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Abstract

Efficient parallelization for distributed memory parallel processors requires that some parallel decom-
position of the program be found and that communication be encoded which satisfies all dependences in the
decomposed program.With the use of the Rice Fortran D compiler, the parallelization problem is reduced
to finding "proper" data structure partitions (in the form of decomposition, alignment and distribution state-
ments). Ourconjecture is that understanding problem topology is useful in optimizing parallel programs in
computational physics and other computational sciences.In particular, the notion of topology can be used
in the compilation process to assist with parallelization.This thesis will be explored by: developing a
graphical tool, TopView, that uses problem topology to provide recommendations for the alignment and dis-
tribution of data structures; and extending Fortran D’s capability to express and take advantage of topology
for the important case of irregularly coupled regular meshes.

1. Introduction

Current automatic parallelizers have difficulty finding truly efficient global parallelism.They are
unable to analyze programs well enough to produce global parallelism the way a computational scientist
with extensive application and parallel programming experience does. For this reason, many computational
scientists are currently must "hand parallelize" their applications programs for every parallel processor they
wish to use.It has been observed that this process of "hand coding for each machine" is reminiscent of the
early practice of writing machine or assembly code.We propose to study the use of problem topology as a
means to assist in writing efficient, portable programs for parallel machines.We will focus on: 1) the
development of a tool, called TopView, based on the use of problem topology for parallelization; and 2)
extension of the notion of topology in Fortran D to support applications with irregularly coupled regular
mesh topologies.

Although TopView may be most useful for distributed memory machines, it’s use is not restricted to
such machines.In our experience, programs developed using global parallelism tend to run faster than
those using "doacross parallelism" on most parallel architectures [McGrath, et al., 1986].TopView should
also be useful in the context of the weakly coherent virtual shared memory machines currently under devel-
opment, e.g., the EDS system in the ESPRIT project, the Willow project at Rice University, and other hier-
archical memory machines or distributed shared memory machines.Researchers working on the Willow
project say that two of the most important problems to solve to obtain good performance from their
machines are data partitioning and process to processor mapping.

In a program with global parallelism, processes are created at the very beginning of execution and
run in parallel (with synchronization and communication) until program termination. In global parallelism
the default mode of execution is parallel. This mode may be compared with forms where the program runs
sequentially except for the parallel execution of some loops. This approach is seen in most parallel lan-
guages based on the "doacross construct" where the default mode of execution is sequential.Basically, par-
allelism must be the rule not the exception for optimal performance.

Applications considered here are physical simulation applications such as material dynamics, contin-
uum mechanics, quantum physics, etc.

2. Terminology

The following terminology applys within the scope of this document.

A process is a unit of computation - e.g., an independently executable Fortran subroutine together
with the calling sequence parameters, common data and externals. Amain program is also a process.A
processor is a physical device capable of executing a process.
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An inter-process (cross-processor) data dependence exists whenever one process,� , needs a data
value,   , from another process,¡ . On a shared memory multiprocessor, the data dependence is satisfied
when ¡ has written  to a shared variable and� has read  . On a distributed memory multiprocessor, the
data dependence is satisfied when¡ has communicated  to � , i.e., ¡ has sent a message containing  to �
and � has received that message.A global dependence is one in which a single value is dependent on all of
the values of an array.

Communication includes both synchronization operations and actual exchange of data.On a shared
memory multiprocessor, communication involves reads and writes of shared data and/or synchronization
operations. Ona distributed memory multiprocessor, communication involves sends and receives for both
data exchange and synchronization.On weakly coherent shared memory multiprocessors, communication
is proposed to be reads and writes of shared data and the associated required synchronization operations.

The topology of a physical system is the essence of its connectedness.In problems such as the simu-
lation of physical phenomenon, the connectedness of the physical system being simulated may be reflected
in the algorithm topology, which may further be reflected in the program’s data structures.Topology or
neighborliness may be used to specify which computational processes will communicate (be neighbors) in
a parallel algorithm.For example, the natural topology of an n-dimensional fluid flow problem for compu-
tational simulation purposes is an n-dimensional mesh for n = 1, 2, 3.For a discussion of problem topology
(or geometry) and its significance in parallelization see Heerman and Burkitt, 1991.The primary applica-
tion characteristic that we are restricting our consideration to are those applications based on mesh topolo-
gies. Themost important research component of this work will entail extending the notion of topology in
Fortran D to support problems withirregularly coupled regular meshes (ICRMs; [Crowley & Saltz, 1991]).
These problems have a number of components with regular mesh topologies, but the components are con-
nected in irregular ways. Animportant example in this problem class is the simulation of water cooled
nuclear reactors.This simulation applies ICRMs as the reactor core may be simulated using a 3-dimen-
sional mesh but the pipes are usually simulated using 1-dimensional meshes for efficiency. For this
research we will be considering problems with regular mesh topologies and irregularly coupled regular
meshes.

