this algorithm. The
CWE is undefined since W; = W, and cannot be changed
due to the nature of the algorithm. Still, the advantage of

v No Coherence
ACTV
o OptCTV
o FSI
® OptFSI

y o

TEQODT UL @<= —0
—
|

Hg
BE‘DGDDDDDDDDDD

—

0 100 gbo 300 400

1z¢€

Figure 9: LU Decomposition, Interleaved, Processors = 20

handling a whole block at one time allowed CTV sometimes
to do better than FSI and to be competitive in all cases.
Without interleaved memory, CTV does noticeably but not
dramatically better. Figure 10 shows the performance of
the heat flow relaxation algorithm using each of the caching
strategies.

We believe this data shows that the CTV method of
aggregating coherence statements can reduce memory con-
tention, amortize the inefficiences of numerous system calls,
and avoid using write-thru caches. Even in those situations
where the intrinsic communication costs are high, CTV does
not add an unacceptable amount of overhead.

Unfortunately, at present we cannot directly compare the
results in any of our test cases to the performance of a hard-
ware scheme. However, the performance in the no coherence
case also represents an upper bound on the performance of
any hardware based solution. Extrapolating from our mea-
surements, the performance of the C'TV would appear to be
comparable with any hardware-based scheme for each of the
algorithms studied.

6 Summary and Conclusion

In this paper, we have presented a measure by which to
gauge the effectiveness of software coherence methods(the
CRE and CWE), a more general framework in which to
describe their operation (access triples), and an algorithm
for automatically adding coherence statements to a program
so that it can be run on a shared memory multiprocessor
without hardware cache coherence. This algorithm aggre-
gates array references in coherence statements to avoid the
overhead of handling each word independently (as, for in-
stance, a write-thru cache would) and it restructures the
program code so as to perform as few coherence operations
as possible, within the precision of the analysis. It handles
INVALIDATEs before READs and UPDATEs after WRITEs in the
same manner. Thus, it addresses both the CRE and CWE

simultaneously.

34 v Optimal

0
ACTV

2 oFsI —
o CKM —

(2)_ ¢ Uncached

Processors

Figure 10: Heat Flow, Interleaved, Size = 100

We have compared this algorithm to two previous soft-
ware coherence schemes, and shown that it combines the
best of both approaches. Preliminary data from a manual
application of this algorithm to two small programs sup-
port this conclusion. Our work shows that software coher-
ence techniques are efficient for some numerical codes. If
further research shows that this approach is applicable to a
large class of numerical codes, then it will become possible
to build effective shared memory multiprocessors without
(expensive) coherence hardware.

7 Future Work

With the model as presented so far, only fork-join paral-
lelism and coherence actions being performed in the task
that needs them, other coherence models, e.g. release con-
sistency, might be sufficient to address the problem. Soft-
ware schemes and CTV in particular have the advantage of
working just on the sections of arrays that need coherence.
This gives them the leverage to exploit different synchro-
nization constructs to good advantage. For example, only
the data actually used in a critical section needs to be made
coherent instead of updating every dirty value in the cache
when exiting a critical section. While the potential is there,
an efficient algorithm has yet to be found.

Instead of changing the first assumption, that fork-join
parallelism is used, one can change the second assumption,
that coherence is performed in the same task as the relevant
reference. This allows values to be left unaffected across
synchronization points when it is known they will not be
needed until subsequent tasks.

The CTV algorithm as given handles access triples by al-
ways invalidating in the same set of loops as the final READ
thus catching already stale values. This solves the problem
of finding the right processor by waiting until scheduling
is done and it finds the right section implicitly by dupli-
cating the reference of the final READ. However, it fails to
take advantage of reuse between loops. It treats each loop
separately. This is a consequence of considering the FORK,

PARALLEL DO I=1,N
...=A(I)

END DO

PARALLEL DO I=1,N
Inv AC1:N)
A(D)=...
Upd A(T)

END DO

PARALLEL DO I=1,N
...=A(I)

END DO

PARALLEL DO I=1,N
...=A(I)

END DO

Figure 11: Avoiding stale values entirely

INVALIDATE, READ pattern as necessary. One relatively easy
change that comes from considering access triples that could
prove useful is to restrict the INVALIDATE before the READ
to skip anything that was not written (on the joining de-
pendence).

The more interesting question is how to handle multiple
access triples at one time. One could instead invalidate
before every WRITE the section that the whole loop writes
thus removing values from cache before they become stale.
For instance, the code fragment in figure 11 is correct. Not
only is it correct but the third and fourth loops will have
reuse for many probable schedules. The INVALIDATE before
the WRITE must invalidate all of A though because it cannot
be known for sure which processor will read a given element.
How to best place invalidates for access triples remains an
open question.

