The ParaScope Editor: User
Interface Goals

Kathy Fletcher
Ken Kennedy
Kathryn McKinley
Scott Warren

CRPC-TR-90052-S
1990

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005



The ParaScope Editor: User Interface Goals

Kathi Fletcher
Ken Kennedy
Kathryn McKinley
Scott Warren

Abstract

This paper describes a new, more unified user interface design for the ParaScope Editor,
an exploratory parallel programming tool being developed in the ParaScope programming
environment. It discusses in detail the work model it is intended to support, and how program
information is to be presented to users.



1 Introduction

The ParaScope Editor is designed to provide users with the means to efficiently convert
serial Fortran programs to parallel programs for shared-memory multiprocessors. Automatic
translators are not sufficient because they are often overly conservative in their estimation of
what parts of the code can safely be made parallel. The user’s knowledge about the program
must be tapped in order to find more parallelism. The ParaScope Editor provides the user
with three views of the program.

1. The source code display shows the actual program text. In addition, it indicates the
loop or program region which is selected for consideration and highlights the source
and sink of a selected dependence.

2. The dependence display shows a list of all dependences within the selected regions. In
particular, if a loop is selected, it shows all the dependences carried by that loop.

3. The variable display shows information associated with each variable referenced in the
selected region. The information available includes the classification of the variable as
shared or private as well as the reason for its classification.

The dependence and variable information is provided to the programmers so that they may
discover overly conservative information which inhibits parallelism. Programmers can edit
the program information and select from a variety of source transformations which may lead
to additional parallelism. The number of dependences associated with a loop is often quite
large and can be overwhelming, so ways of organizing and selectively viewing the dependences
are provided.

In the new design, the same program views are maintained, but additional functionality
and consistency are provided. For example, in the current version, dependences can be
deleted using a query dialog. Deletion of a dependence removes it from the dependence
graph and forever from the user’s view. Instead of removing dependences, the new design
calls for a sophisticated marking mechanism which allows dependences to be hidden from user
and/or system consideration. Dependences are however easily returned for reconsideration by
either. Also, dependence classification and variable classification currently use two distinct
mechanisms.

The complete functionality and user interface of the existing version of the ParaScope
Editor (PED) are described elsewhere [BKK*89, KMT91]. This document describes a new,
unified user interface design which will facilitate the parallel programming process in the
ParaScope Editor. In particular, this document proposes a unified work model for the clas-
sification of dependences and variables. Many other issues for the user interface which arise
in presenting program information and modifying programs are also addressed. The new
model provides a more convenient and consistent way for users to understand and process
the information presented to them.

This design resulted from a series of meetings and experiences with PED by a small working
group. This group consisted of the authors of this document, who are tool developers and
a user interface expert, and a few applications researchers who used PED to assist them
in parallelizing programs. The resulting document will be the working design for the next
generation of the PED user interface.



2 The Work Model - Dependence and Variable Classification

When writing and modifying code, programmers typically execute a series of experiments
and ideas before obtaining the desired resultant code. The same process occurs in ParaScope
when users are editing source code, experimenting with transformations, and editing program
dependence information. Source to source transformations enable the user’s code to remain
recognizable throughout the editing process. The work model for editing program information
must take this incremental editing process in to account. Most importantly, it should be easy
for the user to keep track of which information has been changed and the thought process
leading to the change. Keeping a history allows users to reconsider previous choices and to
experiment by creating alternate program versions.

The new work model achieves these goals by making all dependences available for view-
ing, including those that the user has rejected. Each dependence has a classification mark
associated that may be edited by the user. This mark indicates whether the user wants the
dependence to be honored or ignored. A comment field is also provided with each dependence
and can be used to record the “reason” the user changed the classification of the dependence.

Variable classification works similarly. The user can edit the classification information
associated with a variable and include a comment. Throughout the document, explanations
will be given in terms of classification of dependences, but they apply to variable classification
as well.

2.1 Marking - Accepted, Rejected, Pending

Each dependence or variable will be returned from dependence analysis with a system gen-
erated mark of accepted or pending. Those dependences (or shared variables) which can be
proven to exist by the dependence analyzer will be marked accepted and all others will be
marked pending.

The user can change the mark of any dependence to accepted, rejected, or pending.
Rejected dependences do not disappear, they are simply marked rejected. The user can later
look at rejected dependences and change them back to pending or accepted. In addition, the
user can include a comment which will be displayed with the dependence. This comment field
is intended to indicate the reason that the dependence was accepted, rejected, or pending.
However, the user can put anything in this field.