A process dependence graph is a graph in which the nodes represent processes and the edges repre-
sent inter-process data dependences.In some programs for simulation of physical systems, when the nodes
in the process dependence graph are arranged according to the topology of the physical system, dependence
edges exist only between neighbors in the graph.In this case, edges then represent communication lines
when the processes are assigned to processors connected in the same topology as the processes.Thus use
of topology can help to minimize communication overhead whether the topological information is used by
a programmer or compiler.

Thecomputation communication graph (CCG) is a form of dependence graph that shows how values
are related in a program fragment.Each node in a CCG represents an array storage location.Each edge
represents the dependence of the value at the sink on the value at the source of the edge.The CCG for an
entire program is called theglobal computation communication graph (GCCG).

3. Related Work

Although the amount of related work is far too great to discuss all of it here, we will briefly discuss
some of the major thrusts in parallelization research and their relationship to the proposed research.In each
area only a few of the relevant works will be mentioned to give an idea of what is being done in the related
areas of partitioning and parallelization.

Many researchers are working on partitioning loops for parallel execution [King, et al., 1989, Smith,
et al., 1989, Smith, et al., 1990, D’Hollander 1989, Ikudome, et al., 1990], but this tends to lead to high
communication/computation ratios and low parallel efficiency. A variation on this theme partitions data
structures for parallelism [Ramanujam, et al., 1989], but requires constant and regular dependence distance
vectors. Thiswork is not general enough to efficiently handle implicit material dynamics codes which also
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have non-constant dependence distance vectors. Asomewhat more sophisticated approach is taken in
Parafrase-2 [Polychronopoulos, et al., 1990] where initial tasks are outer loops, subroutine calls, and basic
blocks. Theseinitial tasks may then be merged to increase granularity. Although this may be more promis-
ing, the parallel code generated will still not, in general, be as efficient as that produced by an experienced
parallel programmer. A great deal of work has been done on data dependence analysis for parallelization
(e.g., see Li, et al., 1990 and Wolf, et al., 1987) which forms a basis for all of this work. All of this research
is based solely on dependence analysis and not on the algorithm designer’s understanding of the applica-
tion. AlthoughTopView is also heavily reliant on dependence analysis, it also makes use of the computa-
tional scientist’s knowledge of the application.In particular, although theoretical algorithms have been
developed [Li and Chen, 1990] for data structure alignment they hav enot been put into use.We intend to
use previous research results [Li and Chen, 1990, Knobe, et al., 1990, Knobe and Natarajan, 1990, Chap-
man, et al., 1991] as a starting point, with the extra information we are obtaining from the user, for the
development of TopView and the extension of Fortran D.

Some techniques have been presented for "optimally partitioning" problems for large granularity sys-
tems. [Agrawal, et al., 1988] performs data partitioning in the restricted setting where a master-slave model
is used and 1) data can be arbitrarily divided, and 2) there is no need for communication between slave
tasks. Thisapproach is too costly in overhead for applications such as material dynamics where communi-
cation on each time step implies that the master reassigns tasks to each slave on every time step.That fur-
ther implies reinitialization and completion of slaves on every timestep which is far too expensive for prac-
tical use. Another work on optimization of partitions [Ni, et al., 1989] requires that the user specify
(among other things) a set of design parameters which includes the parameters to define the partition
scheme. Ofcourse, this means the algorithm designer must have already figured out generally how to parti-
tion the problem but just does not know the optimal values for the partition parameters.In general, for all
of these approaches either the approach requires that the user already have the basic partitioning strategy in
mind or the approach is too restrictive for the problems we are interested in supporting.TopView is pro-
posed to assist with actually discovering a proper partition, not just optimizing one that is already known.

