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Abstract

Efficient parallelization for distriited memory parallel processors requires that some parallel decom-
position of the program be found and that communication be encoded which satisfies all dependences in the
decomposed programVith the use of the RiceoRran D compilerthe parallelization problem is reduced
to finding "proper" data structure partitions (in the form of decomposition, alignment andutistriftate-
ments). Ouronjecture is that understanding problem topology is useful in optimizing parallel programs in
computational pysics and other computational sciencesparticular the notion of topology can be used
in the compilation process to assist with parallelizatidhis thesis will be xplored by: deeloping a
graphical tool, dpView, that uses problem topology to pide recommendations for the alignment and dis-
tribution of data structures; andtending ertran D5 capability to e&press and takalvantage of topology
for the important case of igalarly coupled rgular meshes.

1. Introduction

Current automatic parallelizers veadfficulty finding truly eficient global parallelism.They are
unable to analyze programs well enough to produce global parallelismatha womputational scientist
with extensive gplication and parallel programmingpeerience does.df this reason, mgrcomputational
scientists are currently must "hand parallelize” their applications programsefgiparallel processor the
wish to use.lt has been obsesd that this process of "hand coding for each machine" is reminiscent of the
early practice of writing machine or assembly codée propose to study the use of problem topology as a
means to assist in writing fefient, portable programs for parallel machin&ge will focus on: 1) the
development of a tool, calledopView, based on the use of problem topology for parallelization; and 2)
extension of the notion of topology imFran D to support applications with igarly coupled rgular
mesh topologies.

Although TopView may be most useful for disttited memory machines,dtise is not restricted to
such machinesln our «perience, programs ddoped using global parallelism tend to ruastier than
those using "doacross parallelism" on most parallel architectures [McGrath, et al., T§3@ew should
also be useful in the comteof the weakly coherent virtual shared memory machines currently undgsr de
opment, e.g., the EDS system in the ESPRIT project, thew\project at Rice Uniersity, and other hier
archical memory machines or distitbd shared memory machineResearchers evking on the Wlow
project say that tev of the most important problems to selNo obtain good performance from their
machines are data partitioning and process to processor mapping.

In a program with global parallelism, processes are created aémpdoainning of eecution and
run in parallel (with synchronization and communication) until program termination. In global parallelism
the dehult mode of gecution is parallel. This mode may be compared with forms where the program runs
sequentially gcept for the parallelxecution of some loops. This approach is seen in most parallel lan-
guages based on the "doacross construct" where theltdefode of gecution is sequentialBasically par-
allelism must be the rule not theception for optimal performance.

Applications considered here areypltal simulation applications such as material dynamics, contin-
uum mechanics, quantumysics, etc.

2. Terminology
The following terminology applys within the scope of this document.

A process is a unit of computation - e.g., an independentigcaetable Brtran subroutine together
with the calling sequence parameters, common dataxdachals. Amain program is also a procesa.
processor is a plysical deice capable ofxecuting a process.



An inter-process (cross-processor) data dependence exists wheneer one processy, needs a data
value, y, from another procesg. On a diared memory multiprocessdhe data dependence is satisfied
when S has writteny to a sharedariable andx has ready. On a dstributed memory multiprocessahe
data dependence is satisfied wielnas communicateg to «, i.e., 8 has sent a message containintp «
ande has receied that messageA global dependence is one in which a singlealue is dependent on all of
the \alues of an array

Communication includes both synchronization operations and actxetiange of dataOn a shared
memory multiprocessprommunication ikolves reads and writes of shared data and/or synchronization
operations. Oma dstributed memory multiprocessa@ommunication ikolves sends and reges for both
data &change and synchronizatio@n weakly coherent shared memory multiprocessors, communication
is proposed to be reads and writes of shared data and the associated required synchronization operations.