The user will have full control over the mark assigned to a dependence. Users can change a
mark as many times as they like. Because the user may want to mark groups of dependences,
it is helpful to have the ability to warn the user of possible anomalies that may result. (See
2.2.4 System Warnings)

The analysis of the safety and profitability of transformations in PED will take into account
all dependences marked pending or accepted, and ignore rejected ones.

2.2 A Typical Session

During a typical editing session, the user will systematically go through the list of pending
classifications, marking them as accepted or rejected. The dependence view filter will be set
to exclude rejected dependences so as a dependence or variable is marked rejected, it will
“disappear” from view, leaving only the remaining pending and accepted dependences. This



mode of filtering and marking will be the default, but users will be able to view and mark
dependences as they see fit by setting a view filter and mark filter.

2.2.1 Marks Automatically Generated Due to Reclassification of Variables

Currently in PED, when the user moves a shared variable into the private list, all dependences
which were incident on that variable are removed. Removing the dependences, however, can
lead to transformations seeming legal which should be inhibited.

However, with the new proposal dependences do not disappear, but are simply marked
pending, accepted or rejected. In the case of a variable being made private, the incident
dependences should be marked in such a way that they do not prevent parallelization but are
still used in calculating the legality of code transformations.

Changing a variable from shared to private and back to shared should leave the system
in exactly the state it was in before these operations were performed. In other words, the
reclassification of variables should be invertible. Additionally, the state of the dependences
and the variable classifications should be consistent. If a variable is in the private list, it
makes no sense for some dependences which were initially incident on the shared variable to
remain as accepted dependences. If the program were reanalyzed with the variable specified
as private those dependences would not be regenerated.

To satisfy these two conflicting constraints, PED will “remember” the user’s previous
classification of dependences when they are rejected because a variable was moved from
shared to private. The system will work as follows:

e When a user moves a variable from shared to private, all dependences incident upon
that variable will be marked rejected regardless of the user’s previous classification.
The user’s old classifications will be stored.

e If the user moves a variable which was originally shared from private back into shared,
the user’s previous classifications on the associated dependences will be restored.

o If the user attempts to “accept” one of the dependences which were rejected because
the variable was moved from shared to private the user will be informed that remarking
this dependence will cause the variable to be made shared again. Then the user can
cancel the edit or continue. If the user chooses to proceed, the variable will be made
shared and the dependence classifications and marks associated with the variable will be
restored to their previous values. The check for this condition will be made only when
the user moves dependences from rejected to accepted or pending, which presumably
will not be a common occurrence.

2.2.2 Dependence Count Associated with each Variable

Associated with each variable will be a field containing the number of dependences incident
on that variable. Each time the user reclassifies a dependence the counter of the associated
variable will be decremented or incremented accordingly.

A variable with a dependence count of zero can be made private. As a short cut to the
user, a button at the top of the variable display can be used to automatically reclassify as
private all those variables which have zero associated dependences, and which meet all the
criterion used to determine that a variable can be made private.



2.2.3 Marks in the Context of Incremental Analysis

Dependence analysis is not currently capable of taking into account any semantic information
which may be inferred from the user’s marking to dependences. It simply generates the
dependence graph. In the future, when PED is able to accept semantic assertions from
the user about the program rather than, or in addition to, commands to delete individual
dependences, it may be worthwhile to use this information during dependence analysis.

In the process of creating and editing a program, parts of the program will need to be
reanalyzed to keep dependence information up to date. The user will not want to have to
reconsider unchanged dependences that have been previously considered. Upon reanalysis, in
either a batch or incremental system, the existing dependence graph will be retained and then
compared with any new edges returned from analysis. New dependences whose dependence
type, statement numbers, reference offsets, and reference names match a previously marked
dependence will be classified according to the user’s original specification, but will have a
mark set in the “reconsider” field. Generated dependences that PED cannot match with an
old dependence will be marked pending or accepted according to the result of analysis.

Reconsider marks can be manipulated in the same manner as status marks. In addition,
there is an easy, one step method to clear all the reconsider marks. If the user changes the
status mark or the comment field of a dependence, its reconsider mark will automatically be
cleared.

After dependence analysis, it is also necessary to reclassify variables as shared or private.
First as many dependences as possible will be matched and marked according to the user’s
previous categorization. If all of the previous dependences incident on the variable are con-
sistent with the new dependences, PED will preserve user’s previous variable classification.
Otherwise the user’s previous classification is ignored.

2.2.4 System Warnings

Because the user is being given a great deal of freedom to mark dependences and can use query
shortcuts to mark many dependences at once, the user may mark dependences unintentionally.