Some systems have been developed which focus on large granularity parallelism.Schedule [Don-
garra, et al., 1987] was designed to assist users who wanted to develop functionally parallel programs.The
user must perform functional partitioning and then is assisted in constructing and verifying the dependence
relations for all of the subroutines.This approach does not work well for applications like material dynam-
ics which have natural process-oriented or data parallelism but not much functional parallelism.Another
system for developing explicitly parallel, large granularity programs is the FORCE [Jordan, et al., 1989].
The FORCE is basically a portable parallel language based on the parallel Fortran that was used on the
Denelcor HEP. Although this system does provide a portable (across shared memory machines only)
approach to parallel programming, it does not assist the user in developing the parallel program.In particu-
lar the user must not only partition the data structures but must also explicitly perform the synchronization.

The distributed memory compiler at Rice University [Hiranandani, et al., 1991] requires that the user
provide a data structure partition.The compiler then completes the task of parallelizing the program.This
saves the user a great deal of work including coding for only one process to perform input/output and
explicit specification of communication.Unfortunately, this leaves a most crucial part of the parallelization
task for the user to perform without assistance: data structure partitioning.Suprenum [Gerndt, et al., 1987]
uses a similar approach.They state that the parallelization system relies heavily on the user to make the
strategic decision in partitioning.Some new parallel languages such as DINO [Rosing, et al., 1990] also
require that users specify the distribution of data for parallel execution on distributed memory machines.
Another such system is BLAZE [Koelbel, et al., 1987] in which "the only extra information that the pro-
grammer must provide is a general statement of the data distribution pattern".TopView can assist the user
in constructing the partitions (or distributions) for parallelization systems such as these.

Other proposed research approaches to assisting with data structure partitioning and distribution
include the following. Theuse of static performance analysis is proposed in [Balasundaram, et al., 1990
and 1991] to guide data partitioning decisions.The notion of a training set of kernel computations is used
to "train" the performance estimator. The performance estimator is then intended to predict the performance
of code generated by the Fortran D compiler for a particular target machine.This is to allow the interactive
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data partitioning tool to statically explore different partitioning schemes without actually running the code.
This exploration may be an exhaustive search of "reasonable" distributions for each array. Currently, data
partitioning and mapping is specified statically by the user in SUPERB, but a current research thrust is to
use program analysis and heuristic rules with pattern matching to automate the process where possible
[Chapman, et al., 1991].[Gupta and Banerjee, 1991] present an approach to automatic data partitioning
based on distribution constraints.In this approach, each loop is analyzed to determine constraints (restric-
tions) on distribution of data structures.Loop based constraints are then to be merged so that the overall
execution time is minimized.These approaches are all in the category of research in progress and therefore
have not been shown to be complete solutions to the problem of data structure partitioning.At best the
approaches have been validated by hand-simulation on a few benchmarks. TopView seems a reasonable
compromise between having the user do all of the work (as with current distributed memory compilers dis-
cussed above) and not allowing the user to take advantage of their knowledge of the problem (as with auto-
matic partitioners).

4. Thesis and Research Problems

THESIS: An understanding of problem topology is useful in optimizing parallel programs (both by
hand and with a compiler).

Currently, the notion of problem topology in Fortran D is weak and limited to simple meshes.In For-
tran D, topology can be expressed as the number of dimensions in decompositions, but there is no guaran-
tee that the neighborliness defined by the topology will be preserved. Thereforethe notion of neighborli-
ness must be strengthened both in terms of expressing more general problem topologies and ensuring
expressed problem topologies are preserved whenever possible in mapping to any giv en hardware topology.
Fortran D also requires the user to specify alignment and distribution of data structures.

This dissertation will investigate the hypothesis that specification of problem topology alone is suffi-
cient to automatically generate alignments and distributions. Atool, TopView, is to be dev eloped based on
this hypothesis.

An important class of problems that are not currently supported by Fortran D is characterized by the
need for irregularly coupled regular meshes.Irregularly coupled regular mesh decompositions are more
general than simple regular meshes in that they allow the final decomposition in Fortran D to be composed
by connecting regular meshes of varying sizes and dimensions. Irregularly coupled regular mesh decompo-
sitions are simpler than irregular decompositions thereby allowing more precise compiler analysis to pro-
vide better performance.The second hypothesis, that topology provides the key to extending Fortran D to
support irregularly coupled regular meshes, will be investigated through an exploration of requisite com-
piler technology.