Thetopology of a plysical system is the essence of its connectednegsoblems such as the simu-
lation of ptysical phenomenon, the connectedness of tlysipdl system being simulated may be reflected
in the algorithm topologywhich may further be reflected in the prograrmta structures.Topology or
neighborliness may be used to specify which computational processes will communicate (be neighbors) in
a parallel algorithm.For example, the natural topology of an n-dimensional fluid fimoblem for compu-
tational simulation purposes is an n-dimensional mesh for n = 1, Ry & dscussion of problem topology
(or geometry) and its significance in parallelization see Heerman and Burkitt, TB8Iprimary applica-
tion characteristic that we are restricting our consideration to are those applications based on mesh topolo-
gies. Themost important research component of thakwvill entail extending the notion of topology in
Fortran D to support problems withregularly coupled regular meshes (ICRMs; [Cronley & Saltz, 1991]).
These problems ke a umber of components withgalar mesh topologiesubthe components are con-
nected in irrgular ways. Animportant g&ample in this problem class is the simulation @itav cooled
nuclear reactorsThis simulation applies ICRMs as the reactor core may be simulated using a 3-dimen-
sional mesh Wt the pipes are usually simulated using 1-dimensional meshesfifdengjy. For this
research we will be considering problems witular mesh topologies and ig@arly coupled rgular
meshes.

A process dependence graph is a graph in which the nodes represent processes and the edges repre-
sent intefprocess data dependencés.some programs for simulation ofysical systems, when the nodes
in the process dependence graph are arranged according to the topology p$itte gystem, dependence
edges rist only between neighbors in the gragh. this case, edges then represent communication lines
when the processes are assigned to processors connected in the same topology as the phusesses.
of topology can help to minimize communicatiorediead whether the topological information is used by
a programmer or compiler

The computation communication graph (CCG) is a form of dependence graph thawshbav values
are related in a program fragmeritach node in a CCG represents an array storage locdiseh edge
represents the dependence of thki@ at the sink on thealue at the source of the edgehe CCG for an
entire program is called ttgtobal computation communication graph (GCCG).

3. Related Work

Although the amount of relatedork is far too great to discuss all of it here, we will briefly discuss
some of the major thrusts in parallelization research and their relationship to the proposed reseanth.
area only a fe of the releant works will be mentioned to @& an idea of what is being done in the related
areas of partitioning and parallelization.

Many researchers arearking on partitioning loops for parallekecution [King, et al., 1989, Smith,
et al., 1989, Smith, et al., 1990, D'Hollander 1989, Ikudome, et al., 1990this tends to lead to high
communication/computation ratios andvigarallel eficiengy. A variation on this theme partitions data
structures for parallelism [Ramanujam, et al., 1988{,rbquires constant andgidar dependence distance
vectors. Thiswork is not general enough tdfiefently handle implicit material dynamics codes which also



have ron-constant dependence distaneetors. Asomeavhat more sophisticated approach isetakn
Paafrase-2 [Polychronopoulos, et al., 1990] where initial tasks are outer loops, subroutine calls, and basic
blocks. Thesdnitial tasks may then be ngged to increase granularitilthough this may be more promis-

ing, the parallel code generated will still not, in general, befeseet as that produced by arperienced

parallel programmerA great deal of wrk has been done on data dependence analysis for parallelization
(e.g., see Li, et al., 1990 andW et al., 1987) which forms a basis for all of thigriu All of this research

is based solely on dependence analysis and not on the algorithm desigderstanding of the applica-

tion. AlthoughTopView is dso heaily reliant on dependence analysis, it also asalise of the computa-

tional scientis8 knowledge of the applicationln particular athough theoretical algorithms V& been
developed [Li and Chen, 1990] for data structure alignmeny tiavenot been put into usé/Ve intend to

use prgious research results [Li and Chen, 1990, Knobe, et al., 1990, Knobe and Natarajan, 1990, Chap-
man, et al., 1991] as a starting point, with tieraeinformation we are obtaining from the user the
development of DpView and the a&tension of Brtran D.