Warnings are appropriate when the user’s action is irrevocable. Other less catastrophic
but still potentially hazardous actions will be indicated by giving the user a brief optional
message followed by marking the reconsider field of the selected dependences. The warning
will be included in the reconsider field.

The following are instances where a system warning or automatic tracking mechanism is
useful.

e The user can mark a dependence as rejected that the system proven to exist. Some
method of tagging this occurrence would be helpful to prevent accidental remarking
and to flag potential errors for debugging.

e If the user is about to accept a dependence which was rejected because a variable was
made private, the user will be warned that accepting this dependence will result in
making the variable shared and restoring any other rejected dependences incident on
the variable to pending or accepted.



2.3 Undo Feature

The user will be able to undo at least the last marking step. By maintaining a stack of
the dependences and their original classification that were affected by marking at each step,
multiple undos can be supported.

2.4 History Versus Time Independence

Each dependence will have only one classification mark and one comment with the exception
of dependences automatically marked because a variable is moved from shared to private.
The last mark and comment that the user applies to a dependence will be the only mark
and comment available. No editable history will be kept of the marking steps that the user
performs because the steps may be order dependent. Changing any portion of the history
could lead to unexpected results.

To illustrate that the order in which marking steps are applied is important, consider the
following example. Given the initial condition of pending dependences on the variable “a”,
the order in which the following two rules are applied is crucial.

1. Mark all pending dependences on variable “a” as rejected.

2. Mark all rejected dependences on variable “a” as accepted.

3 Displays

3.1 Dependences and Variables

It is necessary to separate filtering the view of the dependences and selecting a set of depen-
dences to be marked. The user will usually want to look at a different set of dependences
from the ones to be marked. For instance, the user might want to look at a superset of the
dependences to be marked or a related set in another part of the program.

3.1.1 Filtering - view control

In order to be consistent with the ParaScope environment, the same view filtering mechanism
that is present in the structured text editor, NED, will be used to filter the dependence and
variable displays. In NED four filters can be used, bold, show, dim, and hide. The current view
filtering works like an if-then-else. The first rule which applies to a statement is performed
and no others are tried. In addition to the current NED functions, the user will be able to
sort the dependences along various criteria. The default view in the dependence display is to
present the pending dependences on all of the variables in the selected loop.

3.2 Filtering and Marking

The same filtering mechanism as above may be used for marking groups of dependences.
A query dialog will provide access to the mark filtering facilities. The user may view the
dependences about to be marked by selecting a view button within the marking dialog.
These dependences will then be displayed in a separate window.



3.2.1 Marking - Pending, Accepted, Rejected

ParaScope users will be able to mark dependences in at least three ways. They can point
to a single dependence in the dependence view and mark it, or they can choose groups of
dependences to be marked using click and drag. Editing one field in a group of selected
dependences will cause all of them to change correspondingly in that field. Variable classi-
fication editing will behave analogously. A target box next to each dependence or variable
classification will darken to indicate that the entity is selected for marking or editing. This
target box will distinguish between selection of a dependence or variable for display in the
text pane, and selection for editing program information.

A query dialog will be provided in order to give the user the power to mark sets of logically
related dependences or variables. These methods will also be available to clear the reconsider
mark.

o Comment

Each dependence will have a “comment” field. This is a purely textual item with no
associated semantics interpreted by the system. The field is provided as a convenience
for the user. The field is envisioned to store the “reason” the user chose the classification.
It could also be used to explicitly record the filter criteria used to mark the dependence.
The filter criteria will not be maintained by the system.

3.2.2 Features of the Dependence Display

At the top of the dependence view display, the current dependence view filter criteria and
a dependence count will be indicated. The following information will be available for each
dependence : line number, dependence type, src and sink name, level, common block, de-
pendence vectors, reqular section information, status mark, comment, time stamp, user, and
reconsider field.

e Dependence Pane Information Line

— Current View Filter Criteria
An indication of the current view filter criteria will appear at the top of the
dependence display. The criteria display will take advantage of abbreviations in
order to encapsulate all the information but will expand upon request.

— Total Number/Total Pending

The total number of dependences and the total number that remain to be classified
will be available for the entire program or for the current view.

e Dependence Information

— Line Number
The line number of the source.
— Type
True, anti, output, call, or control.
— Src/Sink
The source and sink variables as well as their subscript expressions.



x Bindings across routines
If the dependence arises from the use of a global variable within a subroutine
call, the subroutine call is displayed.

— Level, and Common Block

The loop level on which the dependence occurs, and the common block name that
the variable belongs to are displayed as is currently done.

— Dependence Vectors

The most precise information available about a dependence’s direction and dis-
tance are combined and presented here.