4.1. Alignment and Distribution Recommendation in Fortran D

The owner computes rule used in Fortran D says that the owner of a datum will compute and store
it’s values throughout the execution of the program.This generally means that all of the values referenced
on the right hand side of an assignment must be located on the processor which stores the value for the left
hand side. Thus the essence of data structure alignment is that variables occuring in the same statement
should be allocated to the same processor. For alignment in Fortran D, all of the arrays are aligned at the
level of the problem mapping [Fox, et al., 1990] which reflects the fine granularity computational nature of
the program.A few of the complications arising in alignment are: for every array, it must be determined
which dimensions are sequential; for every pair of arrays, A and B, it must be determined which parallel
dimensions of A correspond to which parallel dimensions of B (these are aligned dimensions); for every
pair of arrays in each of their aligned dimensions, it must be determined what offset is necessary. Once all
data structures have been aligned, they must be distributed across the parallel machine.The primary
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tradeoff in distribution is between load balancing and communication overhead. Correctdistribution deci-
sions require analysis to determine: which parallel dimensions of the aligned arrays should be distributed;
which parallel dimensions, if any, should be sequentialized; and how the distributed dimensions should be
mapped to the processors (i.e., block, cyclic, etc.).

We want to avoid requiring a parallel programmer to supply all of the decomposition, alignment, and
distribution statements necessary for the Rice Fortran D compiler to generate a distributed memory pro-
gram. We hypothesize that by strengthening the notion of neighborliness in Fortran D, decomposition state-
ments (or some other form of topology specifications) will suffice to allow automatic recommendation for
alignment, and distribution of data structures.To this end, a tool, TopView, will be developed which, given
topology specifications for a program segment (a loop nest, subroutine or program), generates a set of rec-
ommended alignments and distributions. Thiswill specifically allow the user to specify changes in topol-
ogy, or independence of topology in different parts of the program at whatever lev el they deem appropriate.
TopView will display the recommendations to the user, possibly in multiple formats such as the CCG or a
process dependence graph. TopView will support graphical modification of the recommended alignments
and partitions.When the user has completed modifications, TopView will generate Fortran D code which
reflects the finalized alignment and distribution specifications for the program segment.

Figure 1: Simple irregularly coupled regular meshes.
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To assist in choosing alignments we will begin by considering previous research [Li and Chen, 1990,
and Knobe, et al., 1990].The unifying idea in this previous research is to use affinities or preferences in
alignment based on dependence analysis, where two different data elements prefer to be aligned if they
appear in the same statement.We will develop compiler algorithms based on such previous research, modi-
fied to take advantage of our understanding of problem topology. Similarly, we will develop a decomposi-
tion strategy based on some combination of an exhaustive search of valid decompositions restricted to the
problem topology and previous research [Knobe and Natarajan, 1990] modified to take advantage of com-
piler understanding of problem topology. Since we are only considering up to 3-dimensional regular mesh
topologies an exhaustive search may be reasonable as a first cut algorithm.

For a brief discussion of the GCCG and the current prototype of TopView see Appendix 1.

Upon completion, TopView will provide a powerful tool to assist with parallelization of physical sim-
ulation applications.

4.2. Support for Irregularly Coupled Regular Meshes

There are critical applications which do not have simple mesh topologies as supported in Fortran D,
e.g., simulation of water-cooled nuclear reactors and aerodynamics of airplanes.Many such critical appli-
cations can much more efficiently be simulated using irregularly coupled regular meshes.In simulation of
water-cooled nuclear reactors, the scientist’s primary interest is in simulating the state of the reactor core so
the core may be modelled in three dimensions. It is inefficient to model the entire reactor system in three
dimensions, especially as one 3-dimensional mesh.Therefore, 1-, 2-, and 3-dimensional meshes are used
for the various components of a reactor and special boundary conditions are used at the interfaces between
the components.Similarly, in simulation of the aerodynamics of airplanes, scientist’s are interested in the
air flow over the surface of the plane and sometimes model the various surface components as 2-dimen-
sional meshes which are connected in irregular ways. Theseapplications are critical in the sense that
human lives may depend on the speed with which correct results of the simulations can be obtained. For
example, a reactor operator may be able to avoid a meltdown of the reactor if a simulation can predict what
action can correct the problem which is leading to meltdown. This can only occur with faster than real-time
simulation capabilities.To support such applications, it is important to extend Fortran D to efficiently han-
dle irregularly coupled regular meshes.