References

[1] R. Allen and K. Kennedy. Automatic translation
of FORTRAN programs to vector form. ACM
Transactions on Programming Languages and Systems,
9(4):491-542, Oct. 1987.

R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera computer
system. In Proc. of the 1990 International Confer-
ence on Supercomputing/Computer Architecture News,
pages 1-6, Amsterdam, The Netherlands, June 1990.
Proceedings published as ACM SIGARCH Computer
Architecture News, 18 (3), Sept. 1990.

L. M. Censier and P. Feautrier. A new solution to co-
herence problems in multicache systems. IEFE Trans-
actions on Computers, C-27(12):1112-1118, Dec. 1978.

H. Cheong and A. Veidenbaum. Compiler-directed
cache management for multiprocessors. Computer,
23(6):39-47, June 1990.

R. Cytron, S. Karlovsky, and K. McAuliffe. Automatic

management of programmable caches. In Proc. of the

10

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

1988 International Conference on Parallel Processing,
pages 229-238, 7, Aug. 1988.

E. Darnell, J. M. Mellor-Crummey, and K. Kennedy.
Automatic software cache coherence through vector-
ization. Technical Report CRPC-TR92197, Computer
Science Department, Rice University, Jan. 1992.

J. J. Donagrra, 1. S. Duff, D. C. Sorenson, and H. A.
van der Vorst. Solving Linear Systems on Vector and
Shared Memory Computers. Society for Industrial and
Applied Mathematics, 1991.

D. Kuck. The Structure of Computers and Computa-
teons, Volume 1. Wiley, New York, NY, 1978.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J.
Wolfe. Dependence graphs and compiler optimiza-
tions. In Conference Record of the Eighth ACM Sym-
postum on the Principles of Programming Languages,
Williamsburg, VA, Jan. 1981.

L. Lamport. How to make a multiprocessor that cor-
rectly executes multiprocess programs. IEEFE Transac-
tions on Computers, C-28(9), Sept. 1979.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta,
and J. Hennessy. The directory-based cache co-
herence protocol for the dash multiprocessor. 17th
International Symposium on Computer Architec-
ture/Computer Architecture News, pages 148-159, May
1990. Special issue of Computer Architecture News,
18(2), June 1990.

S. Min and J. Baer. A timestamp-based cache coher-
ence scheme. In Proc. of the 1989 International Con-
ference on Parallel Processing, volume 1, pages 23-32,
Aug. 1989.

S. Min, J. Baer, and H. Kim. An efficient caching sup-
port for critical sections in large-scale shared-memory
multiprocessors. In Proc. of the 1990 International
Conference on Supercomputing/Computer Architecture
News, pages 4-47, June 1990. Special issue of Com-
puter Architecture News, 18(3), Sept. 1990.

A. Osterhaug, editor. Guide to Parallel Programming
on Sequent Computer Systems. Sequent Technical Pub-
lications, San Diego, CA, 1989.

Parallel Computing Forum. PCF Fortran, Mar. 1990.
Working Draft.

D. Schanin. The design and development of a very
high speed system bus — the encore multimax nanobus.
In Proceedings of the Fall Joint Computer Conference,
pages 410-418, Nov. 1986.

J. Willis, A. Sanderson, and C. Hill. Cache coher-
ence in systems with parallel communication channels
& many processors. In Supercomputing *90, pages 554—
563, 1990.

A

Vectorization Algorithm for Adding Coherence

Notation:

3 - There Exists

| - such that

Notes on representation:

h)

After dependence analysis all explicit program structure is lost.

Computation dependences are not used because statements are never broken, i.e. for the purpose of code generation a
dependence to a reference is that same as a dependence to the statement the reference is in.

DOs are viewed as assignments to the corresponding upper bound variable, and remembered as something special.
Dependences run from the DO variable assignment to all of the statements (not references) that were in the loop.
A statement at the outer level is at level 0.

The level of a DO is the level of the DO itself and not the statements that it controls, e.g. a DO at the outer level is
at level 0 for the DO node itself.

the level of a dependence is the level of the carrying loop + 1, i.e. the level of a statment immediately within the
carrying loop.

loop independent dependences are at an infinite level.

Initial processing:

1.

2.

The

Introduce temporary variables so that all array references are of the form A[t1,t2,t3,...]. Note that this unrolls nested
expressions such as A(B(I)) into two assignments and that it guarantees that no subscript expression will have side
effects.

Perform dependence analysis. Be sure to mark all of the temporary variables introduced above as privatizable.