— Regular Section Descriptors

These are displayed for dependences on arrays whose source or sink is a call site.
This information will be available locally upon request.

— Status
The dependence’s status is displayed here (pending, accepted, or rejected).

— Comment - system/user
It is possible to have both a system and user comment but since the comment has
only the semantic information that the user attaches to it, just one field will be
used. If a variable is moved from shared to private, the user’s previous mark and
comment are stored, and a system mark and comment are generated to replace
them.

— Time Stamp
The time stamp field contains the last time at which the marking on the depen-
dence was changed by the user. It refers only to changes in the classification mark,
ignoring other edits of the dependence information.

— User

The user field contains the user id of the last user to change the dependence’s
status.

— Reconsider Field

This field will contain a mark that is set if reanalysis has recomputed this depen-
dence and found that it “matched” a dependence that the user had previously
categorized. The reconsider mark can be cleared using the marking filter mecha-
nisms. For example, the user may want to clear the reconsider mark on all match-
ing dependences previously marked accepted since it is certainly safe to leave them
accepted. Also included in the field will be an uneditable system comment which
explains the reason for the mark being set.

3.2.3 Features of the Variable Display

The following will be included with each variable entry: the wariable name, whether it is
shared or private, whether the user accepts or rejects the system’s classification, a comment
about the classification, a time stamp of the most recent classification, and the user that
reclassified the variable, and a reconsider field similar to that for dependences.



3.3

Name

The variable name and, if the variable occurs within a subroutine call, the name of the
called routine are displayed here.

Shared, Shared Pending, Private

This field shows whether the variable is shared or private. Initially the field will be
set by the system, but the user may reclassify any variable. If any of the dependences
causing the variable to be shared are proven dependences, the variable is classified
shared, otherwise it is shared-pending.

Comment - user

This field can be filled in at any time that the user wants to record information about
the classification of the particular variable.

Info

This field contains the same information which is currently displayed to the user about
a variable such as “defined before, used after”. It is filled in at the time of analysis and
is uneditable.

Time Stamp

The time stamp field contains the last time at which the marking on the variable was
changed by the user. It refers to changes of the variables classification but does not
reflect changes to other information included with each variable.

User

The user field indicates the last user to change the status.

Reconsider Field

The mark of the reconsider field is set on a variable if all of the dependences incident
upon it match old dependences that the user previously classified. It is redundant with
all the individual reconsider marks on the dependences, but it is useful for the user to
notice that this variable classification depends on dependence edges which have been
reanalyzed.

Changes to the Text Display

Line Numbers

Line numbers are optionally displayed in the text window. The dependence display
includes the line number of the source to enable sorting dependences by line number
and easy dependence navigation.

Loop Icon

Currently, a loop is selected by the same method that a user would select the cursor
position for text editing. In the new model, a loop icon will be placed at the head of
each loop and the user will click on the icon in order to select that loop. The icon of the
selected loop will change to indicate that it is the selected loop. A persistent loop icon



will indicate the selected loop for the entire time the loop is selected. The loop icon will
be different for loops which can be made parallel and loops which have dependences
that prevent parallelization.

e Annotations

A column to the left of the text displays information about the emphasized object in the
text. Information such as “src¢”, “sink”, or “loop” is displayed. These sideline annota-
tions are in addition to annotations embedded within the text. Embedded annotations
are more specific but sideline annotations stand out better. To conserve screen real
estate and avoid an overly cluttered display, sideline annotations will overwrite the line
number in the line number display. A user can view line numbers, annotations, or both.

e Indicating the src and sink of a dependence

Dependence indicators are embedded in the program text. The source reference of a
selected dependence is underlined with the tail of an arrow and the sink with the head
of an arrow. A reference which is both the source and sink of a dependence will be
underlined with a complete arrow.

e Ellipsis

In order to be able to display the statements containing the src and sink of a dependence
on one screen, intervening text may need to be omitted. Ellipses are placed to indicate
text omissions using NED technology. The amount of context displayed around the
statements of interest can be manipulated by the user. The context can be a fixed
number of lines or a function of the structure of the text. Ellipses can nest and the user
can condense and expand them. If the source or sink of a dependence which is to be
displayed falls within an ellipsed portion of text, the text will remain ellipsed and the
source or sink name is indicated with a sideline annotation next to the ellipse.

e Program Editing and Filtering

Complete editing and filtering functionality are to be added to PED. This enables
general editing and parallelizing in one session. Users will be able to filter, search, and
manipulate the text display just as in NED.

4 Additional User Interface Functionality

The following are suggestions to improve the current PED user interface. These do not involve
any new model or theory, but are straightforward extensions to the current interface.