One way of extending Fortran D for irregularly coupled regular meshes is to add explicit coupling of
decompositions with statements of the form:

Couple(A(dA1
, lA1

: uA1
; . . . ; A(dAn

, lAn
: uAn

), B(dB1
, lB1

: uB1
; . . . ; B(dBm

, lBm
: uBm

))

wheredi is a dimension place holder andli (ui) is the lower (upper) bound for the coupling region in dimen-
siondi. Of course,li: ui may be writtenli if li andui are equal.

For example,

Decomposition(A(100, 50))
Decomposition(B(100, 100))
Couple(A(I, 3: 100;J, 50), B(J, 1; I, 1: 98))

joins decompositions A and B.The coupling created is A(3,50) to B(1,1), A(4,50) to B(1,2), ..., A(100,50)
to B(1,98). We could in this way specify arbitrary connections. It is yet to be determined how general the
supported connections should be and whether embeddings, for example, are necessary.

To illustrate some of the issues involved in supporting irregularly coupled regular meshes consider
two 2-dimensional meshes connected as illustrated in Figure 1 (coupling is shown in dotted lines).These
might, for example, be just two of the meshes used in simulating the flow of air over an airplane. Thepri-
mary problem that we are attempting to solve is how to map this built up decomposition to an arbitrary par-
allel machine while respecting the problem topology. The Fortran D for this example, using the syntax
described above, is:
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Decomposition(A(5, 4))
Decomposition(B(6, 3))
Couple(A(I, 1: 3; J, 4), B(I, 4: 6; J, 1))

Even in this simple case where the problem topology, including the length of the connections between the
meshes, is explicitly specified, the optimal mapping is dependent on many other variables including: the
size of each dimension of each mesh; the relative amount of computation in the elements of the meshes; the
relative amount of communication in the meshes in their respective topologies (both in the number of com-
munications and their sizes); the hardware topology; the number of processors; the communication parame-
ters of the machine (e.g., whether communication can be performed in parallel in all dimensions of the
hardware topology, whether communication can be overlapped with computation, and what the relationship
is between the startup cost and communication cost per byte); and whether the computation’s dependences
allow pipelining of communication.Even with all of the variables fixed in this simple example we must
consider the tradeoff between load balancing and communication that can only be equalized with precise
understanding of the entire computation.

One approach to this problem, assuming that the computation and communication performed for
each element of both meshes takes approximately the same amount of time, is to usefolding to minimize
the 2-dimensional area while preserving the topology and then distribute the resulting single 2-dimensional
mesh (possibly having holes). If we have a 2-dimensional (or higher) torus architecture then we can fold

Figure 2: Folded irregularly coupled regular meshes.
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the coupled meshes to reduce the area without increasing communication.This helps balance the load
when the built up mesh is distributed. Folding results in the coupled (with a hole) mesh in Figure 2 which
has a minimum achievable area in the plane while maintaining the neighborliness implied by the topology.
Thus folding has reduced the area of the built up mesh from 7x8 to 7x6.This mesh would then need to be
distributed; let’s consider a 2x3 torus architecture.It is clear that even with this simple example we must
carefully analyze the computation since the built up mesh is not full, the number of processors does not
ev enly divide the number of elements with work, and we must trade off communication against balancing
computation times.

We will explore what can be done to assist with distribution in the more general case of this type of
problem.

5. Research Plan

We first used topology specification explicitly in an experimental material dynamics code on a net-
work of Sun workstations and a Sequent parallel processor. That use of topology allowed the user a more
abstract means of specifying communication as it provided abstract names for neighbors in the topology
rather than having the user specify the process/processor ids and the mapping of processes to processors.

TopView currently constructs and displays the GCCG for simple programs and allows the user to
select distributions. Thisincludes support for 1-dimensional and 2-dimensional regular meshes.

5.1. Alignment and Distribution Recommendation

Research will continue with algorithm development and analysis, design completion and further
implementation of the TopView prototype. Theprototype, given topology specifications, will recommend
alignments and distributions automatically but allow the user to graphically modify these.

Algorithmic development and analysis will begin with aligned CCG construction.TopView will
work at whatever lev el (loop, subroutine and program) topology is specified.Algorithmic development and
analysis will continue with use of the CCG, topology, skeleton array and other user supplied information to
partition the data structures semi-automatically.