Some techniques ha been presented for "optimally partitioning” problems fogéagranularity sys-
tems. [Agrava, et al., 1988] performs data partitioning in the restricted setting where a 1slagtenmodel
is used and 1) data can be arbitrarilyidied, and 2) there is no need for communication betweer sla
tasks. Thisapproach is too costly inverhead for applications such as material dynamics where communi-
cation on each time step implies that the master reassigns tasks to each slary time step.That fur
ther implies reinitialization and completion of\sta on every timestep which isdr too epensve for prac-
tical use. Another work on optimization of partitions [Ni, et al., 1989] requires that the user specify
(among other things) a set of design parameters which includes the parameters to define the partition
scheme. Ot€ourse, this means the algorithm designer mua Heeady figured out generally hwato parti-
tion the problem Wbt just does not ke the optimal alues for the partition parametens general, for all
of these approaches either the approach requires that the user alkeathe fasic partitioning strajg in
mind or the approach is too restnigtifor the problems we are interested in supportifgpView is pro-
posed to assist with actually disedng a proper partition, not just optimizing one that is alreadykno

Some systems ka teen deeloped which focus on lge granularity parallelismSchedule [Don-
gara, et al., 1987] as designed to assist users whanted to deelop functionally parallel programsThe
user must perform functional partitioning and then is assisted in constructingrégohg the dependence
relations for all of the subroutine3his approach does noowk well for applications lik material dynam-
ics which hae ratural process-oriented or data paralleligm fiot much functional parallelismAnother
system for deeloping eplicitly parallel, lage granularity programs is the FORCE [Jordan, et al., 1989].
The FORCE is basically a portable parallel language based on the pavaileh Ehat vas used on the
Denelcor HEP Although this system does pide a portable (across shared memory machines only)
approach to parallel programming, it does not assist the userdiogiag the parallel programn particu-
lar the user must not only partition the data structuuésnist also xplicitly perform the synchronization.

The distriluted memory compiler at Rice Wersity [Hiranandani, et al., 1991] requires that the user
provide a data structure partitiof.he compiler then completes the task of parallelizing the progfdmis.
saves the user a great deal ofovk including coding for only one process to perform input/output and
explicit specification of communicatiorlnfortunately this leaves a nost crucial part of the parallelization
task for the user to perform without assistance: data structure partitid@impgenum [Gerndt, et al., 1987]
uses a similar approacfithey state that the parallelization system reliesvilgaon the user to makthe
stratgyic decision in partitioning.Some ne parallel languages such as DINO [Rosing, et al., 1990] also
require that users specify the distition of data for paralleb@cution on distribted memory machines.
Another such system is BLAZE fi€lbel, et al., 1987] in which "the onlxtea information that the pro-
grammer must prade is a general statement of the data distidim pattern”. TopView can assist the user
in constructing the partitions (or distuitions) for parallelization systems such as these.

Other proposed research approaches to assisting with data structure partitioning andiaistrib
include the follaving. Theuse of static performance analysis is proposed in [Balasundaram, et al., 1990
and 1991] to guide data partitioning decisioifie notion of a training set okEknel computations is used
to "train" the performance estimatdihe performance estimator is then intended to predict the performance
of code generated by thefran D compiler for a particular et machine.This is to allev the interactre



data partitioning tool to staticallyplore diferent partitioning schemes without actually running the code.
This exploration may be anxdaustve sarch of "reasonable” disttitons for each arrayCurrently data
partitioning and mapping is specified statically by the user in SUPERB, burrent research thrust is to
use program analysis and heuristic rules with pattern matching to automate the process where possible
[Chapman, et al., 1991][Gupta and Banerjee, 1991] present an approach to automatic data partitioning
based on distriftion constraints.In this approach, each loop is analyzed to determine constraints (restric-
tions) on distrilntion of data structuresLoop based constraints are then to begeérso that thewverall
execution time is minimized.These approaches are all in the gatg of research in progress and therefore
have ot been shan to be complete solutions to the problem of data structure partitiodingest the
approaches ha keen walidated by hand-simulation on aMéenchmarks. dpView seems a reasonable
compromise between Wiag the user do all of theawk (as with current distriied memory compilers dis-
cussed abe) and not allaving the user to takalvantage of their kneledge of the problem (as with auto-
matic partitioners).