Algorithm:

Program CTVCohere;

type
PVariable = “Variable;
Variable = record

— a description of a program variable

end;

PDependence = “Dependence;

Dependence = record
src, snk : PReference or PStatement or PNode;
nlevel : integer; — carrying level of dependence, indepedent = oo
prc : Dboolean; — processor crossing

end;

PReference = "Reference;

Reference = record

reftype : (READ,WRITE);

var : PVariable; — the variable itself
refs : 1list of PVariable; — variables used to subscript var
src, snk : set of PDependence; — deps with this ref as an endpoint
stmt : PStatement; — statement this ref is in
coh : PStatement; — coherence op for this ref (if any)
end;
PStatement = ~ Statement;

Statement = record

11

refs: set of PReference; — all refs in statement
nlevel : integer; — loop nesting level of statement
txt @ ... — Abstract Syntax Tree rep. of stmt
par : PlNode; — parent node in collapsed graph
enclosing do_stmt PStatement;
index var: PReference; — defined only for PDO or DO statements
end;
Plode = “Node; — used for reduced graph
Node = record
stmts : set of PStatement; — statements in the loop
ntype : (PDO,LOOP,SINGLETON);
pdo : PStatement; — parallel loop itself, if ntype=PDO
end;
Var
Dependences: set of PDependence; — all dependences
References: set of PReference; — all references
Statements: set of PStatement; — all statements
d : PDependence; — a temporary for scanning a set
r, — a temporary for scanning a set
w : PReference; — a write reference in a set
Inv : PStnt; — The invalidate statement for a particular read reference
— the loop nesting level for statements outside of any loop is -1
NullStatement : Statement = (nlevel : -1);
NullDoStmt : PStatement = Q@NullStatement;

— return the nesting level of the innermost loop that
— encloses both references. if no common enclosing loop, return 0

function enclosing common loop nest_level (refl, ref2:

PReference) : integer;

— return the nesting level of the nearest enclosing parallel loop
— if no enclosing parallel loop , return 0

function enclosingparallel loop_level (ref :

PReference) integer;

— add the appropriate coherence operation for a particular reference

procedure cohere (r :

var
rsub,
csub,
cref : PReference;
cstmt : PStatement;
d : PDependence;

PReference);

subscript of r

new subscript for coherence operation
new Reference for coherence operation
new statement for coherence operation

a temporary for enumerating dependences

— create a new dependence with the specified fields and add it to
— the set ‘Dependences’ and the sets src”.src and snk~.snk

— (see note d)

procedure NewDep (src, snk :

PReference; nlevel : integer; prc : boolean);

— create a new loop independent dependence

procedure NewLIdep (src, snk :

PReference);

begin
NewDep (src,snk,o0,false)
end;
begin
new cref;
cref”.reftype := READ;
cref”.var := r”.var;

— copy subscript expression and duplicate dependences therein
for all rsub in r~.refs (in order)

12

new csub;
for all d in rsub”.snk

NewDep (4" .src, csub, d”.nlevel, d".prc);
for all d in rsub”.src

NewDep (csub, d~.snk, d".nlevel, d".prc);
ListInsertAtTail (cref”.refs, csub)

— build the actual invalidate or update statement
— put it in the correct place in the dependence graph
new cstmt;

cstmt”.enclosing do_stmt := r~.stmt”.enclosing do_stmt;
cstmt”.refs := {cref”.var} + cref”.refs;
cstmt”.nlevel := r~.stmt” .nlevel;
r°.coh := cstmt;
cref”.stmt := cstmt;
if r~.reftype = READ then
cstmt”.txt := ’Invalidate’ cref”.var ’[’ cref”.refs ’]’
NewLIdep (cref,r);
else
cstmt”.txt := ’Update’ cref”.var ’[’ cref”.refs ’]’

NewLIdep (r,cref);
— ensure that the coherence operation is represented in the loop
— by adding a dependence from the loop index variable to the
— coherence statement
NewLIdep (cstmt”.enclosing do_stmt”.index var, cstmt); — note (b)

end;

— Generate code for the given set of statements for the specified level

procedure Gen (Stmts : Set of PStatement; nlevel : integer);
var
Contents, — The statements in a cycle
Stmt : PStatement; — the statement being operated on
StmtSummary : PNode; — a new statement in the reduced graph
d : PDependence; — a dependence in the passed graph
r : PReference; — a temporary reference used to scan a set