TopView is being developed in the ParaScope programming environment. Thisallows us to take
advantage of work that has already been done.Some of the advantages of using this environment are: 1)
the abstract syntax tree is generated, which saves the work of lexical analysis, parsing, etc.; 2) and depen-
dence analysis (intra-array only) is performed.Dependence analysis will have to be extended to represent
all dependences, inter-array and intra-array, instead of just the intra-array dependences currently repre-
sented. UsingParaScope also simplifies the generation of Fortran D since statements can be inserted into
the abstract syntax tree.For the Rice Fortran D compiler, also being developed in the ParaScope program-
ming environment, the code will then be ready for compilation.

To test the performance of the recommendations we generate, we will use a suite of benchmarks
being assembled by Geoffrey Fox. Thissuite provides us with versions of algorithms coded in: Fortran 77,
message passing Fortran for the iPSC/860, CM Fortran for the Thinking Machines CM2, and Fortran D. To
the Fortran 77 version we will add topology specification and compare the performance of the code gener-
ated by the Fortran D compiler using the automatically generated alignments and distributions with the par-
allel versions mentioned above. The most important and fairest comparison will be between the alignments
and distributions that we generate and the optimal ones in the Fox Fortran D codes.

We will provide the prototype tool to users for experimentation. Usercomments and experiences
will be recorded for evaluation. Avariety of users, with different physical simulation applications, will be
considered for evaluating the tool.The user group is intended to include representatives at different experi-
ence levels; from students having little application experience and no experience in parallel programming to
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computational scientists who are experienced parallel programmers who have worked on their applications
for many years.

Through interviews with computational scientists we will explore the types of problems that could be
parallelized using TopView and applications having irregularly coupled regular meshes.We will also inves-
tigate how scientists think about these problems and what information is natural for them to provide the
compiler. Interviews appear to be the best way to get insight into how computational scientists think [Nor-
man, 1983]. Although the analysis of these interviews is subjective, the results will be summarized and
quotations will be used to reflect the essence of the various views of computational scientists.

Interviews will also be used to evaluate TopView and determine how it could be improved in future
development. Theseimprovements may include changes to make TopView more easily used.User inter-
faces can best be improved by observing user interaction [Monk, 1984].See Appendix 2 for an example of
such suggestions.Summaries and specific comments will be included in the dissertation as appropriate.

5.2. Irregularly Coupled Regular Mesh Support

Most importantly, in parallel with TopView dev elopment we will extend Fortran D to support irregu-
larly coupled regular meshes and explore the implications of these extensions to compiler technology. This
will include:

(1) languageextension to express irregular coupling between regular meshes in Fortran D;

(2) algorithmdevelopment and analysis for mapping irregularly coupled regular meshes to parallel
architectures;

(3) codegeneration design;

(4) validation of the designed algorithms via simulation by hand.

We will also produce a rough prototype and experiment with its performance.

6. Summary

We will develop and analyze algorithms for generation, alignment, and partitioning of CCGs through
the use of algorithm topology and other user information.TopView will be provided as an implementation
of the algorithms to allow experimentation with the use of topology in semi-automatic parallelization.

We will extend the notion of topology in Fortran D to include irregularly coupled regular meshes in
order to support such important applications as water-cooled nuclear reactor simulation.We will also
develop and analyze algorithms to map such meshes to different architectures.

The by-products of this research will be: a tool to assist with parallelization in Fortran D; new com-
piler technology to expand the applicability of Fortran D to include applications with irregularly coupled
regular mesh topologies; and greater understanding of what extensions to Fortran D are needed to support
more applications conveniently.

The primary contributions of this research are: in combination with a Fortran D compiler, to provide
a very powerful tool which supports semi-automatic parallelization for distributed memory machines of an
important class of problems; and to develop the important research area in compilation technology of sup-
port for irregularly coupled regular meshes.In addition, the research illustrates how to take advantage of
user knowledge, i.e., problem topology, to simplify the difficult task of automatic parallelization.
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7. Appendix 1

Graphical representation of topology and program data structures is helpful in alignment and distri-
bution of data structures for parallelization in Fortran D. When an experienced parallel programmer is par-
allelizing an algorithm, consideration of the topology of the problem can quickly lead to finding a very
good approach to decomposing the problem for parallel execution. We hav eused this insight to develop a
prototype tool that assists the user in partitioning the data structures in their sequential program via a graph-
ical program representation.In the future the tool will recommend alignments and distributions but allow
the user to override those recommendations where appropriate.