4. Thesisand Research Problems

THESIS: An understanding of problem topology is useful in optimizing parallel programs (both by
hand and with a compiler).

Currently the notion of problem topology imoRran D is weak and limited to simple meshksFor-
tran D, topology can bexpressed as the number of dimensions in decompositiohdre is no guaran-
tee that the neighborliness defined by the topology will be pregerhereforehe notion of neighborli-
ness must be strengthened both in termsxpfessing more general problem topologies and ensuring
expressed problem topologies are presdrwheneer possible in mapping to grgiven hardware topology
Fortran D also requires the user to specify alignment and distibof data structures.

This dissertation will imestigate the fipothesis that specification of problem topology alone i&- suf
cient to automatically generate alignments and digichs. Atool, TopView, is to be devdoped based on
this hypothesis.

An important class of problems that are not currently supporteditsaf D is characterized by the
need for irrgularly coupled rgular mesheslrregularly coupled rgular mesh decompositions are more
general than simple galar meshes in that th@llow the final decomposition indftran D to be composed
by connecting rgular meshes ofarying sizes and dimensions. fregarly coupled rgular mesh decompo-
sitions are simpler than igalar decompositions thereby allmg more precise compiler analysis to pro-
vide better performanceThe second ypothesis, that topology priles the ky b extending fortran D to
support irrgularly coupled rgular meshes, will be vwestigated through anxgloration of requisite com-
piler technology

4.1. Alignment and Distribution Recommendation in Fortran D

The avner computes rule used imfran D says that themmer of a datum will compute and store
it's values throughout thexecution of the programThis generally means that all of thelwes referenced
on the right hand side of an assignment must be located on the processor which statae the the left
hand side. Thus the essence of data structure alignment isatleddles occuring in the same statement
should be allocated to the same procesBor alignment in Brtran D, all of the arrays are aligned at the
level of the problem mapping fix, et al., 1990] which reflects the fine granularity computational nature of
the program.A few d the complications arising in alignment are: feerg array it must be determined
which dimensions are sequential; fwey pair of arrays, A and B, it must be determined which parallel
dimensions of A correspond to which parallel dimensions of B (these are aligned dimension&yyfor e
pair of arrays in each of their aligned dimensions, it must be determined faeti®hecessaryOnce all
data structures ke been aligned, themust be distrited across the parallel machin€he primary



tradeof in distribution is between load balancing and communicatieihead. Correcdistribution deci-
sions require analysis to determine: which parallel dimensions of the aligned arrays should léedistrib
which parallel dimensions, if gnshould be sequentialized; andvihthe distrituted dimensions should be
mapped to the processors (i.e., blogklic, etc.).

We want to &oid requiring a parallel programmer to supply all of the decomposition, alignment, and
distribution statements necessary for the RioetrBn D compiler to generate a distribd memory pro-
gram. W\ hypothesize that by strengthening the notion of neighborlinessriraR D, decomposition state-
ments (or some other form of topology specifications) willisaifto allov automatic recommendation for
alignment, and distriltion of data structuresTlo this end, a tool, dpView, will be developed which, gien
topology specifications for a prograngegent (a loop nest, subroutine or program), generates a set of rec-
ommended alignments and distrilons. Thiswill specifically allav the user to specify changes in topol-
ogy, or independence of topology in ftifent parts of the program at whatelevd they deem appropriate.
TopView will display the recommendations to the ygmissibly in multiple formats such as the CCG or a
process dependence grapbpView will support graphical modification of the recommended alignments
and partitions.When the user has completed modificatiormpView will generate Brtran D code which
reflects the finalized alignment and distitibn specifications for the prograngseent.
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Figure1: Simpleirregularly coupled regular meshes.