ProgDag : set of PNode; — the program reduced to a DAG

— Add a statement or the contents of a previous summary node to the summary node, StmtSummary,
— and fix up the pointers

procedure AddStatement (Stmt : PStatement);

end;

begin
— Reduce the graph by collapsing all dependence cycles & PDOs to single nodes
— thus forming a DAG without distributing PDOs. note (a)
For all Stmt in Stmts
Stmt~.par := nil;
RStat := {};
While Stmts # {}
Stmt := any element of Stmts;
new StmtSummary;
if Stmt is a PDO — PDOs at levels < nlevel will never be considered here
StmtSummary”.ntype := PDO;
StmtSummary”.pdo := Stmt;
— Add all statements in the PDO loop to the node representing the PDO
For all d in Stmt~.index.var~.src
AddStatement (d~.snk”.stmt);
else if there is path from Stmt to itself - note (c)
StmtSummary”.ntype := LOOP;
for all Contents | 1 a path from Stmt to Contents and from Contents to Stmt
— including Stmt itself
AddStatement (Contents)
else

13

StmtSummary”.ntype := SINGLETON;
AddStatement (Stmt);
ProgDag += {StmtSummary};
end;

— Regenerate the code

while ProgDag <> {}
— Pick a node which is not the sink of any dependence
Pick an StmtSummary | A d in Dependences | d”~.snk”.stmt”.par = StmtSummary
ProgDag - := {StmtSummary};

— Delete all dependences from this summary node to a different node
— and all dependences which are at the current level since they will be
— satisifed before recursing
for all Stmt in StmtSummary”.stmts — note (e)
for r in Stmt~.refs
for all d in r~.src
if (d”.snk”.stmt”.par <> StmtSummary) or (d”.nlevel = nlevel) then

Dependences - := {d}
d"~.src”.refs - := {d};
d".snk".refs - := {d};
Stmt := any member of StmtSummary;
if StmtSummary”.ntype = PDO then
emit StmtSummary”.text; — the PDO node itself

Gen (StmtSummary”.stmts,nlevel+l);
emit ’'END PDO’
else if StmtSummary is a serial DO ; — do nothing, note (f)
else if StmtSummary” .ntype=SINGLETON and
(Stmt~.nlevel = nlevel or Stmt is a coherence statement)
emit Stmt~.text with Stmt~.nlevel-nlevel levels of parallelism
else - loop
emit Stmt~.enclosing do_stmt”.text
Gen (StmtSummary”.stmts,nlevel+l);
emit ’END DO’
end;

_ kkkkkkkk R kK

— Start of Main program
begin
— Calculate processor crossing flag
For all d in Dependences
with 4~ do
prc = min(nlevel , enclosing common loopmnestlevel(src,snk))
<= max(enclosingparallel loop_level(src), enclosingparallel loop_level(snk));

— Add coherence statements for all reads that have processor crossing dependences
For all r in References (ignoring additions made during this loop)
if (r~.reftype = READ) and (3 d in r".snk | d".prc) then
Cohere (r);
— Must be a separate loop so all ’Inv’s are already added and inversion test
— makes sense
For all w in Ref (ignoring additions made during this loop)
— catches output- & anti- dependences and therefore handles evictions
if (w”.reftype = WRITE) and (3 d in w”~.src | d".prc) then
Cohere (w);
— The ’inversion’ problem is handled here
— For all reads that depend on this write, are in the same task,
— and need coherence for other reasons, add inversion preventing dependences
for all d in w".src | d".prc and d".snk”.coh <> nil
Inv = 4" .snk”.coh; — The invalidate statement for the read
if 4 a path from w”.stnt to Inv
NewLIdep (w”.coh,Inv)
else
NewLIdep (Inv,w)

14

— Rebuild the code

Gen (Statements,0);

end.

NOTES:

(a)

(b)

(f)

PDO loop bodies must be preserved as single units. If they were not handled this way, they might get distributed. This
would undo the logic that goes into adding the invalidates & updates. They could end up in separate PDOs from the
references they were constructed for, if PDO structure weren’t preserved.

It isn’t necessary to worry about building a dependence from an update to the join because the update will necessarily
be part of same PDO loop as the reference it updates. It is necessary, however, to build a dependence from the fork
node to the update so that the update will be recognized as being in the same PDO as the reference it updates. If the
immediately surrounding DO loop is a serial DO instead of a PDO it is sufficient to put the statement in the serial DO
because the serial DO must surely be within the PDO in question.

This would not be a reasonable way to actually implement the algorithm. One would want to use Tarjan’s algorithm
for finding strongly connected components with appropriate modifications to handle the PDOs.

What gets passed here might actually be a PStatement instead of a PReference. If that is the case, it is sufficient to
simply ignore those operations for which a PStatement doesn’t make sense.

Remove all dependences for which this node is the source. But do not remove dependences that are contained entirely
in this node because they will be passed to the next level. Also, remove all dependences at the level for which a DO
node is about to be generated since these will be resolved by the DO itself and not relevant after recursion.

Serial DO’s are generated as needed for the statement they originally controlled based upon how much distribution

actually occurs. The nodes representing the index variable assignment does not need to generate any code. It does
need to be in the graph though.

15