One representation of programs that may assist in the use of topology for parallelization is the com-
putation communication graph (CCG).For example, for the program fragment in Figure 3 the CCG has
nodes for each array element of all of the arrays and edges: from U(I) and U(I+1) to Q(I); from Q(I),
Q(I+1), P(I), and P(I+1) to U(I+1); from U(I+1) to X(I+1); from U(I), U(I+1) and ZM(I) to V(I); from V(I)
to P(I). The topology of the problem is a one-dimensional mesh.We use this example for the description
of the TopView prototype.

For distributed memory machines, two of the most challenging problems faced by the programmer
are: 1) determining an efficient problem partition; and 2) correctly incorporating communication and syn-
chronization. Problempartitioning is often done in the form of data structure partitioning.Here a TopView
prototype is presented that assists with parallelization in Fortran D. After data structure partitioning has
been performed, using TopView, the Rice Fortran D compiler may be used to complete the parallelization
task for distributed memory parallel processors.

Starting with a serial program, one way to parallelize is to build the GCCG to see relationships
between variables, then partition the data structures and computations for assignment to parallel processes.

do 100 It = 1, NumStps
do I = Istrt,Ifins

Q(I) = - ( Clav*AI(I) + Cqav*ABS(U(I+1)-U(I))/V(I) )
1 * ( U(I+1) - U(I) )

enddo
do I = Istrt,Ifins-1

U(I+1) = U(I+1) - Dthlf * ( P(I+1) + Q(I+1)
1 - P(I) - Q(I)) / ((ZM(I+1) + ZM(I)) * 0.5)

X(I+1) = X(I+1) + Dt * U(I+1)
enddo
do I = Istrt,Ifins

V(I)=V(I)+Dt*(U(I+1)-U(I))/ZM(I)
enddo
do I = Istrt,Ifins

P(I) = P0 - Aisq0 * (V(I) - V0)
enddo
PHist(It) = P(K)

enddo

Figure 3: A Segment of a Simple Material Dynamics Code
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Figure 5: Skeleton Selection Menu

The GCCG may also be of use in debugging programs as it gives the user a different view of the variable
interactions.

After the user selects the problem topology (see Figure 4), the user will be given a list of the arrays
that conform to the topology (see Figure 5), and may therefore be used as a basis for displaying and parti-
tioning the GCCG.Once the user has selected one of the arrays to be the skeleton array, the construction of
the GCCG is performed automatically by TopView (see Figure 6).

Specification of the topology and the skeleton array provides a basis for laying out the GCCG for dis-
play to the user. The skeleton array is a structural foundation on which we build by attaching all neighbor-
ing nodes (array elements), laying them out according to their relationship to the skeleton and other arrays.

Currently, once a GCCG has been constructed and displayed, it remains for the user to partition the
GCCG. Inparticular, the user must partition the graph into some number (the number is dependent on the
topology) of subgraphs in which the amount of associated computation is approximately the same for each
and there are a minimal number of edges cut in the partitioned graph.TopView supports user partitioning
in an interactive, visual way, i.e., uses a mouse select edges to be severed. Futuredevelopment of TopView
will focus on recommending alignments and distributions to provide an initial (modifiable) partitioning.
Even though the alignment problem is NP-Complete, a heuristic algorithm [Li and Chen 1990] is available
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as a starting point for TopView dev elopment. Althoughthe general problem of partitioning weighted
graphs is NP-Complete [Gusfield & Irving 1989], given a graphical picture of the GCCG, not only is it
often easy for the user to see what the correct partition strategy should be, but topology restricts reasonable
distributions so that development is simplified for this problem also.

TopView helps a novice parallel programmer start the parallelization task with a major portion of the
work done but later will allow them to improve on the performance when the alignment or partitions are
suboptimal. Thisprovides partitioning options for programmers who may not have enough understanding
of the problem underlying their program.

8. Appendix 2

The use of interviews has already been fruitful as a potential user has suggested that a graphical rep-
resentation of the supported topologies should be available. Thisseems very reasonable as it gives a visual
clue to the actual topology that should be used for problem decomposition.One way of incorporating this
comment is to add a graphical representation of the topology directly to the topology selection menu.This
approach is illustrated in Figure 7.A possible problem with this approach is that for more complicated
topologies it may be very difficult to fit a reasonable diagram in the menu.Therefore, we may instead use
pop-up diagrams which will only be displayed when the user wants to see them.
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