To assist in choosing alignments we willdie by considering prgous research [Li and Chen, 1990,
and Knobe, et al., 1990]The unifying idea in this pwéous research is to usefiaities or preferences in
alignment based on dependence analysis, wheyedifferent data elements prefer to be aligned if/the
appear in the same statemewite will develop compiler algorithms based on suchviwes research, modi-
fied to talke alvantage of our understanding of problem topolofiynilarly, we will develop a decomposi-
tion stratgy based on some combination of ahaustve sarch of alid decompositions restricted to the
problem topology and pveus research [Knobe and Natarajan, 1990] modified ® @dkantage of com-
piler understanding of problem topolog@ince we are only considering up to 3-dimensionglula mesh
topologies anxhaustve arch may be reasonable as a first cut algorithm.

For a lrief discussion of the GCCG and the current prototypeopView see Appendix 1.

Upon completion, @pView will provide a paverful tool to assist with parallelization of y#ical sim-
ulation applications.

4.2. Support for Irregularly Coupled Regular M eshes

There are critical applications which do nov&a@mple mesh topologies as supported ortfan D,
e.g., simulation of atercooled nuclear reactors and aerodynamics of airplavasy such critical appli-
cations can much morefiefently be simulated using igelarly coupled rgular meshesin simulation of
water-cooled nuclear reactors, the sciergigtimary interest is in simulating the state of the reactor core so
the core may be modelled in three dimensions. It idigerfit to model the entire reactor system in three
dimensions, especially as one 3-dimensional mésterefore, 1-, 2-, and 3-dimensional meshes are used
for the various components of a reactor and special boundary conditions are used at Hwmmbatween
the componentsSimilarly, in amulation of the aerodynamics of airplanes, sciestigt interested in the
air flow over the surfce of the plane and sometimes model tigous surice components as 2-dimen-
sional meshes which are connected ingutar ways. Theseapplications are critical in the sense that
human lves may depend on the speed with which correct results of the simulations can be obtined. F
example, a reactor operator may be ablevtidaa meltdevn of the reactor if a simulation can predict what
action can correct the problem which is leading to meltdd his can only occur withabter than real-time
simulation capabilitiesTo support such applications, it is important tdend Fortran D to iciently han-
dle irregularly coupled rgular meshes.

One vay of etending ortran D for irrgularly coupled rgular meshes is to adaicit coupling of
decompositions with statements of the form:

Couple(A(da,, la,-Ua,; -+ -3 A(da, s la, s Up ), B(dg,, g,  Ug,; -+ B(dg . 15,  Ug,))

whered; is a dimension place holder ah@u;) is the lover (upper) bound for the couplinggien in dimen-
siond;. Of course/;: u; may be writteri; if |; andu; are equal.

For example,

Decomposition(A(100, 50))
Decomposition(B(100, 100))
Couple(A(l, 3:100;J, 50), B(J, 1; 1, 1: 98))

joins decompositions A and Blhe coupling created is A(3,50) to B(1,1), A(4,50) to B(1,2), ..., A(100,50)
to B(1,98). We muld in this vay specify arbitrary connections. It is yet to be determineddemeral the
supported connections should be and whether embeddingsgafople, are necessary

To illustrate some of the issuesratved in supporting irgularly coupled rgular meshes consider
two 2-dimensional meshes connected as illustrated in Figure 1 (couplingwa #halotted lines).These
might, for kample, be just tev of the meshes used in simulating thevflof air over an arplane. Thepri-
mary problem that we are attempting to sab/how to map this liilt up decomposition to an arbitrary par
allel machine while respecting the problem topolodye Fortran D for this rample, using the syntax
described abe, is:



Decomposition(A(5, 4))
Decomposition(B(6, 3))
Couple(A(l, 1: 3; J, 4), B(1, 4:6; J, 1))

Even in this simple case where the problem topglowiuding the length of the connections between the
meshes, isxplicitly specified, the optimal mapping is dependent onyraher variables including: the

size of each dimension of each mesh; the v&athount of computation in the elements of the meshes; the
relative anount of communication in the meshes in their respedjpologies (both in the number of com-
munications and their sizes); the haade/topology; the number of processors; the communication parame-
ters of the machine (e.g., whether communication can be performed in parallel in all dimensions of the
hardware topologywhether communication can beedapped with computation, and what the relationship

is between the startup cost and communication cost per byte); and whether the conmgpdtpgrmaences

allow pipelining of communication.Even with all of the ariables fixed in this simple xample we must
consider the tradebbetween load balancing and communication that can only be equalized with precise
understanding of the entire computation.