4.1 General Display Functions

A great deal of information about dependences and variables is available to the user, and
the amount is increasing. It is impossible to cohesively display all the information at once,
therefore the user must be able to choose what to see. The following two features allow the
user to choose how to view information.

10



e Control over which fields are displayed

The user will be able to select which fields of any display - text, dependences, and
variables - actually show up on the screen. A simple dialog is provided, showing the
list of possible fields with a way for the user to select those to present. One of two
mechanisms will be used in the dialog. The user will either check off those to display,
or, alternatively, move fields between a show box and a hide box. It would be nice if
the user could layout the order in which fields were displayed as well. This, however, is
difficult to add and is not of research interest.

¢ Window spawning

The user can spawn off windows of text, dependences, and variables enabling more
control of what can be seen at once. As yet to be determined is whether windows
should spawn off individually or in related groups. Implementation of this feature will
be postponed until other more critical features of the new design are completed. If a
general preference editor is available, spawning would be handled using it.

4.2 Navigation

The following navigation aids will be provided in a future implementation of PED.

e Searching via the standard “Find” dialog
Users will search through the text, dependence, and variable display using the NED
“Find” dialog.

e From uses to definitions and definitions to uses

Users will be able to navigate from a use of a variable to definitions of the variable or
from a definition of a variable to its uses. The definitions and uses are a conservative
estimate of the actual ones.

e From source or sink in the dependence display to source or sink in text

e From a variable in the variable display to the variable in the text

Users will be able to select a variable in the variable display and navigate to uses and
definitions. If the variable is classified by ParaScope as shared, the user will be able to
navigate to the statement(s) which necessitated the shared status.

e The call graph - with parameter bindings

Users will be able to navigate around the call graph, diving into called procedures,
functions, and subroutines, and ascending to caller routines.
4.3 Storing the Ped session

Currently the PED user may only save the source of a PED session into the file system. It will
be possible to save the following information into the ParaScope database between editing
sessions. Most of this work is straightforward.

11



e The Source

When regular section information and data windows are available, efficiency could be
improved by storing subroutines separately. This way the whole program would need
not reside in memory during editing. Call sites would already have information com-
puted about the callee. The time required to bring in the source from the disk and the
frequency of refreshing the source must be weighed against the savings in memory.

e Current Dependence and Variable Markings

In the new dependence model, rejected dependences remain in the dependence graph
but are ignored when calculating program transformations. At the end of an editing
session, the user’s markings must be stored along with the dependence graph. Keeping
around rejected dependences does not cause the dependence graph to increase in size
because dependences are only kept as long as conservative analysis cannot determine
that they do not exist.

e Macros for Viewing and Marking Dependences
Users may have generic viewing and marking filters that will be run often during their
PED sessions. It would be helpful to store these sequences as “macros”.

e Window Position, Sizes, Field Selection

Users will not want to have to customize their PED session each time they edit a file so
this information must be saved and restored between sessions.

5 Future Directions for the Ped User Interface

The following is a brief list of user interface issues which will be addressed in the future, but
are beyond the scope of this document.

e Semantic User Assertions

Eventually, the user will make general statements about program semantics and be-
havior and PED will determine which dependences can be removed based on these user
assertions.

e Editable Assertion Histories

When PED is able to “understand” semantic user assertions, the user will create a pool
of facts about the program and should be able to add to, delete from, and modify these
facts at any time.

e Regions

In order to facilitate experimentation in distributed memory computing, and in task
level parallelism, the user must be able to select program parts other than loops for
purposes of analysis (for example subroutines). A convenient easy interface for se-
lecting these “regions” must be developed, addressing such issues as region structure
summarization and region expansion and narrowing.

12



e Detecting and Displaying Redundant Synchronization

Analysis of event style synchronization is currently supported only on demand. More
comprehensive analysis and display of its results are needed.

6 Summary

This document is intended as a blue print for user interface of the next generation of the
ParaScope Editor. This interface was designed in response to user needs and requests and
hopes to facilitate easier and more in depth analysis and transformation of programs as they
are developed for shared-memory parallel machines.

References

[BKK*89] V. Balasundaram, K. Kennedy, U. Kremer, K. S. MCKinley, and J. Subhlok. The
ParaScope Editor: An interactive parallel programming tool. In Proceedings of
Supercomputing 89, Reno, NV, November 1989.

[KMT91] K. Kennedy, K. S. M¢Kinley, and C. Tseng. Interactive parallel programming
using the ParaScope Editor. IEEE Transactions on Parallel and Distributed Sys-
tems, 2(3):329-341, July 1991.

13