One approach to this problem, assuming that the computation and communication performed for
each element of both mesheseaslapproximately the same amount of time, is tofelsng to minimize
the 2-dimensional area while preserving the topology and then disttie resulting single 2-dimensional
mesh (possibly hdéng holes). If we hare a 2dimensional (or higher) torus architecture then we can fold
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Figure 2: Folded irregularly coupled regular meshes.




the coupled meshes to reduce the area without increasing communicltisnhelps balance the load
when the hilt up mesh is distrited. Folding results in the coupled (with a hole) mesh in Figure 2 which
has a minimum achieble area in the plane while maintaining the neighborliness implied by the topology
Thus folding has reduced the area of thitlup mesh from 7x8 to 7x6This mesh wuld then need to be
distributed; lets consider a 2x3 torus architecturt.is clear that een with this simple gample we must
carefully analyze the computation since théitbup mesh is not full, the number of processors does not
evanly divide the number of elements witfork, and we must trade fafommunication aginst balancing
computation times.

We will explore what can be done to assist with disttitn in the more general case of this type of
problem.

5. Research Plan

We first used topology specificatioxpdicitly in an experimental material dynamics code on a net-
work of Sun workstations and a Sequent parallel proces$hat use of topology aleed the user a more
abstract means of specifying communication as ivigeal abstract names for neighbors in the topology
rather than hang the user specify the process/processor ids and the mapping of processes to processors.

TopView currently constructs and displays the GCCG for simple programs andgséte user to
select distrilations. Thisincludes support for 1-dimensional and 2-dimensiorglles meshes.

5.1. Alignment and Distribution Recommendation

Research will continue with algorithm \dopment and analysis, design completion and further
implementation of the dpView prototype. Theprototype, gren topology specifications, will recommend
alignments and distriltions automatically it allow the user to graphically modify these.

Algorithmic development and analysis will lggn with aligned CCG constructionTopView will
work at whatger levd (loop, subroutine and program) topology is specifiatfjorithmic development and
analysis will continue with use of the CCG, topologkgleton array and other user supplied information to
partition the data structures semi-automatically

TopView is keing deeloped in the BraScope programming\@ronment. Thisallows us to tak
adwantage of wrk that has already been dor@ome of the adintages of using this @nonment are: 1)
the abstract syntax tree is generated, whiglsstae work of lexical analysis, parsing, etc.; 2) and depen-
dence analysis (intra-array only) is performé&kpendence analysis will & be extended to represent
all dependences, intarray and intra-arrayinstead of just the intra-array dependences currently repre-
sented. Usind®aaScope also simplifies the generation oftfan D since statements can be inserted into
the abstract syntax tre&or the Rice Brtran D compileralso being deeloped in the BraScope program-
ming ewvironment, the code will then be ready for compilation.

To test the performance of the recommendations we generate, we will use a suite of benchmarks
being assembled by Géiay Fox. Thissuite praides us with grsions of algorithms coded inofran 77,
message passingfran for the iPSC/860, CMdrran for the Thinking Machines CM2, andrifan D. D
the Fortran 77 ersion we will add topology specification and compare the performance of the code gener
ated by the &rtran D compiler using the automatically generated alignments andistnwith the par
allel versions mentioned abbe The most important an@ifest comparison will be between the alignments
and distrilutions that we generate and the optimal ones indlkeé6rtran D codes.

We will provide the prototype tool to users foxperimentation. Usecomments andxperiences
will be recorded forealuation. Avariety of users, with dferent plysical simulation applications, will be
considered forveluating the tool. The user group is intended to include represesetatt different experi-
ence leels; from students héng little application gperience and naxperience in parallel programming to



computational scientists who ameperienced parallel programmers whadaworked on their applications
for mary years.

Through interviavs with computational scientists we wiltgdore the types of problems that could be
parallelized using dpView and applications hang irregularly coupled rgular meshesWe will also inves-
tigate heov scientists think about these problems and what information is natural for themvideptioe
compiler Intervievs appear to be the besawto get insight into ve computational scientists think [Nor
man, 1983]. Although the analysis of these intewie is subjectie, the results will be summarized and
guotations will be used to reflect the essence ofdhiews vievs of computational scientists.

Interviews will also be used toveluate opView and determine ha it could be impreed in future
development. Thesémprovements may include changes to redlopView more easily usedUser inter
faces can best be imprad by observing user interaction [Monk, 1984%ee Appendix 2 for arxample of
such suggestionsSummaries and specific comments will be included in the dissertation as appropriate.

5.2. Irregularly Coupled Regular Mesh Support

Most importantlyin parallel with TopView devdopment we will gtend Fortran D to support irigu-
larly coupled rgular meshes andglore the implications of thesatensions to compiler technolagyhis
will include:

(1) languagextension to epress irrgular coupling between gelar meshes indftran D;

(2) algorithmdevelopment and analysis for mapping gtdarly coupled rgular meshes to parallel
architectures;

(3) codegeneration design;
(4) validation of the designed algorithms via simulation by hand.
We will also produce a rough prototype angberiment with its performance.

6. Summary

We will develop and analyze algorithms for generation, alignment, and partitioning of CCGs through
the use of algorithm topology and other user informatitopView will be provided as an implementation
of the algorithms to alle experimentation with the use of topology in semi-automatic parallelization.

We will extend the notion of topology indftran D to include irrgularly coupled rgular meshes in
order to support such important applications adewcooled nuclear reactor simulationVe will also
develop and analyze algorithms to map such meshesferefift architectures.

The by-products of this research will be: a tool to assist with parallelizatiooriraf D; n&v com-
piler technology to xpand the applicability of éftran D to include applications with igelarly coupled
regular mesh topologies; and greater understanding of wheristons to Brtran D are needed to support
more applications ceeniently.

The primary contribtions of this research are: in combination withostfan D compilerto provide
a very pawerful tool which supports semi-automatic parallelization for disted memory machines of an
important class of problems; and tovdep the important research area in compilation technology of sup-
port for irregularly coupled rgular meshesin addition, the research illustrateswhto take advantage of
user knavledge, i.e., problem topologip dmplify the difficult task of automatic parallelization.



7. Appendix 1

Graphical representation of topology and program data structures is helpful in alignment and distri-
bution of data structures for parallelization iarffan D. When an gperienced parallel programmer is par
allelizing an algorithm, consideration of the topology of the problem can quickly lead to findeny a v
good approach to decomposing the problem for paradkeiuion. We haveused this insight to delop a
prototype tool that assists the user in partitioning the data structures in their sequential program via a graph-
ical program representatiornn the future the tool will recommend alignments and distidims tut allov
the user to werride those recommendations where appropriate.

One representation of programs that may assist in the use of topology for parallelization is the com-
putation communication graph (CCGlror example, for the program fragment in Figure 3 the CCG has
nodes for each array element of all of the arrays and edges: from U(I) and U(l1+1) to Q(l); from Q(l),
Q(I+1), P(l), and P(1+1) to U(I1+1); from U(I+1) to X(I+1); from U(l), U(1+1) and ZM(l) to V(1); from V(I)
to P(l). The topology of the problem is a one-dimensional mé&¥h.se this gample for the description
of the TopView prototype.

For distributed memory machines, twof the most challenging problemacked by the programmer
are: 1) determining anfefient problem patrtition; and 2) correctly incorporating communication and syn-
chronization. Problemartitioning is often done in the form of data structure partitionkigre a dpView
prototype is presented that assists with parallelizatioroitrdh D. After data structure partitioning has
been performed, usingopView, the Rice Brtran D compiler may be used to complete the parallelization
task for distriluted memory parallel processors.

Starting with a serial program, oneayvto parallelize is to lld the GCCG to see relationships
between ariables, then partition the data structures and computations for assignment to parallel processes.

do 100 It = 1, NumStps
do I = Istrt,Ifins
Q) = - ( Clav*Al(l) + Cgav*ABS(U(I+1)-U()/V(1) )
1 *(U@I+1) - U))
enddo
do | = Istrt,Ifins-1
U(l+1) = U(I+1) - Dthif * ( P(I+1) + Q(I+1)
1 -P() - Q) / (ZM(1+1) + ZM(1)) * 0.5)
X(1+1) = X(I1+1) + Dt * U(I+1)
enddo
do I = Istrt,Ifins
V()=V()+Dt*(U(1+1)-U(1))/ZM(1)
enddo
do I = Istrt,Ifins
P(l) = PO - Aisq0 * (V(l) - VO)
enddo
PHist(It) = P(K)
enddo

Figure 3: A Segment of a Simple Material Dynamics Code
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2-Dimensional Mesh
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Figure 4: Topology Selection Menu
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Select Skleton Array

Al

PHist

M

Figure 5: Skeleton Selection Menu

The GCCG may also be of use in dgbing programs as it\gs the user a diérent viev of the \ariable
interactions.

After the user selects the problem topology (see Figure 4), the user willdneadist of the arrays
that conform to the topology (see Figure 5), and may therefore be used as a basis for displaying and parti-
tioning the GCCG.Once the user has selected one of the arrays to bedlletoskarraythe construction of
the GCCG is performed automatically bypMew (see Figure 6).

Specification of the topology and theeiton array prnades a basis for laying out the GCCG for dis-
play to the userThe sleleton array is a structural foundation on which wigdbby attaching all neighber
ing nodes (array elements), laying them out according to their relationship telEmisiand other arrays.

Currently once a GCCG has been constructed and displayed, it remains for the user to partition the
GCCG. Inparticular the user must partition the graph into some number (the number is dependent on the
topology) of subgraphs in which the amount of associated computation is approximately the same for each
and there are a minimal number of edges cut in the partitioned grapkiew supports user partitioning
in an interactie, visual way; i.e., uses a mouse select edges to berestk Futuredevelopment of DpView
will focus on recommending alignments and disttitins to preide an initial (modifiable) partitioning.

Even though the alignment problem is NP-Complete, a heuristic algorithm [Li and Chen 19&ihdea

12



as a starting point foropView devdopment. Althoughthe general problem of partitioning weighted
graphs is NP-Complete [Gusfield & Irving 1989]yeyi a gaphical picture of the GCCG, not only is it
often easy for the user to see what the correct partitiongstrat®uld be, lt topology restricts reasonable
distributions so that delopment is simplified for this problem also.

TopView helps a nwice parallel programmer start the parallelization task with a major portion of the
work done lot later will allov them to impree m the performance when the alignment or partitions are
suboptimal. Thigrovides partitioning options for programmers who may neehs@ough understanding
of the problem underlying their program.

8. Appendix 2

The use of intervigs has already been fruitful as a potential user has suggested that a graphical rep-
resentation of the supported topologies shouldvaiable. Thisseems gry reasonable as itvgs a vsual
clue to the actual topology that should be used for problem decompo$iienvay of incorporating this
comment is to add a graphical representation of the topology directly to the topology selectio hignu.
approach is illustrated in Figure A possible problem with this approach is that for more complicated
topologies it may beery difficult to fit a reasonable diagram in the mefinerefore, we may instead use
pop-up diagrams which will only be displayed when the usetsvto see them.
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